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Bohr’s complementarity principle is a defining fea-
ture of quantum physics [1]. In essence it represents
the dichotomy between the particle and wave nature
of objects; the particle properties are typically sym-
bolized by well-defined position and the wave prop-
erties by well-defined momentum. The related study
of the simultaneous measurement of non-commuting
observables also has a long history [2].

Here we generalize the complementarity principle
as follows. We note that waves are essentially in-
variant to spacial translations whereas particles are
essentially localized in space. In other words, waves
are symmetric and particles are asymmetric with re-
spect to the translation group. We generalize this
notion of associating wave and particle nature with
symmetry and asymmetry to an arbitrary finite sym-
metry group G. We consider the generalized parti-
cle and wave nature of a system with state density
operator ρ. For convenience we call the generalized
particles simply “particles”, and similarly generalized
waves “waves”, and we refer to transformations by
the group as “translations”. Let G have the unitary
representation Tg for g ∈ G on the system’s Hilbert
space, and let the order of G be |G|.

We first consider particle nature. Particle-like
states are localized with respect to the group G = {g}
and hence their translation ρ 7→ TgρT †g can carry
information. We imagine an information theoretic
scenario between two separated parties A and B as
follows. Party A sends the system in the translated
state ρg = TgρT †g for g ∈ G with probability 1/|G| to
B, and B wishes to make measurements to determine
the value of g. We define the particle nature NP (ρ)
of ρ as the maximum of the mutual information be-
tween A and B over all possible measurements at B.
The maximum is given by the Holevo bound [3] as

NP (ρ) ≤ S(G[ρ])− S(ρ) = AG(ρ) (1)
where S(ρ) is the von Neumann entropy of ρ and
G[ρ] ≡ ∑

g TgρT †g /|G| is the average state received by
B. The quantity AG(ρ) is the asymmetry of ρ with
respect to the group G [4]; hence the particle nature
is bounded by the asymmetry of ρ which is consistent
with our identification of particles with asymmetry.

We now consider the analogous scenario for the
wave nature. The wave properties of the state are
invariant to translations Tg for g ∈ G, and so in terms
of the wave nature the state ρ is equivalent to TgρT †g
and also to G[ρ]. We imagine that party A encodes
information in the wave nature of the state, using a
suitably restricted class of operations, and sends the

system to B who then decodes the information using
measurements. We define the wave nature NW (ρ)
as the maximum of the mutual information between
A and B over all possible measurements at B. We
eventually find that

NW (ρ) ≤ ln(D)− S(G[ρ]) = WG(ρ) (2)
where D is the dimension of the system’s state space.
The quantity WG(ρ) is the extractable work from a
thermal reservoir using the state G[ρ], i.e. it is a
logarithmetic measure of the purity of the state G[ρ]
[4]. The more invariant the state ρ is with respect to
translations Tg of G, the more pure G[ρ] will be, and
so WG(ρ) is also a measure of the symmetry of ρ with
respect to G [4]. Thus the wave nature is bounded
by the symmetry of ρ which is consistent with our
association of waves with symmetry.

Combining these two expressions yields the com-
plementarity relation:

NP (ρ) + NW (ρ) ≤ ln(D) . (3)
That is, the sum of the particle and wave nature is
bounded by the maximum information that can be car-
ried by the system.

The association of particle nature with asymme-
try and wave nature with symmetry can be inter-
changed by changing the group translation. For ex-
ample, in the momentum representation a wave-like
state is highly localized and so it is asymmetric to
momentum boosts (i.e. momentum translations),
whereas a particle-like state is delocalized in the mo-
mentum representation and as such it is invariant
to such boosts. We will discuss the implications of
this feature. Also we re-examine previous work (e.g.
Englert’s fringe visibility thought experiment [5]) in
terms of our approach. Our formalism also allows the
study of the simultaneous measurement of comple-
mentary properties in an information theoretic frame-
work.
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