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Abstract

We derive a master equation describing the evolution of a quantum system subjected
to a sequence of observations. These measurements occur randomly at a given rate
and can be of a very general form. As an example, we analyse the effects of these
measurements on the evolution of a two-level atom driven by an electromagnetic
field. For the associated quantum trajectories we find Rabi oscillations, Zeno-effect
type behaviour and random telegraph evolution spawned by mini quantum jumps
as we change the rates and strengths of measurement.
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1 Introduction

In his famous textbook, von Neumann described ‘two fundamentally different
types of interventions’ by which a quantum state can change [1]. These are (i)
the effects of a measurement and (ii) the automatic changes associated with
evolution via the Schrödinger equation. A subset of the latter ‘intervention’ is
the case of open-system evolution, which occurs when the system of interest
interacts with some other system whose properties are not necessarily of par-
ticular interest. Under appropriate conditions, open systems exhibit dynamical
behaviour which is reminiscent of, and can be interpreted in terms of, the first
kind of ‘intervention’, that is, the system evolves in a manner that reflects the
effects of measurements being made on the system. It is the interplay between
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open system evolution and the general description of measurement performed
on a quantum system that is the main focus of this paper.

In describing the evolution of an open system, it is typically the case that we
work with the reduced density operator of the system, obtained by tracing the
joint state of the interacting systems over the degrees of freedom of the second
system, the aim being to obtain the equation of motion of this reduced density
operator, otherwise known as the master equation for the open system. This
is done at a cost: information is lost on the correlations between the systems.
This tracing procedure will, in general, be a highly non-trivial task except in
the circumstance in which the open system is coupled to a bath or reservoir,
often identified with the system’s surroundings or environment, characterized
as having an enormous number of degrees of freedom, and which interacts
with the system over a broad range of energies. This interaction gives rise to
irreversible dynamics associated with the loss of information from the system
to its environment [2–5]. A master equation can also be constructed if there is
a fluctuating, but unobserved, classical element in our Hamiltonian, such as a
laser phase or frequency, and it is necessary to average the state with respect to
this random parameter [6]. In either case, the requirements that the dynamics
be Markovian, i.e. that the dynamics of the system be determined solely by
its current state and not its previous history, and that the trace, Hermiticity,
and complete positivity of the reduced density operator be preserved during
the evolution, constrain the master equation to have what is known as the
Lindblad form [7],

˙̂ρ = − i

~
[Ĥ, ρ̂] +

∑

k

γk

(

b̂kρ̂b̂
†
k −

1

2
b̂†kb̂kρ̂−

1

2
ρ̂b̂†kb̂k

)

, (1)

where ρ̂ is the reduced density operator of the system, Ĥ is the system Hamil-
tonian, b̂k is a system operator, and the γk are positive rates. Various micro-
scopic models of system-environment interactions yield master equations of
just this form under the Born-Markov approximation.

The reduced density operator in general describes a mixed state, so in a sense
gives the ‘average’ behaviour of the system. But it is possible to decompose
this mixed state into an ensemble of individually evolving pure states such that
a suitable average over these states yields the density operator once again. The
evolution of each such pure state traces out what is referred to as a quantum
trajectory in the Hilbert space of the system [8]. The evolution is stochastic
in nature, i.e. each trajectory is a realisation of a stochastic process. This
stochasticity takes the form of random, discontinuous changes in the state
of the system, so-called ‘quantum jumps’, though under appropriate circum-
stances, these jumps will be infinitesimal and sufficiently frequent that the
trajectories are continuous, and in general, because of this stochasticity, the
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quantum trajectories can be very different to each other. But what is truly
remarkable about these trajectories is that by coupling the environment to a
measuring device, it can be shown that the individual quantum trajectories
can be understood as representing the evolution of the pure state of the system
conditioned on the information gained about the system via the output of the
measuring device. Furthermore, different kinds of measurements performed
on the same system lead to trajectories with different stochastic properties,
the extremes being the discontinuous and continuous possibilities mentioned
above. It is also possible to generate a measurement record by numerically
simulating the evolution of a pure state quantum trajectory; indeed the sim-
ilarity between real measurement records and those arising from individual
trajectories can be startling [9].

This logical pathway connecting Markovian master equations and measure-
ment, as obtained by a microscopic system-environment analysis, can be in-
verted: instead of constructing a measurement interpretation from a master
equation obtained microscopically, what is done here is to use measurement
theory to construct as master equation by explicit reference to the effects of ob-
servation on the quantum system of interest. Accounting for the measurement
record in the evolution then naturally leads us to study quantum trajectories.

The simplest description of a measurement in quantum physics was provided
by von Neumann [1]. Consider an observable A, represented by the Hermitian
operator Â,with eigenvalues {λn} and corresponding (non-degenerate) eigen-
vectors {|λn〉}. A measurement of A will give one of the eigenvalues as a result,
with the probability for obtaining the result λn being P (λn) = 〈λn|ρ̂|λn〉. Von
Neumann postulated that immediately following the measurement the state
of a quantum system ρ̂ changes to become the eigenstate of Â corresponding
to the measurement result: |λn〉〈λn|. If the result of the measurement is not
recorded then we can only state that the density operator is now diagonal in
the basis of the eigenstates of Â and that the density operator transforms as

ρ̂→
∑

n

P (λn)|λn〉〈λn|. (2)

The von Neumann measurement can be generalised to account for experimen-
tal imperfections and for measurements that do not correspond to a simple
observable. Such generalised measurements may be described by a probability
operator measure (POM) [10] (also known as a positive operator valued mea-
sure [11]) the elements of which, π̂i, are Hermitian, positive and sum to the
identity operator. Each element corresponds to a particular measurement out-
come, and provides the probability for that particular outcome to be found by
a measurement on the system. The probability that a measurement associated
with the POM will give the result i is P (i) = Tr(ρ̂π̂i).
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The POM formalism needs to be supplemented by a prescription for deter-
mining the state that the system after the measurement. This problem does
not appear for the less general von Neumann measurement as in this case
the system is automatically left in the measured state. The problem was ad-
dressed by Kraus who postulated forming the POM from effects [12] - pairs of
operators Âi and Â†

i , the Kraus operators, such that the POM elements are

π̂i = Â†
i Âi. (3)

We should note that the form of the effect operators is not uniquely determined
by the associated POM elements. If we know the form of the effect operators
then observing the result i changes the density operator ρ̂ to

ρ̂→ Âiρ̂Â
†
i

Tr(ρ̂π̂i)
. (4)

If the result of the measurement is not known, then the density operator
will comprise a sum of such terms, each weighted by the probability of the
associated measurement result:

ρ̂→
∑

i

P (i)
Âiρ̂Â

†
i

Tr(ρ̂π̂i)
=

∑

i

Âiρ̂Â
†
i . (5)

It is possible to further generalise by allowing each POM element to be asso-
ciated with more than one effect, in which case

π̂i =
∑

k

Â†
ikÂik. (6)

The effect changes the density operator for the system so that after a mea-
surement it is left in the state

ρ̂→
∑

i,k

Âikρ̂Â
†
ik. (7)

Note that after a particular measurement result there is no requirement for
the density operator to be left in a state corresponding to the measurement
result: π̂i/Tr(π̂i).

1

1 We can give a meaning to this operator π̂i/Tr(π̂i), however, within retrodictive
quantum theory where it is the best description of the pre-measurement system
given knowledge only of the measurement outcome [13].
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As was mentioned earlier, there are links between measurement and master
equations. Quantum trajectory realisations correspond to the system collaps-
ing into particular states at particular times accompanied by the creation of
some kind of measurement record by a device coupled to the environment,
and thus constitute a kind of measurement-based interpretation of Lindblad
master equations. Conversely, it is clear that interaction with a measurement
device will cause an irreversible loss of information from the system, and thus
it ought to be possible to describe continuous measurement by an information-
loss type master equation. Attempts have been made to do this. In particular,
the equation [4,14]

˙̂ρ = − i

~
[Ĥ, ρ̂] − κ

2
[Ô, [Ô, ρ̂]] = − i

~
[Ĥ, ρ̂] + κ

(

Ôρ̂Ô − 1

2
Ô2ρ̂− 1

2
ρ̂Ô2

)

,(8)

has been suggested as one which models monitoring the system observable
represented by Hermitian operator Ô. Here κ is a constant characterising
the strength and frequency of the measurement. This equation is clearly of
Lindblad form and expressions of this form have been derived using model
couplings and environments or model measurements [15–17]. The effect of
the non-Hamiltonian term is to induce a diagonal form for ρ in the basis of
the eigenstates of Ô. In this way superpositions of these states decohere and
become statistical mixtures in much the same way as would result from in-
teraction with a measurement device and subsequent tracing over this device
[18]; these states are commonly referred to as the pointer basis for this reason.
It has also been proposed that a master equation of this form, with an ap-
propriate form of pointer basis, might arise due to some intrinsic decoherence
or measurement effect [19,20]. Master equations of this form, although widely
used and much discussed [21,4,5], are not without their difficulties, however.
In particular, selecting Ô as the position operator, corresponding to a posi-
tion measurement, has been shown to lead to unphysical heating of the system
subjected to the observation [22].

It is not clear, however, how we can connect master equations of this form with
the description of the measurement process presented earlier. Nor is it clear
that such a comparison is possible in all cases. This question is important if
we wish to be sure that the evolution does indeed model a measurement and,
more importantly, to quantify the accuracy of the measurements and follow the
acquisition of information in individual evolutions. Clarifying the connection
between Markovian master equations and measurements is the main objective
of this paper.
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2 Derivation of the master equation

In this section we provide a simple but comprehensive derivation of a mas-
ter equation describing the continuous monitoring of a quantum system. Our
starting point is to use the Kraus operators to describe the effect of the mea-
surements on the system state. We assume that the continuous monitoring
takes the form of a sequence of measurements which take place instanta-
neously and randomly in time, but at an average rate R. Consider a short
time interval ∆t. During this time the probability that a single measurement
will occur is R∆t and we suppose that the time interval is short enough so
that the possibility that two or measurements occur can be neglected. If a
measurement does occur then the density operator transforms as

ρ̂(t) → ρ̂(t+ ∆t) =
∑

i

Âiρ̂(t)Â
†
i . (9)

If no measurement occurs then the density operator follows the normal Schrödinger
evolution and if ∆t is sufficiently small then we may evaluate this change to
lowest order in ∆t:

ρ̂(t) → ρ̂(t+ ∆t) = ρ̂(t) − i

~
[Ĥ, ρ̂(t)]∆t. (10)

The average evolution results from adding these two, weighted by their prob-
ability of occurence. To lowest order in ∆t we find

ρ̂(t+ ∆t) = (1 −R∆t)ρ̂(t) − i

~
[Ĥ, ρ̂(t)]∆t+R∆t

∑

i

Âiρ̂(t)Â
†
i . (11)

If we take the limit ∆t→ 0 then we obtain the measurement master equation

˙̂ρ = − i

~
[Ĥ, ρ̂] +R

[

∑

i

Âiρ̂Â
†
i − ρ̂

]

. (12)

This equation, which is clearly of Lindblad form, is the main result of our
paper. A similar approach has also been suggested by Stenholm and Suominen
to form a master equation describing a continuously monitored system [23].
More generally, we may need to include measurements with POM elements
of the form (6). In such cases the measurement master equation will take the
form

˙̂ρ = − i

~
[Ĥ, ρ̂] +R





∑

i,k

Âikρ̂Â
†
ik − ρ̂



 . (13)
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We have applied this equation to describe quantum friction in terms of effective
measurements of a particle’s position and momentum associated with collisions
with molecules forming the surrounding medium [24,25]. It is also possible to
derive from this equation the more general master equations of Lindblad form
8 and 1, which will be published elsewhere.

The measurement master equation describes evolution due to both weak and
strong measurements: the parameters governing measurement strength are
hidden within the Kraus operators. The measurements may also be frequent
or infrequent and it is possible to play these parameters off against one an-
other. We might expect a high rate of weak measurements to give similar
evolution to a lower rate of stronger measurements. This does indeed appear
to be the case for the evolution of the density operator and we will find in
our discussion for a two-level atom that the measurement master equation
depends only on a single rate formed from the observation rate R and the
a parameter describing the strength of the measurement. When we examine
the quantum trajectories, however, the observation rate and the measurement
strength have quite distinct effects on the evolution. Indeed, quantum trajec-
tories can exhibit wildly different types of evolution. We should note that the
quantum trajectories have a greater significance than the master equation as
we will have access to the measurement record. Individual trajectories enable
us to simulate both properties of the system and the associated measurement
record.

3 Measurement master equation for a driven two-level atom

The simplest quantum system has just two distinct states and this suffices to
illustrate the construction and application of our measurement master equa-
tion. We consider two energy levels of an atom |1〉 and |2〉, resonantly driven
by an electromagnetic field [3,6]. An alternative physical realisation is a spin-
1/2 nucleus subjected to a constant magnetic field oriented in the z-direction
and a radio-frequency field with its magnetic field pointing in the x-direction
[26]. It is convenient to describe the two-level atom in terms of the three Pauli
operators

σ̂1 = |1〉〈2| + |2〉〈1|
σ̂2 = i (|1〉〈2| − |2〉〈1|)
σ̂3 = |2〉〈2| − |1〉〈1|. (14)

For the driven two-level atom these correspond respectively to the real and
imaginary parts of the atomic dipole and to the atomic inversion. In a suit-
able interaction picture, the Hamiltonian describing the resonant interaction
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between the atom and the driving laser field (which we describe classically)
has the form

Ĥ = −~Ω

2
σ̂1. (15)

This interaction causes the probability for the atom to be found in the state |1〉
to oscillate in time with the Rabi frequency Ω [3,6]. The corresponding fully
quantum problem has the classical laser field replaced by a single quantised
field mode and leads to much more complicated dynamics [27].

We suppose that during the Rabi evolution the single two-level atom is in-
terupted by a series of instantaneous imperfect generalised measurements of
the energy level. These are represented by the POM elements

π̂1 = p|2〉〈2| + (1 − p)|1〉〈1|
π̂2 = p|1〉〈1| + (1 − p)|2〉〈2|, (16)

associated with the measurement suggesting that the atom was in state 1 or
state 2 respectively. Here 0 < p < 1/2 is the probability that there is an
error, i.e. the probability that a measurement performed on the state |2〉 gives
the result 1 or vice versa. When p = 0 the measurements are perfect, and
determine, without error, the state of the system, when it is small we have
strong measurements and when p is close to 1/2 the measurements are weak.
At p = 1/2 both POM elements are proportional to the identity and the
measurements tell us nothing about the state of the system.

In order to find an appropriate measurement master equation we need the
effect operators. These are not uniquely determined by the form of the POM
but, for the sake of simplicity, we can choose the following as the most simple
forms consistent with the POM elements:

Â1 =
√
p|2〉〈2| +

√

1 − p|1〉〈1| = Â†
1

Â2 =
√
p|1〉〈1| +

√

1 − p|2〉〈2| = Â†
2. (17)

A measurement of this kind can be realised in nuclear magnetic resonance
by means of coupling the spin under consideration to one of its neighbours
[28]. These can be substituted directly into the general measurement master
equation to give

˙̂ρ=− i

~
[Ĥ, ρ̂] +R

(

Â1ρ̂Â
†
1 + Â2ρ̂Â

†
2 − ρ̂

)

=
iΩ

2
[σ̂1, ρ̂] +

R

2

(

√

1 − p−√
p
)2

(σ̂3ρ̂σ̂3 − ρ̂) . (18)
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It is clear that the master equation depends on the rate and measurement

error probability only through the combination γ = R
2

(√
1 − p−√

p
)2

. A
similar dependence of an effective rate, γ, on the rate of observation and the
accuracy of the measurements can be found in models in which the system
under observation is coupled to a meter system [4]. Furthermore, this equation
is equivalent to eq. (8) describing a measurement of σ̂3, as σ̂2

3
= Î. We will

find, however, that varying R and p leads to dramatically different quantum
trajectories induced by the measurements. We can solve equation (18) by
writing the density operator as

ρ̂ =
1

2

(

Î + u(t)σ̂1 + v(t)σ̂2 + w(t)σ̂3

)

. (19)

This leads to coupled equations for the components of the Bloch vector (u, v, w) =
(〈σ̂1〉, 〈σ̂2〉, 〈σ̂3〉) [3,6]:

u̇=−2γu

v̇= Ωw − 2γv

ẇ=−Ωv. (20)

Solution of these is straightforward and gives

u(t) =u(0)e−2γt

v(t) = v(0)e−γt
(

cos(Ω′t) − γ

Ω′
sin(Ω′t)

)

+ w(0)e−γt Ω

Ω′
sin(Ω′t)

w(t) =w(0)e−γt
(

cos(Ω′t) +
γ

Ω′
sin(Ω′t)

)

+ v(0)e−γt Ω

Ω′
sin(Ω′t), (21)

where Ω′ = (Ω2 − γ2)1/2 is the Rabi frequency as reduced by the action of the
measurements. This evolution is reminiscent of that which occurs when the
laser driving the atom is subject to phase jumps [29] or frequency fluctuations
[30].

In fig. 1 we plot the evolution of the inversion w(t) as a function of the dimen-
sionless time Ωt. We see that the Rabi oscillations are damped out and that
the inversion tends to a steady state value of zero. This is a reflection of the
fact that the steady state for the atom is the fully mixed state ρ̂(∞) = 1

2
Î,

corresponding to zero values for u, v and w. We also see that that the period of
the Rabi oscillations is increased by the measurements through the presence of
γ in Ω′. If γ > Ω then we will not have any Rabi oscillations and the evolution
of the inversion is then reminiscent of over-damped harmonic motion.
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Fig. 1. A plot of atomic inversion as a function of time for γ = 0.1414Ω

4 Measurement-result dependent evolution

The most obvious benefit of our approach is that we can easily follow the
evolution of the atom conditioned on the results of the measurements. We can
do this by implementing the change (4) after a measurement, but it is sim-
pler and more natural to employ the quantum trajectories method [8,31,32] to
simulate individual realisations of an experiment by calculating the evolution
of the state vector |ψ〉. In this method, we break time into short intervals of
length δt and then use a random number to determine whether to simulate a
measurement (which we perform with probability Rδt) or otherwise to evolve
according to the Schrödinger equation with the Hamiltonian (15). If a mea-
surement is performed then the result, 1 or 2, is chosen by means of a random
number in accord with the probabilities 〈Â†

1Â1〉 and 〈Â†
2Â2〉 respectively. If

the measurement result is 1 then the state changes as

|ψ〉 → Â1|ψ〉
〈ψ|Â†

1Â1|ψ〉1/2
. (22)

with a corresponding change for the measurement result 2.

4.1 Weak measurements

If the error probability p is close to 1/2 then the quality of our measurements
will be poor and the effect operators will be close to the identity operator:
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Â1 =
1

2

[(

√

1 − p+
√
p
)

Î −
(

√

1 − p−√
p
)

σ̂3

]

≈ 1√
2

[

Î −
(

1

2
− p

)

σ̂3

]

Â2 =
1

2

[(

√

1 − p+
√
p
)

Î +
(

√

1 − p−√
p
)

σ̂3

]

≈ 1√
2

[

Î +
(

1

2
− p

)

σ̂3

]

.

(23)

The unit operator part leaves the state of the system unchanged, and only
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 0  2  4  6  8  10  12  14  16  18  20
tΩ

Fig. 2. Atomic inversion as a function of time for weak measurements. Parameters
are p = 0.49, R = 20Ω, so the equivalent decay rate γ = 0.1414Ω

the small part proportional to σ̂3 alters the state. Figure 2 shows a typical
trajectory of the state of the system in the regime where the measurements
are very weak. The value of the overall decay rate γ is the same as in fig.
1, which shows decaying Rabi oscillations, but in fig. 2 the Rabi oscillations
never decay. The measurements do almost nothing to the state, and so the
state just evolves like an undamped two-level atom. The principal change
from undamped Rabi oscillations is that the Rabi period is increased slightly.
We can understand this in terms of the effect of the measurement on the state.
After a measurement, the action of one of the operators Â1 and Â2 is to reduce
the real and imaginary parts of the dipole u and v while the other increases
it. The measurement result inducing a reduction in the dipole is always the
more likely outcome, however, so that on average a measurement reduces the

dipole by the factor 2
√

p(1 − p) ≈ 1 − 1

2
(1 − 2p)2. This leads the sequence of

measurements to induce the dipole to decay at the rate 2γ and, following eq.
(20), the reduction in the size of the dipole is responsible for a deceleration
of the evolution of the inversion w. As the measurements are frequent, the
gross features of the evolution of the inversion are determined by this average
behaviour. The decay of the oscillations which appears in the solution of the
measurement master equation (fig. 1) is a consequence of the randomness of
both the results of the measurements and of the time at which they occur.
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This causes a dephasing between the Rabi oscillations in different realisations.

-1
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 0

 0.5

 1

 0  2  4  6  8  10  12  14  16  18  20
tΩ

Fig. 3. Atomic inversion as a function of time for weak measurements. Parameters
are p = 0.36, R = 1.414Ω, so the equivalent decay rate γ = 0.1414Ω

In fig. 3 the measurement is of slightly better quality and we see that the Rabi
oscillations are more strongly perturbed by the measurements. It is clear that
some of the measurements make a significant discontinuous change in w. As
the measurements become stronger (corresponding to ever smaller values of p)
these discontinuous changes will eventually become quantum jumps between
the states |1〉 and |2〉. In fig. 4 we see the effects of more frequent but weaker
measurements: the discontinuities occur much more frequently but the changes
associated with each are correspondingly smaller. In the measurement master
equation there is a trade-off between increasing R and reducing p and it is
possible to do both whilst leaving γ and the evolution of ρ̂ unchanged. In the
individual quantum trajectories, however, increasing R and decreasing p leads
to qualitatively different evolution. It is also apparent that the Rabi period is
increased beyond its value in fig. 2. This is a consequence of the fact that the
effects associated with the measurement results decrease the values of u and
v by a greater amount and hence slow further the Rabi oscillations of w.

4.2 Perfect measurement and the Zeno effect

If the probability for error is small (p ∼ 0) then we are in the regime of strong
measurements. If the rate of measurement is low then we will find regular
Rabi oscillations interrupted by changes of state either to |1〉 or |2〉, followed
by the resumption of oscillations. This is reminiscent of the trajectories found
in the study of resonance fluorescence in the presence of spontaneous emission
[8]. If the measurements are very good (p = 0) and are carried out very
frequently then we find a quantum Zeno-type behaviour [4]. The measurement
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Fig. 4. Atomic inversion as a function of time for weak measurements. Parameters
are p = 0.49, R = 258.8Ω, so the equivalent decay rate γ = 18.30Ω

repeatedly collapses the system back onto one of the energy eigenstates before
it has time to evolve away significantly. Rabi evolution is seemingly inhibited
completely and the system remains in the excited state for a long time. The
system occasionally jumps from one state to the other after an average time
which depends on the measurement rate and the Rabi frequency. This is more
likely to occur immediately after there has been a relatively long time between
successive measurements, as the state then has had time to evolve significantly
away from one of the eigenstates. A measurement which finds the system in
the other eigenstate then has a reasonable chance of occurring.

For perfect measurements the POM elements and Kraus operators are

π̂1 = |1〉〈1| = Â1

π̂2 = |2〉〈2| = Â2. (24)

Let us suppose that the state evolves under the influence of the Hamiltonian
(15) for a short time δt between two measurements. If the state after the first
measurement was |2〉 then in this time it will evolve to

|ψ〉 =
√

1 − ε2|2〉 + ε|1〉, (25)

where ε ≈ Ωδt/2 � 1. The probability that the measurement of this state
finds the system in state |1〉 is 〈π̂1〉 = ε2, which is very small. The most likely
result is that the measurement will find the atom in the state |2〉 and this will
be the state of the atom after the measurement. In this way the measurements
suppress the Rabi evolution leading to stability of the states |1〉 and |2〉. This
frozen motion is punctuated by occasional jumps between the states leading
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to the random telegraph behaviour illustrated in fig. 5. Very occasionally the
interval between the measurements will be sufficient for the coherent evolution
to cause the inversion to depart noticeably from the stable values of ±1. These
are just visible in fig. 5. The departures of the inversion from ±1 and the
jumps themselves are suppressed as the measurement rate increases. This is
because the probability that the measurement will induce a jump depends on
the square of the time elapsed since the preceding measurement. In the limit
of infinitely frequent measurements the state then remains in either the initial
excited or ground state indefinitely.

-1

-0.5

 0

 0.5
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 0  20  40  60  80  100  120  140  160  180  200
tΩ

Fig. 5. Atomic inversion as a function of time for perfect measurements. Parameters
are p = 0, R = 100Ω, so the equivalent decay rate γ = 50Ω

4.3 Imperfect measurement, small jumps and the weak Zeno effect

If the measurement error probability is small but finite we get an entirely
different type of behaviour. The Rabi oscillations are still suppressed, but the
system undergoes a short-period random telegraph. Furthermore the inversion
also exhibits small and short-lived excursions from 1 or -1 (fig. 6). These fil-
aments are associated with small measurement-induced quantum jumps, not
from the excited state to the ground state, but between intermediate super-
positions of these states, beginning and ending near the maximum absolute
values of the inversion. The existence of such filaments is the signature of what
we refer to as the weak Zeno effect: a measurement can be associated with
beginning a transition but the next measurement can stop it. What appear
as full jumps from 1 to -1 and vice versa are in reality the effect of several of
these mini-jumps occurring quickly, as is borne out by the expanded-timescale
versions of this figure (figs. 7 and 8).

14



-1

-0.5

 0

 0.5

 1

 0  10  20  30  40  50  60  70  80  90  100
tΩ

Fig. 6. Atomic inversion as a function of time for strong measurements. Parameters
are p = 0.16, R = 70.86Ω, so the equivalent decay rate γ = 18.30Ω
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Fig. 7. Detailed evolution near a change in inversion in fig. (6)

Consider the effect on a general state |ψ〉 = α|1〉+β|2〉 of sequences of measure-
ments. We assume that, as in the figure, the rate of monitoring is sufficiently
rapid that evolution does not change the state significantly between succes-
sive measurements. After one measurement the system is in one of the states
|ψ1〉 ∝ Â1|ψ〉 or |ψ2〉 ∝ Â2|ψ〉:

|ψ1〉 =
1

√

(1 − p)|α|2 + p|β|2
(

√

1 − pα|1〉 +
√
pβ|2〉

)

(26)

|ψ2〉 =
1

√

(1 − p)|β|2 + p|α|2
(√

pα|1〉 +
√

1 − pβ|2〉
)

. (27)
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Fig. 8. Detailed evolution near a filament in fig. (6)

After two measurements there are four possible states, given by the four pos-
sible measurement sequences ÂiÂj with i, j = 1, 2:

|ψ11〉=
1

√

(1 − p)2|α|2 + p2|β|2
((1 − p)α|1〉 + pβ|2〉) (28)

|ψ12〉= |ψ21〉 =
1

√

p(1 − p)

(√
p
√

1 − pα|1〉 +
√

1 − p
√
pβ|2〉

)

= |ψ〉 (29)

|ψ22〉=
1

√

(1 − p)|β|2 + p|α|2
(pα|1〉 + (1 − p)β|2〉) , (30)

where the square of the normalising denominator of each state is the proba-
bility for the associated sequence of measurement results to occur. The two
states corresponding to different successive measurements occurring are the
same as the original state. Different successive measurement results have no
nett effect: the inversion can be induced away from +1 or −1 and then jump
back by the same amount following the next measurement. The probability
of this occurring is low (∼ p) for strong measurements but such jumps are
apparent in fig. 6. An expanded view of one such sequence is given in fig. 8.
One of the other two possibilities is much more likely, however, with either
both measurements results being 1 or 2.

If the state is an almost equal superposition |α| ∼ |β| then this will evolve
rapidly towards one of the energy eigenstates. The probability of three or more
identical successive measurements is again significantly enhanced. The overall
effect is that approximately equally weighted superpositions of |1〉 and |2〉 are
unstable.

16



A qualitative understanding of the dynamics can be obtained, therefore, by
considering the effect of sequences of measurements on states of the form of eq.
(25) which has α = ε ∼ 0 and β =

√
1 − ε2 ∼ 1. After the first measurement

the state will become

|ψ1〉=

√
1 − pε|1〉 +

√
p
√

1 − ε2|2〉
√

(1 − p)ε2 + p(1 − ε2)
' ε|1〉 +

√
p|2〉√

ε2 + p
(31)

|ψ2〉=

√
pε|1〉 +

√
1 − p

√
1 − ε2|2〉

√

pε2 + (1 − p)(1 − ε2)
' |2〉. (32)

Thus measurement result 2 leads to no significant change to the system, but
measurement result 1, which occurs with the low probability ε2 + p, increases
the probability that the system is in state |1〉. This amounts to a small jump
from state |2〉 downwards, and is the beginning of one of the filaments in fig.
6. The amount by which the system jumps is determined by the relative sizes
of ε and

√
p.

The time between jumps is small, so again we can disregard the evolution,
which amounts to the assumption that ε2 � p. We therefore only need to
consider the effect of a second measurement on |ψ1〉

|ψ11〉=
(1 − p)ε|1〉 + p

√
1 − ε2|2〉

√

(1 − p)2ε2 + p2(1 − ε2)
' ε|1〉 + p|2〉√

ε2 + p2
(33)

|ψ12〉=

√
p
√

1 − pε|1〉 +
√

1 − p
√
p
√

1 − ε2|2〉
√

p(1 − p)ε2 + p(1 − p)(1 − ε2)
' |2〉. (34)

Thus if the second measurement result is 2 the system returns to the initial
state in line with the general state result. If the second measurement is 1 then
the proportion of state |1〉 is further increased. The ratio of the probabilities
of the measurement outcomes 1 and 2 is (ε2 + p2)/p, an increase on the ratio
for the first measurement (which was ∼ ε2 + p). Thus if a filament does start,
then its continuation is more likely than was its start.

The analysis in the previous paragraph shows that an occasional mini-jump
down associated with the unlikely measurement result means that for the next
measurement the jump downwards is more likely, and can be of the same order
of likelihood as the jump back up. If the jump is back upwards then the result
is one of the mini filaments seen in fig. 6. Any combination of jumps down and
up which ends back at the excited state results in a filament. The greater the
number of excess number of down-jumps the longer the filament. In some cases
the filament extends below an inversion of zero so that the state of the system
contains a greater proportion of the ground state than excited. The situation
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is now reversed and jumps down become more likely. When this occurs and the
filament reaches the ground state (inversion -1) what appears to be a full jump
has occurred. These jumps seem to be single jumps straight down when the
system is viewed on a coarse timescale, but finer timescales reveal that they
consist of several of these mini-jumps, both down and up. The rate at which
these full jumps occur is significantly higher than for the pure Zeno jump rate,
as the probability of several consecutive mini-jumps is high compared with the
probability of Zeno-type single jumps for perfect measurements.

When the system gets close to the ground state the size of the mini-jumps de-
creases until they are comparable in size to the typical Rabi evolution between
jumps. Then a tiny amount of Rabi evolution introduces a small amplitude
associated with state |2〉 and the whole mini-jump process begins again, but
with the roles of the excited and ground state reversed. The overall behaviour
of the system over long times is then a short-period random telegraph, in which
the jumps from the excited to the ground state consist of several mini-jumps.

The mini-jumps persist for quite large measurement error probability p and
for significant Rabi evolution between measurements. As p decreases, however,
the initial jump size increases, until for p = 0 the jumps are directly from close
to the excited state to the ground state, and the Zeno situation is reached.
With decreasing p the filaments and the weak Zeno effect disappear as the
likelihood of several mini-jumps occuring becomes small.

Also of note is that some of the realisations pictured here are performed with
parameters p and R such that the overall decay rate is the same, for example,
figs. 4 and 6 whose overall decay rate is 18.3 times the Rabi frequency. In
fig. 4 the measurement error probability is 0.49, and the measurement rate is
258.8 times the Rabi frequency, whereas for fig. 6 the paramenters are 0.16
and 70.8. Thus wildly different behaviours can occur for the same decay rate.
Another less dramatic example of different evolutions for the same decay rate
is given by figs. 2 and 3, for which the damped evolution associated with the
solutionof the master equation is depicted in fig. 1. These examples show that
for a master equation to describe continuous monitoring well it must have a
two-component decay rate.

5 Conclusions

In this paper we have derived a Lindblad master equation which describes the
evolution of a system under continuous monitoring. Instantaneous measure-
ments of the system are assumed to occur at an average rate. The equation
is based on Kraus’s effect description of the measurements, which provides
information about the state of the system after the measurement process. The
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equation describes evolution under both weak measurements, where the state
(no matter what it is) is hardly altered by an individual measurement, and
strong measurements, which can change the state significantly. In contrast to
previous equations derived for this purpose, whose only free parameter is the
decay rate, the measurement master equation decay rate contains independent
measurement rate and strength parameters, so quantum trajectory analyses
based on this equation will be qualitatively different even though the over-
all decay rate may be the same. We will further develop the links between
the measurement master equation and general Lindblad master equations in
future work.

We have applied our measurement master equation to the resonantly-driven
two-level atom, deriving the master equation based on monitoring the energy
eigenstate of the atom. We have performed a quantum trajectory analysis of
the system, and find qualitatively different types of behaviour for different
rates. For weak measurements the individual quantum trajectories resemble
the undamped Rabi oscillations. The principal effect of the measurements is
to increase the Rabi period and to randomise the phase of the oscillations.
For perfect measurements we can obtain the suppressed evolution of the well-
known Zeno effect. The system remains in an energy eigenstate, |1〉 or |2〉,
for a long time, after which it jumps instantaneously to the other eigenstate.
This behaviour continues, with the system inversion performing a long-period
random telegraph type evolution.

For strong measurements, where the probability of measurement error is small
but finite, the system again performs a random telegraph evolution. The ‘flat’
parts of the random telegraph signal are filamented: there are very short de-
partures from the eigenstates which are induced by the measurements. These
are due to smaller mini quantum jumps, both up and down, between interme-
diate superpositions of the two states. The filaments result from departures
from the eigenstates which end up where they started. The full jumps in the
telegraph signal are seeded by, and consist of mini-jumps, again both up and
down, between intermediate superpositions of the two states, but ending in
the other eigenstate. The mini quantum jumps, or weak Zeno effect, are an
unusual phenomenon, particularly, as we are not monitoring the states into
which the system jumps. Under these cicumstances they can only occur for im-
perfect measurements of the state. It is difficult to see how they could be found
systematically using other approaches in which the measurement strength and
rate are not separate parameters within a single decay rate. By starting with
the measurements, and the associated Kraus operators, the independence of
these two parameters is clear from the outset in our approach.
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