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By utilizing transformations of both the radial coordinate and the radial wave

function, densities of annular membranes which are radially isospectral to any

given radial density are produced. In particular, new families of annular

membrane densities are found which are radially isospectral to a uniform

membrane. Some new generalisations for completely isospectral annular

membranes (including angle-dependent densities) are also given.
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1. Introduction

Axisymmetric vibrations of inhomogeneous annular membranes with radius-dependent

densities are often investigated numerically or semi-analytically [Kalotas and Lee (1993),

Gutierrez et al (1998), Buchanan and Peddieson (1999), Jabareen and Eisenberger (2001),

Subrahmanyam and Sujith (2001), Willatzen (2002)]. It is therefore important to have

available some exact solutions for inhomogeneous membranes which may be invoked for

checking such computations. Previously, the author (Gottlieb (1992)) showed that an

annular membrane with inverse-fourth-power radial density was completely isospectral to

a homogeneous membrane, for both Dirichlet (fixed) and Neumann (free) boundary

conditions. Furthermore, circular membranes with positive power radial densities were

found there to be radially isospectral (i.e. having the same part of the vibration spectrum

corresponding to the axisymmetric modes) to circular homogeneous membranes.

The growing importance of the study of isospectrality is reflected for instance by

the addition to the recent book by Gladwell (2004), in its second edition, of new chapters

on isospectral systems, both discrete and continuous. Discussions of isospectral systems

are also included in a new book by Elishakoff (2005). Recently, Knowles and McCarthy

(2004) have used some work by Gottlieb (1988) on isospectral circular membranes to

establish a connection between isospectral densities and isospectral shapes for vibrating

membranes. Isospectral systems may also find applications in the areas of numerical

methods, benchmarking, inversion procedures and diagnostics.

In this paper, we investigate more general transformations of the radial membrane

wave equation wherein the radial wave function (displacement) may also be modified by
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a radial-dependent multiplicative function, whilst still eventually preserving the radial

wave equation form, with modified density distribution. Thereby new families of annular

membrane densities are discovered which are radially isospectral to uniform annular

membranes. Moreover, for any radial density function, different radially isospectral

densities are generated. Some new generalisations for completely isospectral annular

membranes (including angle-dependent densities) are also given.
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2. Formulation

The radial wave equation for the angle-independent (axisymmetric) modes of a unit-

tension membrane with radial (areal) density function φ(ρ) is

2 2

2 2
v 1 v v( )

t
∂ ∂ ∂+ = φ ρ

ρ ∂ρ∂ρ ∂
   (2.1a)

where ρ is the radial coordinate, t is the time and v(ρ,t) is the transverse displacement.

For vibrations with angular frequency ω this becomes a Helmholtz-type equation (with

time-dependence of v suppressed)

2
2

2
d v 1 dv ( ) v 0

dd
+ + ω φ ρ =

ρ ρρ
   . (2.1b)

A procedure of Gottlieb (2002) for finding isospectral string densities dealt with

the ordinary (Cartesian) one-spatial-dimension wave equation. Since (2.1) also only

involves one spatial coordinate, albeit of a different type, it is appropriate to apply the

same method to this radial equation. Thus the transformations are made to new

coordinate and displacement variable

r   =   r(ρ)   , (2.2)

v(ρ,t)   =   γ(r) u(r,t) , (2.3)
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with the aim of obtaining a new radial wave equation of the form

2 2

2 2
u 1 u uf(r)

r rr t
∂ ∂ ∂+ =

∂∂ ∂
 (2.4a)

or, equivalently,

2
2

2
d u 1 du f(r) u 0

r drdr
+ + ω =  (2.4b)

of the standard form, corresponding to a radially isospectral membrane (same radial

eigenvalues ω2) but with different radial density function f(r).

In (2.3), γ(r) is a (positive, non-singular) function of radial coordinate, multiplying

the displacement, which allows for more general transformations than just the simple

substitution of coordinate with γ=1. Equation (2.3) preserves the Dirichlet boundary

condition of fixed edges (v = 0 = u).

For brevity, in the following, derivatives with respect to r will be denoted by a

prime (′) and derivatives with respect to ρ with a grave (`).

After some manipulations are made, the left side of (2.1a) may be expressed as

2 21 1(r`) u ( r`)` u ( `)` u′′ ′γ + ργ + ρ γ
ργ ρ

   ,  (2.5)
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whilst the right side of (2.1a) becomes, via (2.3) and (2.4a),

1( / f ) [u u ]
r

′′ ′γφ +    . (2.6)

The expressions (2.5) and (2.6) are therefore required to be equal.

First of all, since r` = 1/ρ′, equating coefficients of u′′  in (2.5) and (2.6) yields

2
f(r) ( (r))

r
∂ρ = φ ρ ∂ 

   (2.7)

(where ρ(r) is the inverse transformation of (2.2)). Equation (2.7) will give the new

density function f, radially isospectral to the old density function φ.

Secondly, the coefficient of u in (2.5) must vanish. As expressed in the form in

(2.5), this gives simply ργ̀  = constant, i.e.

γ(r(ρ))   =   constant × log(ρ)  +  constant. (2.8)

Finally, coefficients of u′ in (2.5) and (2.6) are equated and (2.7) in the form φ/f =

(r`)2 is used. Several further manipulations yield

2 2( ) (r / r )` (r / r ) ( )`` `ρ γ = ρ γ (2.9)
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whence

2
dlogr constant constantρ= × +

ρ γ∫ (2.10)

which will lead via (2.8) to ρ(r) and hence via (2.7) to f(r).

Then, by (2.3),

u(r)   =   [1/γ(r)] v(ρ(r)) . (2.11)
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3. Special cases

In the special case that the first constant appearing in the above result (2.8) is zero, so that

γ is a constant (which may without loss of generality in (2.3) be taken to be unity), the

displacement functions in (2.3) are related by simple coordinate substitution, and both

Dirichlet and Neumann (free edge) boundary conditions are preserved. Then the radial

coordinate relation (2.10) becomes

r(ρ)   =   constant × ρconstant , (3.1a)

i.e. there is a power law relation

ρ(r)   =   constant × rp (3.1b)

where p is some real number.

3.1 Circles

For circular membranes 0 ≤ (ρ,r) ≤ b , (3.1b) may be written in the radius-preserving

form

p p 1(r) r b −ρ =   . (3.2)
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Then by (2.7) the density φ(ρ) is radially isospectral, for both Dirichlet and

Neumann boundary conditions, with the density

( )
2p 2

2 p p 1rf(r) p r b
b

−
− = φ  

  (3.3)

for any p≥1 (for circular membrane finite densities). The displacements are related by

(2.3):

( )p p 1u(r,t) v r b ,t−=    . (3.4)

This recalls the results of an earlier paper (Gottlieb (1992), section 4) for the case of non-

constant radial densities φ(ρ).

If the parameter in (3.3) is denoted by p1, and a further transformation with

parameter p2 is made, it can be shown that the result of these successive transformations

is equivalent to a single overall transformation of the same form, with parameter p = p1p2.

Thus no new type of class is generated by making transformations of transformations.
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3.2 Annuli

For annular regions 0 < a ≤ (ρ,r) ≤ b (with a<b), the cases p<1 may also be allowed in

(3.1b), but the mapped regions are not geometrically congruent, except in the special case

p = -1. In that case, the radially isospectral systems are related by

ab
r

ρ =       , (3.5)

2 2

4
a b abf(r)

rr
 = φ  

   , (3.6)

abu(r,t) v ,t
r

 =   
       . (3.7)

This recalls a result of Gottlieb (1992, section 3), generalising it to non-constant radial

densities φ(ρ).

Moreover, it may be verified by inclusion of angular coordinate terms of the form

(1/r2)(∂2u/∂θ2) in the full plane polar coordinate Laplacian that there is actually complete

isospectrality for these annuli (i.e. for all modes, including angular modes), as in the

result just mentioned, and furthermore this holds even if the densities are generalised to

be angle-dependent: φ(ρ,θ). This new generalisation states that there is complete

isospectrality in the annular case for densities and displacements related by
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2 2

4
a b abf(r, ) ,

rr
 θ = φ θ  

    , (3.8)

abu(r, ;t) v , ;t
r

 θ = θ  
     . (3.9)

This holds for both Dirichlet and Neumann rim conditions. It also holds for mixed

boundary conditions (part rim free, part rim fixed as appropriate ) provided that account

is taken of (3.5) which shows that inner and outer radii are interchanged in the mapping.

A further similar transformation of radial coordinate simply results in the original

situation.
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4. The general transformation

In the case that a non-constant multiplicative function γ of the form (2.8) relates the

displacements as appearing in (2.3), radial isospectrality will only be obtained for the

Dirichlet boundary condition. Furthermore, because of the logarithmic term in (2.8), only

annular regions may be accommodated: 0 < a ≤ (ρ,r) ≤ b (with a<b). However, new

classes of radial isospectrality are revealed, because of the appearance of a new, free,

parameter.

Substitution of (2.8) for γ into (2.10) and subsequent integration, and absorption

of inessential constants, yield, for r(ρ),

( )
r Alog
C log B

  =  ρ 
 (4.1)

where A, B and C are constants.

The inner and outer radii preserving conditions

r(a)   =   a   ;      r(b)   =   b (4.2)

enable 2 constants to be evaluated, and then one eventually obtains

( )
Br (a,b;B)log
ab log B

Λ  =  ρ 
 (4.3)
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where

( ) ( )(a,b;B) log B / a log b /BΛ =  . (4.4)

Here, B is some positive constant which leads to a parametrized family of new isospectral

densities. In order that the right side of (4.3) does not become singular, we require either

B<a or B>b. Thus, in (4.4), Λ<0.

The inverse transformation ρ(r) can be shown to have the same form as (4.3) with

parameter

B  = ab/B. (4.5)

(Note that Λ(a,b;B ) = Λ(a,b;B).)   Together with (2.7), since (r`)2 = 1/(ρ′)2, this confirms

true radial isospectrality, i.e. of f with φ and of φ with f.

From (4.3), the radial coordinate transformation here is explicitly

( )
(a,b;B)(r) B exp

Brlog ab

 Λ ρ =  
  

 . (4.6)

From (2.7) it then follows that annular membranes 0 < a ≤ r ≤ b with the densities
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( )
( ) ( )

2 2
2 4

2 (a,b;B)exp
Brlog (a,b;B)abf(r) B (a,b;B) Bexp
Br Brr log logab ab

 
Λ 

    
Λ     = Λ φ      

  , (4.7)

with Λ(a,b;B) given by (4.4), are all radially isospectral, for Dirichlet boundary condition,

with the congruent annular membrane 0 < a ≤ ρ ≤ b with density φ(ρ) for each positive

B<a or B>b (and hence with each other).

Significantly, if φ is constant, (4.7) gives a family of new densities (not obtainable

in Gottlieb (1992)) of congruent annular membranes which are all radially isospectral to

each other and to that constant density membrane.

The multiplying function γ(r) relating the displacement functions in (2.3) is

determined via (4.3) and (d/dρ)(2.10), up to an inessential multiplicative constant, as

( )
1(r)
Brlog ab

γ =     , (4.8)

so the displacement functions corresponding to (4.7) are related by

( ) ( )
(a,b;B)Bru(r) log v Bexpab Brlog ab

  
Λ  =       

 . (4.9)
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To determine the result of successive coordinate transformations, it is convenient

to index coordinates and to deal with logarithmic quantities. In (4.6), let ρ = r1 and r = r2

and si = log(ri). Let β1 = log(B1), α= log(ab), and Λ1 involve B1 according to (4.4). Then

one finds

[ ]1 2 1 1 1
1 2

2 1

s ( )
s (s )

s ( )
β + Λ +β β − α

=
+ β − α

   , (4.10)

which is a real bilinear transformation. Now replace 1 by 2 and 2 by 3 in (4.10) to obtain

the corresponding expression for a subsequent transformation s2(s3) with parameter B2.

Set Γ = [log(a)][log(b)]. Then, for i = 1,2,

( ) ( ) 2
i i i i ilog B / a log b /BΛ ≡ = −β + αβ − Γ . (4.11)

For the result of these two successive transformations, a certain amount of algebra leads

to the result that ( )1 2 3s s (s )  is expressible in exactly the same form as (4.10), i.e. s1(s3),

with overall transformation parameter Λ3=Λ1,2 given by

2
1,2 1,2 1,2Λ = −β + αβ − Γ (4.12)

where explicitly
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1 2
1,2

1 2

β β − Γβ =
β +β − α

  , (4.13)

so that correspondingly

1 2
1,2

1 2

(logB )(logB ) (loga)(logb)B exp
log(B B ) log(ab)

 −=  − 
   . (4.14)

That is to say, it has now been demonstrated that a transformation of a

transformation (with 2 1B B≠ , for finiteness) does not produce a new class of

membrane, but simply another radially isospectral annular membrane within the same

class, just with a different value of the parameter B given explicitly in terms of the

intermediate transformation parameters by (4.14).



17

4.1 Interchange of rim radii

It was noted in sub-section 3.2 above (c.f. Gottlieb (1992, section 3)) that it is possible to

retain the geometric congruency of annular regions 0 < a ≤ (ρ,r) ≤ b whilst interchanging

the mappings of inner and outer radii. Thus (4.2) may also be replaced by

r(a)   =   b   ;      r(b)   =   a   . (4.15)

Then (4.1), and a suitable redefinition of constants so that the argument of the logarithmic

terms conforms with that in (4.6-7), eventually lead to the radial coordinate

transformation

( )I
ab (a,b;B)(r) exp

BrB log ab

 
−Λ ρ =  

  

  (4.16)

for any positive constant B<a or B>b.

The further set of densities fI(r) radially isospectral with density φ(ρ) are

correspondingly given by

   
( )
( ) ( )

2 2
2

I 2 2 4

2 (a,b;B)exp
Brloga b ab (a,b;B)abf (r) (a,b;B) exp
Br BrBB r log logab ab

 
− Λ 

    
−Λ     = Λ φ      

   (4.17)
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for all such B as above. Comparison shows that this second set (4.17) is distinct from the

set (4.7).
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5. Conclusion

In this paper, new classes of isospectral and radially isospectral annular membranes  have

been discovered. The work significantly extends the classes of membrane densities

possessing known complete or radial spectra. As well as this intrinsic interest, these

formulae may also be used for checking various  numerical approaches when applied to

inhomogeneous membranes, given isospectrality to other and simpler membranes with

known spectra.
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