
Proceedings of the 9th International Conference on
Neural Infomation Processing (ICONIP'OZ) , Vol. 1
Lip0 Wang, Jagath C. Rajapakse, Kunihiko Fukushima,
Soo-Young Lee, and Xin Yao (Editors)

FINDING OPTIMAL ARCHITECTURE AND WEIGHTS USING
EVOLUTIONARY LEAST SQUARE BASED LEARNING

Ranadhir Ghosh and Brijesh V e m

School of Information Technology
Griffith University, PMB 50, Gold Coast Mail Center

QLD 9726, Australia
E-mail: { r.ghosh, b.verma} @gu.edu.au

ABSTRACT
In this paper, we present a novel idea of implementing a
growing neural network architecture using an
evolutionary least square based algorithm. This paper
focuses mainly on the following aspects, such as the
heuristics of updating weights using an evolutionary
least square based algorithm, finding the number of
hidden neurons for a two layer feed forward multi-
layered perceptron (MLP), the stopping criteria for the
algorithm and finally comparisons of the results with
other traditional methods for searching optimal or near
optimal solution in the multidimensional complex
search space comprising the architecture and the weight
variables. We applied our proposed algorithm for XOR
data set, 10 bit odd parity problem and many real bench
mark data set like handwriting dataset from CEDAR
and breast cancer, heart disease data set from UCI ML
repository. The comparison results, based on
classification accuracy and the time complexity are
discussed. We also discuss the issues of finding a
probabilistic solution space as a starting point for the
least square method and address the problems involving
fitness breaking .

KEY WORDS
ANN, evolutionary algorithm, least square method

1 INTRODUCTION

1.1 Background

The aspect of learning for artificial neural network
(ANN) has always been a major challenge to the
researchers due to its various complexities and trade off
characteristic for classification accuracy and time
complexity. Quite often the problem becomes
multitude with the additional problem of generalization
ability. The most popular learning algorithms use the
concept of gradient descent. Still after few decades of

active research in the ANN learning area, one of the
most popular weight-updating rule or learning (training)
algorithms is Error BackF'ropagation (EBP). However,
most of the EBP based neural learning algorithms
including EBP strictly depends on the architecture of
the ANN and there are many problems associated with
the currently existing algorithms based on EBP and its
variations [2-51. There were a number of hybrid
techniques proposed to improve EBP type learning
algorithms by using least square methods (LSM),
evolutionary algorithms (EA), etc. [6-113.

Earlier work by Verma and Ghosh [l], suggested an
alternative learning methodology, which uses a hybrid
technique by using evolutionary learning for the hidden
layer weights and least square based solution method
for the output layer weights. However the suggested
algorithm could only modify the weights, hence a
topology of the ANN architecture is obviously an area
of concern. The other problem reported for GALS was
of its high memory complexity nature. It was shown in
some preliminary study that with an input matrix of
order 1500 X 100 (row and column respectively) on a
pc with 128 MB RAM and CPU speed of 512 MHz ,
the memory allocation was a problem to call the least
square solution routine.

The main aim of the research presented in this paper
was to investigate a growing neural network
architecture for an evolutionary hybrid learning for
GALS and conduct a comparative study between the
existing learning algorithms that modifies the weights
and architecture of the ANN using evolutionary
technique with our new proposed algorithm, and then
the earlier proposed algorithm was modified further to
decrease the memory complexity. Some simulation
results were analyzed to find a proper range of weights
as a starting for the hidden layer weights, before
applying the evolutionary algorithm.

528

2 RESEARCH METHODOLOGY
Following is the flowchart for the overall algorithm'

2.1 Modification of GALS
To improve the memory complexity of our original
GALS [l], we call the least square method after the
convergence property of the evolutionary algorithm is
over. Earlier, the algorithm used to find the best set of
weights from the initial generation of the population
pool. In that case for n number of population the least
square method was called n times. This problem was
overcome by calling it after the convergence of the
evolutionary algorithm. This could have lead to the risk
of a potential problem of fitness breaking of the
chromosome. We did some experiment based on the
rank of the population pool to test whether breaking the
chromosome into two halves for calling the least square
method causes any major setback to the fitness of the

The details stepwise algorithm can be found in our
earlier work [13.

gene. Following, we describe the stopping criteria for
the convergence of the evolutionary algorithm.

If (best-RMS-error2 c goal-RMS-error) then

Else if (number-ofseneration =
total-number-of~eneration~) then

Else if (train-classification-error is increased in #m4
consecutive generation) then

stop

stop

stop

2.2
We used two different types of experiments - Linear
incrementing for GALS (LIGALS) and binary tree
search type for GLAS (BTGALS) to find the number of
hidden neurons-
. 1. Starting with a small number, and then

Finding optimal number of hidden neurons

incrementing by 1 (LIGALS)
Using a binary tree search type (BTGALS) 2.

2.2.1 Experiment A (LIGALS)
In experiment A, we start with a small number of
hidden neurons and then increment by one. The
stopping criteria for this experiment was as follows:
If (train-classification-error = 0) then

Else If (the test classification error is high in #n5
consecutive generation) then

stop

stop

2.2.2 Experiment B (BTGALS)
In experiment B, we use a binary tree search type to
find the optimal number. The pseudo code of the
algorithm is given below:

Step 1: Find the % test classification error &
train-classification-error (error-min) for #min number
of hidden neurons

test-classification-error (%)) / 2
error-min = (train-classification-error (%)+

Step 2: find the % test classification error & train
classification error (error-max) for #max number of
hidden neurons

The best-RMS-error is the best of the RMS error

Total number of generations is considered as 30
m is considered as 3

from the population pool

We use n = 3 for our experiments, which was
determined by trial and error method

529

error-max = (train-classification-error (%) +
test-classification-error (%)) / 2

Range Max
0 - 9 1
0.1 -0.9 1
0.01 - 0.83648
0.09
0.001 - 0.541417
0.009
0.0001- 0.706357
0.0009

Step 3: Find the % test classification error & train
classification error (error-mid) for #mid (mid = (min +
max) / 2) number of hidden neurons

{est-classification-error (%)) / 2
error-mid = (train-classification-error (%) +

Min Std. dev
1 0

0.9979 0.000156
0.64958 0.0337

0.5 15473 0.00455

0.5706 0.0237

Step 4:
error-max) then

if (error-mid < error-min) and (error-mid >

min = mid
mid = (min + max / 2)

max = mid
mid = (min + max/ 2)

else

end if

Generation Fitness for full length
gene

Step 5: Go to Stepl, if (mid > min) and (mid < max)
Else go to Step 6

Fitness for half length
gene with least

Step 6: ##number of hidden neurons = mid

XOR 4 2

1 1
41 1 7 1 41 1 6

. _ _ ~ ~

10 bit odd parity
Handwriting

900 124
1000 200

I dataset6 I

For handwriting data set, features with vector length
100 was used as input to the ANN after extracting from

530

Breast cancer
Heart disease
(Cleveland)

Tables 4, 5 & 6 show the results for training & testing
RMS and classification error using EBP and the GALS
(applying two different stopping criteria)’. The time
complexity of all the algorithms was found by the total
time taken by each algorithm to find the optimal
number of hidden neurons and the learning.

Table 4 RMS & Classification error results for EBp8

Data set Train Test #Hi Time

-

Error Error dde

400 299
250 53 ng data

cancer

disease
0.005

Table 6 RMS & Classification error results for
GALS (BTGALS)

Train

RMS RMS

(%) (%)
XOR 0.003 0 0.002 25 2 5m
10bit 0.059 10 0.009 22 48 51m

0.02 13m

ng data
set

87m
cancer I
Heart .I 0.317 I 11 I 0.068 I 23 I 14 I 68m 1 disease I
Table 5 RMS & Classification error results for

GALS (LIGALS)

the input image files for upper case characters (A-Z)
using chain code feature extractor. ’ A11 the experiments were conducted on SE
supercomputer at Giiffith University, which consists of
eight RS16000 390 machines and 14 RS16000 590
machines connected by a high speed switch.

The training time for all the algorithms was
considered within some specific range for comparison
purpose. The training for EBP was forcibly stopped
after it crossed the time range limit from the other two
algorithms.

m denotes minutes

Parity
Handw 0.061 13 0.037 16 86 92m
riting

data set

cancer

disease
0.003

Figure 1 shows the comparison of classification
accuracy for the training data set. The graph shows that,
in terms of classification accuracy GALS outperforms
the traditional EBP.

Figure 1 Classification accuracy for training data set

Figure 2 shows the comparison of classification
accuracy for the testing data set. The graph shows that,
in terms of time complexity GALS outperforms the
traditional EBP in almost all the cases.

531

Figure 2 Classification accuracy for testing data set

Figure 3 shows the comparison of time complexity for
all the data set. The result shows that in terms of time
complexity also, GALS is slightly better than the
traditional EBP.

Figure 3 Time complexity for all the data set

4 CONCLUSION AND FURTHER RESEARCH
In this paper, we proposed a novel approach for finding
optimal number of hidden units. We have discussed
with experimental results, how to achieve that with two
different stopping criteria approach. We also improved
our earlier GALS algorithm, to reduce the memory
complexity & also the choice of parameter setting for
the algorithm. From the experimental results, we show
that the new approach outperforms some other
traditional approaches in terms of its ability of better
classification accuracy & time. It should be noted here
that had we considered a fully such automated system
for EBP, the time complexity would have even be
higher. When compared to the traditional EBP, in terms
of required number of hidden neurons, it is shown that
GALS requires more number of hidden neurons. In

future, we would like to improve the memory
complexity of the algorithm further by introducing a
clustering technique for the feature vector of the input
data set. So that the training can be performed for not
the whole data set but for the data set equal to the
number of classes, where each of the vector will be
representing a single class.

5 REFERENCES
B. Verma and R. Ghosh, “A Novel
evolutionary Neural Learning Algorithm”,

Honolulu, Hawaii, USA, 2002.
P. Whittle, “Prediction and regularization by
linear least square methods”, Van Nostrand,
Princeton, N.J., 1963. ’

S . D. Goggin, K.E. Gustafson, and K. M.
Johnson,”An asymptotic singular value
decomposition analysis of nonlinear multilayer
neural networks,” International Joint
Conference on Neural Networks, pp. 1-785-I-
789,1991.
S. A. Burton, “A matrix method for optimizing
a neural network,” Neural comput. Vol3, no 3.
S. Lawrence, C.L. Giles, Ah Chung Tsoi,
“What size neural network gives optimal
generalization? Convergence properties of
backpropagatioin”, UMIACS-TR-96-22.
V. Petridis, S.Kazarlis, A.Papaikonomu and
A.Filelis. “A hybrid genetic algorithm for
training neural network”. Artificial Neural
Networks, 2, pp. 953-956, 1992.
D. Whitley, T. Starkweather, & C. Bogart”
Genetic algorithms and neural networks -
optimizing connections and connectivity”.
Parallel Computing, vol. 14, pp. 347-361, 1990.
D. Montana, & L. Davis, “Training feedforward
neural networks using genetic algorithms”.
Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence IJCAI-89,
1, 1989.
D.R. Hush and B.G.Horne, “Progress in
supervised neural networks,” IEEE signal
processing Magazine, vol. 10, no. 1, pp. 8-39,
Jan 1993.
M.F. Moller, “A scaled conjugate gradient
algorithm for fast supervised learning,” Neural
networks, vol. 6, pp. 525-523, June 1993.
A.P. Topchy and 0.A .Lebedko, “Neural
network training by means of cooperative
evolutionary search,” Nuclear Instruments &
Methods in Physics Research, Section A:
Accelerators, Spectometers, Detectors and
Associated Equipment, vol. 389, no. 1-2, pp.

WCCI 2002, CEC 7302, pp. 1884-89,

240-24 1, 1997.

532

