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ABSTRACT 
In this paper, we present a novel idea of implementing a 
growing neural network architecture using an 
evolutionary least square based algorithm. This paper 
focuses mainly on the following aspects, such as the 
heuristics of updating weights using an evolutionary 
least square based algorithm, finding the number of 
hidden neurons for a two layer feed forward multi- 
layered perceptron (MLP), the stopping criteria for the 
algorithm and finally comparisons of the results with 
other traditional methods for searching optimal or near 
optimal solution in the multidimensional complex 
search space comprising the architecture and the weight 
variables. We applied our proposed algorithm for XOR 
data set, 10 bit odd parity problem and many real bench 
mark data set like handwriting dataset from CEDAR 
and breast cancer, heart disease data set from UCI ML 
repository. The comparison results, based on 
classification accuracy and the time complexity are 
discussed. We also discuss the issues of finding a 
probabilistic solution space as a starting point for the 
least square method and address the problems involving 
fitness breaking . 
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1 INTRODUCTION 

1.1 Background 

The aspect of learning for artificial neural network 
(ANN) has always been a major challenge to the 
researchers due to its various complexities and trade off 
characteristic for classification accuracy and time 
complexity. Quite often the problem becomes 
multitude with the additional problem of generalization 
ability. The most popular learning algorithms use the 
concept of gradient descent. Still after few decades of 

active research in the ANN learning area, one of the 
most popular weight-updating rule or learning (training) 
algorithms is Error BackF'ropagation (EBP). However, 
most of the EBP based neural learning algorithms 
including EBP strictly depends on the architecture of 
the ANN and there are many problems associated with 
the currently existing algorithms based on EBP and its 
variations [2-51. There were a number of hybrid 
techniques proposed to improve EBP type learning 
algorithms by using least square methods (LSM), 
evolutionary algorithms (EA), etc. [6-113. 

Earlier work by Verma and Ghosh [l], suggested an 
alternative learning methodology, which uses a hybrid 
technique by using evolutionary learning for the hidden 
layer weights and least square based solution method 
for the output layer weights. However the suggested 
algorithm could only modify the weights, hence a 
topology of the ANN architecture is obviously an area 
of concern. The other problem reported for GALS was 
of its high memory complexity nature. It was shown in 
some preliminary study that with an input matrix of 
order 1500 X 100 (row and column respectively) on a 
pc with 128 MB RAM and CPU speed of 512 MHz , 
the memory allocation was a problem to call the least 
square solution routine. 

The main aim of the research presented in this paper 
was to investigate a growing neural network 
architecture for an evolutionary hybrid learning for 
GALS and conduct a comparative study between the 
existing learning algorithms that modifies the weights 
and architecture of the ANN using evolutionary 
technique with our new proposed algorithm, and then 
the earlier proposed algorithm was modified further to 
decrease the memory complexity. Some simulation 
results were analyzed to find a proper range of weights 
as a starting for the hidden layer weights, before 
applying the evolutionary algorithm. 
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2 RESEARCH METHODOLOGY 
Following is the flowchart for the overall algorithm' 

2.1 Modification of GALS 
To improve the memory complexity of our original 
GALS [l], we call the least square method after the 
convergence property of the evolutionary algorithm is 
over. Earlier, the algorithm used to find the best set of 
weights from the initial generation of the population 
pool. In that case for n number of population the least 
square method was called n times. This problem was 
overcome by calling it after the convergence of the 
evolutionary algorithm. This could have lead to the risk 
of a potential problem of fitness breaking of the 
chromosome. We did some experiment based on the 
rank of the population pool to test whether breaking the 
chromosome into two halves for calling the least square 
method causes any major setback to the fitness of the 

The details stepwise algorithm can be found in our 
earlier work [ 13. 

gene. Following, we describe the stopping criteria for 
the convergence of the evolutionary algorithm. 

If (best-RMS-error2 c goal-RMS-error) then 

Else if (number-ofseneration = 
total-number-of~eneration~) then 

Else if (train-classification-error is increased in #m4 
consecutive generation ) then 

stop 

stop 

stop 

2.2 
We used two different types of experiments - Linear 
incrementing for GALS (LIGALS) and binary tree 
search type for GLAS (BTGALS) to find the number of 
hidden neurons- 
. 1. Starting with a small number, and then 

Finding optimal number of hidden neurons 

incrementing by 1 (LIGALS) 
Using a binary tree search type (BTGALS) 2. 

2.2.1 Experiment A (LIGALS) 
In experiment A, we start with a small number of 
hidden neurons and then increment by one. The 
stopping criteria for this experiment was as follows: 
If (train-classification-error = 0) then 

Else If (the test classification error is high in #n5 
consecutive generation) then 

stop 

stop 

2.2.2 Experiment B (BTGALS) 
In experiment B, we use a binary tree search type to 
find the optimal number. The pseudo code of the 
algorithm is given below: 

Step 1: Find the % test classification error & 
train-classification-error (error-min ) for #min number 
of hidden neurons 

test-classification-error (%)) / 2 
error-min = (train-classification-error (%)+ 

Step 2: find the % test classification error & train 
classification error (error-max) for #max number of 
hidden neurons 

The best-RMS-error is the best of the RMS error 

Total number of generations is considered as 30 
m is considered as 3 

from the population pool 

We use n = 3 for our experiments, which was 
determined by trial and error method 
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error-max = (train-classification-error (%) + 
test-classification-error (%)) / 2 

Range Max 
0 - 9  1 
0.1 -0.9 1 
0.01 - 0.83648 
0.09 
0.001 - 0.541417 
0.009 
0.0001- 0.706357 
0.0009 

Step 3: Find the % test classification error & train 
classification error (error-mid) for #mid (mid = (min + 
max) / 2) number of hidden neurons 

{est-classification-error (%)) / 2 
error-mid = (train-classification-error (%) + 

Min Std. dev 
1 0 

0.9979 0.000156 
0.64958 0.0337 

0.5 15473 0.00455 

0.5706 0.0237 

Step 4: 
error-max) then 

if (error-mid < error-min) and (error-mid > 

min = mid 
mid = (min + max / 2) 

max = mid 
mid = (min + max/ 2) 

else 

end if 

Generation Fitness for full length 
gene 

Step 5: Go to Stepl, if (mid > min) and (mid < max) 
Else go to Step 6 

Fitness for half length 
gene with least 

Step 6: ##number of hidden neurons = mid 

XOR 4 2 

1 1 
41 1 7 1  41 1 6  

. _ _ ~ ~  

10 bit odd parity 
Handwriting 

900 124 
1000 200 

I dataset6 I 

For handwriting data set, features with vector length 
100 was used as input to the ANN after extracting from 
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Breast cancer 
Heart disease 
(Cleveland) 

Tables 4, 5 & 6 show the results for training & testing 
RMS and classification error using EBP and the GALS 
(applying two different stopping criteria)’. The time 
complexity of all the algorithms was found by the total 
time taken by each algorithm to find the optimal 
number of hidden neurons and the learning. 

Table 4 RMS & Classification error results for EBp8 

Data set Train Test #Hi Time 

- 

Error Error dde 

400 299 
250 53 ng data 

cancer 

disease 
0.005 

Table 6 RMS & Classification error results for 
GALS (BTGALS) 

Train 

RMS RMS 

(%) (%) 
XOR 0.003 0 0.002 25 2 5m 
10bit 0.059 10 0.009 22 48 51m 

0.02 13m 

ng data 
set 

87m 
cancer I 
Heart .I 0.317 I 11 I 0.068 I 23 I 14 I 68m 1 disease I 
Table 5 RMS & Classification error results for 

GALS (LIGALS) 

the input image files for upper case characters (A-Z) 
using chain code feature extractor. ’ A11 the experiments were conducted on SE 
supercomputer at Giiffith University, which consists of 
eight RS16000 390 machines and 14 RS16000 590 
machines connected by a high speed switch. 

The training time for all the algorithms was 
considered within some specific range for comparison 
purpose. The training for EBP was forcibly stopped 
after it crossed the time range limit from the other two 
algorithms. 

m denotes minutes 

Parity 
Handw 0.061 13 0.037 16 86 92m 
riting 

data set 

cancer 

disease 
0.003 

Figure 1 shows the comparison of classification 
accuracy for the training data set. The graph shows that, 
in terms of classification accuracy GALS outperforms 
the traditional EBP. 

Figure 1 Classification accuracy for training data set 

Figure 2 shows the comparison of classification 
accuracy for the testing data set. The graph shows that, 
in terms of time complexity GALS outperforms the 
traditional EBP in almost all the cases. 
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Figure 2 Classification accuracy for testing data set 

Figure 3 shows the comparison of time complexity for 
all the data set. The result shows that in terms of time 
complexity also, GALS is slightly better than the 
traditional EBP. 

Figure 3 Time complexity for all the data set 

4 CONCLUSION AND FURTHER RESEARCH 
In this paper, we proposed a novel approach for finding 
optimal number of hidden units. We have discussed 
with experimental results, how to achieve that with two 
different stopping criteria approach. We also improved 
our earlier GALS algorithm, to reduce the memory 
complexity & also the choice of parameter setting for 
the algorithm. From the experimental results, we show 
that the new approach outperforms some other 
traditional approaches in terms of its ability of better 
classification accuracy & time. It should be noted here 
that had we considered a fully such automated system 
for EBP, the time complexity would have even be 
higher. When compared to the traditional EBP, in terms 
of required number of hidden neurons, it is shown that 
GALS requires more number of hidden neurons. In 

future, we would like to improve the memory 
complexity of the algorithm further by introducing a 
clustering technique for the feature vector of the input 
data set. So that the training can be performed for not 
the whole data set but for the data set equal to the 
number of classes, where each of the vector will be 
representing a single class. 
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