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This paper investigates the intraday price volatility process in four Australian wholesale 
electricity markets; namely New South Wales, Queensland, South Australia and Victoria. The data 
set consists of half-hourly electricity prices and demand volumes over the period 1 January 2002 to 
1 June 2003. A range of processes including GARCH, Risk Metrics, normal Asymmetric Power 
ARCH or APARCH, Student APARCH and skewed Student APARCH are used to model the time-
varying variance in prices and the inclusion of news arrival as proxied by the contemporaneous 
volume of demand, time-of-day, day-of-week and month-of-year effects as exogenous explanatory 
variables. The skewed Student APARCH model, which takes account of right skewed and fat tailed 
characteristics, produces the best results in three of the markets with the Student APARCH model 
performing better in the fourth. The results indicate significant innovation spillovers (ARCH effects) 
and volatility spillovers (GARCH effects) in the conditional standard deviation equation, even with 
market and calendar effects included. Intraday prices also exhibit significant asymmetric responses 
of volatility to the flow of information.  

INTRODUCTION 

Australia has been at the forefront of global efforts to introduce competition into the 

electricity industry. Where electricity was once supplied by state government-owned entities, the 

market is now characterized by separation of the generation, transmission and distribution functions 

across commercialized and privatized companies. The ongoing process of restructuring and 

deregulation has already gone far in promoting a competitive national electricity market in 

Australia. And on the whole, the electricity spot markets integral to this restructuring process have 

achieved the key objective of lowering the wholesale price of electricity. But while lower prices for 

electricity are an encouraging sign, they have been accompanied by higher price volatility.  

The prospect that this increased volatility will persist and likely increase in the future is a 

matter of interest to market participants. When prices are volatile there can be uncertainty about 

generators’ revenues and suppliers’ costs. Measures of risk are equally important to those managing 

energy commodity portfolios. Similarly, for those valuing derivatives, forecasts of volatilities over 
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the life of an instrument are required, while extreme observations imply changes to option values. 

Value-at-risk calculations can also benefit from a more thorough knowledge of price variance. 

Lastly, higher price volatility is a concern for industry regulators and market management 

companies because of unease that it may be partly the outcome of regulatory failure associated with 

inadequacies in market design and the exercise of market power.    

All the same, it is accepted that the inherent characteristics of these newly competitive 

electricity markets also have a role to play in the higher observed price volatility. Given the non-

storability of electricity, higher-than-expected demand, poorly developed transmission networks, 

changes in purchasing and contracting behavior, inappropriately designed market mechanisms, 

market power and information asymmetry, amongst others, can provide a load-matching problem so 

that electricity shows seasonal, week-day and even intraday patterns in price level and volatility. 

Any satisfactory explanation of price volatility in electricity markets must be able to accommodate 

these striking empirical regularities.  

It is also necessary to take into account the pronounced volatility clustering observed in these 

markets. Autoregressive conditional heteroskedasticity (ARCH) models allow volatility shocks to 

cluster and persist over time and to revert to some more normal level and so may offer potentially 

interesting insights on the volatility observed in electricity markets. Unfortunately, few ARCH-type 

studies of electricity prices have been undertaken in Australia or elsewhere [for exceptions see 

Escribano, Pena, and Villaplana (2002), Solibakke (2002) and Worthington, Kay-Spratley, and 

Higgs (2003) for spot electricity and Walls (1999) for electricity futures], and as far as the authors 

are aware, none which attempt to capture the arrival of intraday information effects 

Accordingly, the purpose of this paper is to investigate the intraday price volatility process in 

Australian electricity markets by employing five different ARCH processes: namely, GARCH 

(generalised ARCH), Risk Metrics (normal integrated GARCH), normal APARCH (asymmetric 

power ARCH), Student APARCH and skewed Student APARCH (following Ding, Granger, and 

Engle, 1993; and Giot and Laurent, 2003a, 2003b). By including systematic features – intraday, 

intraday and monthly patterns (calendar effects), intraday innovation and volatility spillovers 

(ARCH and GARCH effects) and market activity (demand and information asymmetry effects) – 

such an approach provides a comprehensive characterization of the volatility process. It thereby 

provides both a starting point for understanding the intrinsic price volatility in electricity markets, 

distinguishing it from changes in volatility that are thought to arise, say, from regulatory design and 

the exercise of market power. The remainder of the paper is divided into four sections. The second 

section explains the data employed in the analysis and presents some brief descriptive statistics. The 
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third section discusses the methodology employed. The results are dealt with in the fourth section. 

The paper ends with some brief concluding remarks in the final section. 

DATA AND DESCRIPTIVE STATISTICS 

In brief, the Australian National Electricity Market (NEM) encompasses the four state-based 

regional markets of New South Wales (NSW), Queensland (QLD), South Australia (SA) and 

Victoria (VIC) operating as an interconnected grid coordinated by the National Electricity Market 

Management Company (NEMMCO). For the most part these regional markets operate separately 

because while power can be transmitted between regions, it is very much constrained by the 

physical transfer capacity of the regional interconnections. In each market, generators are required 

to submit bidding schedules on a half-hourly day-before basis. Matching expected demand in the 

next five minutes against the bid stack for that half-hour period sets prices and the price offered by 

the last generator (plant are dispatched on a least-cost basis) to meet total demand sets the five-

minute price. The pool price is the time-weighted average of the six five-minute periods comprising 

each half-hour trading period. This is the price generators receive for the electricity they dispatch 

into the pool, and is the price customers pay to receive generation in that half hour period [for 

details see Dickson and Warr (2000), IEA (2001) and NEMMCO (2001, 2003)].  

The data employed in the study consists of electricity prices and demand volumes for the half-

hourly intervals from 1 January 2002 to 1 June 2003 for each of the four wholesale electricity 

markets. All data is obtained from NEMMCO on a half-hourly basis representing 48 trading 

intervals in each 24-hour period (NEMMCO, 2003). The prices are in Australian dollars per 

megawatt hour (MWh). By way of comparison, De Vany and Walls (1999a; 1999b), Robinson 

(2000), Wolak (2000), Lucia and Schwartz (2001), Escribano, Pena, and Villaplana (2002),  

Solibakke (2002) and Worthington, Kay-Spratley, and Higgs (2003) employ daily prices in their 

respective analyses of the western United States, United Kingdom, Scandinavian and Australian 

electricity markets. Importantly, the use of daily prices may lead to the loss of at least some ‘news’ 

impounded in the more frequent trading interval data. The natural log of the price for each half-

hourly interval is used to produce a time series of price relatives, such that pt = log (gt/gt-1)×100 

where gt and gt-1 represent the half-hourly pool generation prices at time t and t-1, respectively. 

<TABLE 1 HERE> 

Table 1 presents the summary of descriptive statistics of the price relatives for the four 

electricity markets. Sample means, medians, maximums, minimums, standard deviations, skewness, 

kurtosis and the Jarque-Bera (JB) statistic are reported. As shown, while the price relatives in all 
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four markets are very small, the maximum, minimum and standard deviation of price relatives 

indicate much variability. The highest average price relatives are in QLD and SA, while the greatest 

positive price relatives are in QLD and VIC with the largest negative price relatives in NSW and 

SA. The standard deviations of price relatives range from 22.4033 (NSW) to 29.4379 (QLD). For 

the four markets, the value of the coefficient of variation (not shown) (standard deviation divided by 

the mean price change) measures the degree of variation in price relatives to the mean price change. 

On this basis, VIC is the most variable while NSW is the least variable. 

<FIGURE 1 HERE> 

The distributional properties of the price relative series appear non-normal. All of the markets 

are significantly positively skewed ranging from 0.2788 (SA) to 1.0585 (VIC) indicating the greater 

likelihood of large price increases than price falls. The kurtosis, or degree of excess, is also large, 

ranging from 76.4694 for SA to 84.3674 for NSW, thereby indicating leptokurtic or heavy-tailed 

distributions with many extreme observations. The calculated Jarque-Bera statistic and 

corresponding p-value in Table 1 is used to test the null hypotheses that the intraday distribution of 

price relatives is normally distributed. All p-values are smaller than the 0.01 level of significance 

indicating the null hypothesis is rejected. These intraday price relatives are then not well 

approximated by the normal distribution; such conditions implying it is necessary to fit ARCH-type 

volatility models. Visual inspection of the price relative series in Figure 1 is also suggestive of the 

volatility clustering expected in these markets.   

MODEL SPECIFICATION 

The distributional properties of Australian spot electricity prices indicate that generalized 

autoregressive conditional heteroskedasticity (GARCH) models can be used to examine the 

dynamics of the electricity price volatility process. Autoregressive conditional heteroskedasticity 

(ARCH) models [as introduced by Engle (1982)], generalized ARCH (GARCH) models [as 

proposed by Bollerslev (1986)] and asymmetric power ARCH (APARCH) introduced by Ding, 

Granger, and Engle (1993) that take into account the time-varying variances of time series data have 

already been widely employed in financial markets. Suitable surveys of ARCH modeling in general 

and/or its widespread use may be found in Bera and Higgins (1993) and Bollerslev, Chou and 

Kroner (1992). Ding, Granger, and Engle (1993), Pagan (1996), Giot and Laurent (2003a, 2003b) 

and Laurent (2004) also discuss developments in this ever-expanding literature. 

To start with, a basic requirement is to remove the predictable component of the electricity 

price relatives so as to produce price relative innovation, et, with a conditional mean of zero before 
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a GARCH equation is specified for the variance. One common method to produce an uncorrelated 

process in the half-hourly price relatives is to assume that they follow an AR (1) process. The 

following conditional expected price relative equation accommodates each market’s own price 

relative and its price relative lagged one period: 

 ttt epp ++= −110 ττ  (1) 

where pt is the price relative for each electricity market in the current period and pt-1 is the price 

relative lagged one period, τ0 represents the long-term drift coefficient and τ1 is the degree of mean 

spillover effect across time, or put differently, whether the lagged price relative can be used to 

predict the current price relative, and et is the random error or innovation at time t.  

The next requirement is to model the variance of the price relative innovation itself. A 

GARCH process of order 1 and 1, denoted as GARCH (1, 1), with the random error term, et,  is 

specified as: 

 )1,0(~ Niidhe tttt εε=  (2) 

and the conditional variance (volatility) of et at time t is represented as: 

  (3) 2
11

2
110

2
−− ++= ttt heh βαα

where ht is the conditional standard deviation of volatility of et at time t, α0 is a constant, α1 and β1 

are coefficients that are associated with the past values of innovation spillover 2
ite −  to the current 

volatility, and thereby represent news about the degree of innovation from previous periods (ARCH 

term) and previous period’s forecast volatility spillover effects (GARCH term).  

A concern with the volatility generation process as defined is that current volatility is only 

related to the past values of innovation and volatility spillovers from previous periods. For example, 

Lamoureux and Lastrapes (1990) Engle and Ng (1993), Foster (1995), Andersen (1996), Andersen 

and Bollerslev (1997, 1998), Wang and Yau (2000) and Rahman, Lee and Ang (2002), amongst 

others, argue that an appealing explanation for the presence of GARCH effects in financial markets 

is that the rate and timing of information arrival is the stochastic mixing variable that generates 

financial market returns. That is, market information, however defined, is strongly correlated with 

price volatility (Andersen and Bollerslev 1998). It is also likely that some important electricity 

market information is reflected in the time-of-day, day-of-week and month-of-year in much the 

same manner. In this paper, and with the high-frequency data used, it is hypothesized that at least 

some relevant information is included in the contemporaneous volume of demand, the direction of 

price relatives and the time-of-day, week and month. Solibakke (2002), for example, found that 

price volatility in the Nordic spot electricity market increased strongly on Mondays and Saturdays 

and was especially strong during May, June and July. Herbert (2002: 34) also presented evidence 
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that “…there is seasonality in (electricity) price risk. Not surprisingly, price risk increases in the 

summer…power prices also increase in the winter”. And Hadsell, Marathe and Shawky (2004) 

found that volatility behaviour differed by month across five US electricity markets.  

The next methodological requirement is to then model volatility including such information 

effects. The conditional variance equation, rather than the conditional mean equation, should take 

account of the time-varying conditional heteroskedasticity caused by changes in the 

contemporaneous volume of demand and seasonal and random fluctuations since the variance 

measures the risk generated by new information. For example, Hadsell, Marathe and Shawky 

(2004) included monthly dummies in the conditional variance equation describing US electricity 

markets, while Rahman, Lee and Ang (2002) introduced contemporaneous and lagged volume of 

demand and bid-ask spread in the conditional variance equation describing US financial markets. 

Five different GARCH volatility processes, namely GARCH, Risk Metrics, normal APARCH, 

Student APARCH and skewed Student APARCH models are employed, all of which include 

information effects as defined, but vary according to the assumed distribution of the random error 

term and/or the conditional standard deviation equation.  

To start with, and to take account of the incidence of the time varying conditional 

heteroskedasticity that could be due to an increase in market information in the form of the 

contemporaneous volume of demand and time-of-day, day-of-week and month-of-year effects 

following the simultaneous arrival of new information, the random error term, et as previously 

defined in (2) and the GARCH conditional variance equation in (3) is reformulated as: 

∑ ∑ ∑
= = =

−− ++++++=
48

2
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2
1

2
11

2
110

2

i i i
iiiiiitttt mwdvheh ςηϕψβαα  (4) 

where vt represents the contemporaneous volume of demand, di are dummy variables for the time-

of-day having values of one for the second half hour d2 (0:30-1:30 hours) and zero otherwise; wi are 

dummy variables for each day of the week having values of one for w2 (Tuesday) and zero 

otherwise; mi are dummy variables for each month of the year having values of 1 for m2 (February) 

and zero otherwise, and ϕi, ηi and ζi are coefficients. The midnight half-hour, Monday and January 

are the reference categories in the calendar effects and all other variables are as previously defined. 

Second, the Risk Metrics model is equivalent to a normal integrated GARCH (IGARCH) 

model where the autoregressive parameter of the conditional variance equation is preset to a 

specified value of λ = 0.94 and the parameter of the squared random error or innovation term is 1-λ. 

The Risk Metrics model has the random error term, et, as specified in (2) and the conditional 

variance equation in (4) is reformulated as: 
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This model is introduced to take account of the large positive and negative price relative spikes 

found in the Australian electricity market. Accordingly, the goodness-of-fit of the Risk Metrics 

model depends on its ability to predict these large positive and negative price relatives. 

Third, the normal APARCH model (Ding, Granger, and Engle, 1993) is yet another extension 

of the GARCH model (Bollerslev 1986). In the normal APARCH the random error term, et, is 

specified as in (2) and the conditional standard deviation, ht, in (4) is respecified as: 

∑ ∑ ∑
= = =

−−− +++++−+=
48
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11111110 )(
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iiiiiittttt mwdvheeh ςηϕψβγαα δδδ  (6) 

where α0 > 0 , α1, β1 and δ ≥ 0 and -1 < γ1 < 1 are parameters to be estimated and all other variables 

are as previously defined. This model introduces a non-linear relationship between the conditional 

standard deviation and the lagged and lagged absolute random errors by imposing a Box-Cox 

transformation, δ (δ > 0). The asymmetric volatility response to negative and positive shocks such 

that volatility tends rise in response to ‘bad news’ and fall in response to ‘good news’ is reflected in 

a positive value of the parameter γ1. This APARCH process encompasses Bollerslev’s (1986) 

GARCH with δ = 2 and γ1 = 0, the Taylor (1986)/Schwert (1990) model with δ  = 1 and γ1 = 0 and 

five other GARCH processes (Ding, Granger, and Engle, 1993). 

Fourth, the Student APARCH model is an extension of the normal APARCH model (Ding, 

Granger, and Engle, 1993). The Student APARCH is introduced to take account of the fat-tailed 

characteristic of Australian electricity markets (Bauwens and Giot, 2001, Alexander, 2001 and Giot 

and Laurent, 2003a and 2003b). The Student APARCH where the random error term is defined as 

)10~and υεε ,,t(iidhe tttt = and υ is the degrees of freedom and the conditional standard 

deviation, , is as previously defined in (6).  th

Finally, the skewed Student APARCH model is re-formulated by Lambert and Laurent (2001) 

with the skewed Student density expressed in terms of the mean and variance and the random error 

term is specified as et = htεt and εt is iid SKST(0, 1, ξ, υ) ie the standardized skewed Student 

distribution and ξ is the asymmetric coefficient of the Student distribution. The conditional standard 

deviation of the skewed Student APARCH model is defined in (6). The sign of the distributional 

asymmetry coefficient or third moment, ξ, represents the direct of skewness. If the third moment is 

positive (negative) then the density is skewed to the right (left). Full specifications of the APARCH 

models are presented in Giot and Laurent (2003a, 2003b).  
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EMPIRICAL RESULTS 

The estimated coefficients, standard errors and p-values for the conditional mean and variance 

equations for the five different GARCH processes are presented in Table 2. All of these models 

include the impact of news arrival as proxied by the contemporaneous volume of demand, time-of-

day, day-of-week and month-of year (calendar) effects as exogenous variables in the conditional 

variance equation. However, due to the very large number of estimated calendar effects, the tabled 

conditional variance equations do not include all coefficients, but these are graphically represented. 

In brief, on the basis of the log-likelihood, Akaike Information (AIC) and Schwartz Criteria (SC), 

the skewed Student APARCH is the best model for all markets with the exception of the SA market 

where the Student APARCH model is slightly better. Clearly, either of these two processes have the 

ability to accommodate the non-normal or fat-tailed characteristics of Australian electricity markets. 

Only the skewed Student APARCH model is used to provide graphical representations of the 

calendar effects in Figures 2-4. All results are obtained using G@ARCH 3.0 an Ox package for 

estimating different ARCH models (Laurent and Peters, 2002). 

<TABLE 2 HERE> 

To start with, the estimated coefficients, standard errors and p-values for the conditional mean 

return equations (τ0 and τ1) for the GARCH model are presented in the uppermost panel of Table 2. 

All electricity markets exhibit a significant own mean spillover from their own lagged price relative 

(τ1). In all cases, the mean spillovers are positive ranging from 0.1503 (SA) to 0.1722 (NSW). The 

uppermost panel of Table 2 also presents the estimated coefficients, standard errors and p-values for 

the conditional variance equation. The own-innovation or ARCH spillovers (α1) in all four markets 

are significant indicating the presence of significant ARCH effects, while the lagged volatility or 

GARCH spillovers (β1) are also significant and larger in magnitude. The respective innovation and 

volatility spillovers are 0.4319 and 0.5345 in the NSW market, 0.1607 and 0.8803 in the QLD 

market, 0.0984 and 0.9222 in the SA market and 0.0485 and 0.9473 in the VIC market respectively. 

The sum of the ARCH and GARCH effects is greater than one in the QLD and SA markets, 

suggesting that the shocks are permanent, while the values of less than one in the NSW and VIC 

markets implies a mean reverting conditional volatility process. That is, the shocks are transitory in 

nature. It should be noted that NSW and VIC are the largest, longest-established and most 

competitive markets among all Australian electricity markets.  

The uppermost panel of Table 2 also includes the estimated coefficients and standard errors 

for the variable used to proxy the arrival of new information; that is, the contemporaneous volume 
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of demand (ψ1). There is a significant positive relationship between price volatility and 

contemporaneous volume of demand for all four markets ranging from 0.0616 (VIC) to 0.4063 

(NSW). This would suggest that the arrival of new information in the form of the volume of 

demand has the role of increasing price volatility. The Ljung-Box Q-statistics, Q2 (10), and p-values 

are computed on the squared standardized residuals to test the null hypothesis that there is no 

remaining heteroskedasticity. The significance of the Ljung-Box Q-statistics in SA and VIC for the 

GARCH model implies that some residual heteroskedasticity remains in these markets. 

The next-to-uppermost panel of Table 2 provides the estimated coefficients, standard errors 

and p-values for the Risk Metrics model. The magnitude and significance of the estimated Risk 

Metrics parameters are very similar to that of the GARCH process with the exception that the 

innovation and volatility spillover effects sum to one. The significance of the Ljung-Box Q-

statistics in all markets for the Risk Metrics model once again suggests that this process has not 

overcome the problem of heteroskedasticity. Of course, it is well known that the Risk Metrics 

process can model the volatility clustering but not the non-normal characteristics of many time 

series. The middlemost panel of Table 2 presents the estimated parameters for the normal APARCH 

model. Once again, all markets exhibit a significant own mean spillover from their own lagged 

price relative (τ1) with the mean spillovers ranging from 0.1664 (QLD) to 0.2596 (VIC). The 

innovation and volatility spillovers are significant with the volatility spillovers generally larger in 

magnitude. The respective innovation and volatility spillovers are 0.2730 and 0.4886 for NSW to 

0.3081 to 0.6606 for SA. There is also a significant positive relationship between price volatility 

and contemporaneous volume of demand for all four markets ranging from 0.0835 (QLD) to 0.2156 

(NSW).  

The asymmetric volatility response (γ1) in the normal APARCH model is negative and 

significant for all four markets indicating an asymmetric response for positive price relatives in the 

conditional variance equation and reflects the condition that volatility tends rise in response to 

‘good news or positive spikes’ and fall in response to ‘bad news or negative spikes’. This lies 

counter to the usual expectation in stock markets where downward movements (falling returns) are 

followed by higher volatility than upward movements (increasing returns). The power coefficients 

(δ) of the standard deviation process are significant for all markets ranging from 1.0365 (QLD) to 

1.2752 (SA). These coefficients are significantly different from two and one indicating it is more 

relevant to model the conditional standard deviation of electricity markets in a non-linear form. 

However, the Ljung-Box Q-statistics calculated on the squared standardized residuals are still 
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significant for the NSW, SA and VIC markets indicating that this model has still not eliminated the 

problem of heteroskedasticity. 

The next-to-lowermost panel of Table presents the estimated parameters for the Student 

APARCH model. Here, the mean spillovers are significant for all four markets, range from 0.1462 

(QLD) to 0.3092 (VIC). The innovation and volatility spillovers are also significant across the four 

markets with the volatility spillovers greater in magnitude than the innovation spillovers. There is a 

significant positive relationship between the contemporaneous volume of demand and volatility for 

all markets. Once again, and in contrast to many stock markets, the asymmetric volatility response 

(γ1) is negative and significant for all markets indicating an asymmetric response for positive price 

relatives in the conditional variance equation, i.e. volatility rises in response to ‘good news or 

positive spikes’ and falls in response to ‘bad news or negative spikes’. The power coefficients (δ) of 

the standard deviation process are also significant for all markets ranging from 1.0191 (VIC) to 

1.6070 (NSW). As before, a non-linear conditional standard deviation equation is required. The tail 

coefficients (υ)are also significant and together with the insignificance of the Ljung-Box Q-

statistics for the squared standardized residuals in all markets indicate that the Student distribution 

has taken account of the fat tailed and heteroskedasticity characteristics of the electricity price 

relative series. 

Finally, the lowermost panel of Table 2 presents the estimated coefficients, standard errors 

and p-values for the skewed Student model. All markets are shown to exhibit a significant own 

mean spillover from their own lagged price relative (τ1). In all cases, the mean spillovers are 

positive ranging from 0.1811 (SA) to 0.2462 (VIC). Put differently, according to the skewed 

Student APARCH model, a ten percent increase in the VIC electricity price in the current period 

Granger causes an increase of 2.462 percent over the next half-hour. Likewise, a ten percent 

increase in prices for SA will Granger cause a 1.811 percent increase over the next half-hour. The 

own-innovation (α1) in all four markets is also significant indicating the presence of significant 

ARCH effects. The lagged volatility or GARCH spillovers (β1) are also significant. For the skewed 

Student APARCH specification, the ARCH effects are larger in magnitude than the GARCH effects 

in the NSW (0.4376 and 0.3677) and VIC (0.5761 and 0.3057) markets while the reverse is true for 

QLD (0.3858 and 0.4337) and SA (0.2530 and 0.5422). This implies that for NSW and VIC the last 

period’s volatility shocks in electricity price relatives have a lesser effect on its future volatility than 

the memory of previous surprises or innovations. This is comparable to the only known study 

(though using daily data) by Solibakke (2002) which discovered “…high past shock effects 

(ARCH) and rather low past volatility effects (GARCH)”.  
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The estimated coefficients for ψ1 indicates a significant positive relationship between price 

volatility and the contemporaneous volume of demand for all four markets ranging from 0.0621 

(VIC) and 0.2605 (SA). This would suggest that the role of new information in the form of demand 

load has a greater role of increasing price volatility in the SA market than any other market. The 

estimated asymmetric volatility response coefficients to market news (γ1) in the skewed Student 

model are significant and negative for all markets. This lies counter to the results of the Student 

APARCH model. But by way of comparison, Solibakke (2002: 28) found “…insignificant 

asymmetric volatility coefficient for all specifications in the (Nordic) spot market suggesting equal 

reaction patterns to positive and negative shocks” while Hadsell, Marathe and Shawky (2004) 

estimated that the asymmetric effect was also significant and negative thus capturing a strong 

market response to ‘negative’ news in US electricity markets when employing a Threshold ARCH 

model.  

The power coefficient (δ) of the standard deviation process for VIC is significantly different 

from one, while the power coefficients for NSW, SA and QLD are all significantly different from 

two and one, thus indicating it is more appropriate to model a non-linear conditional standard 

deviation equation. The asymmetric coefficients (ξ) are positive and significant for the markets and 

range from 0.0703 (NSW) to 0.1036 (SA). The positive asymmetry coefficients represent the price 

relative series are skewed to the right. The tail coefficients (υ) in the skewed Student APARCH 

specification are also significant for the four markets representing that the skewed Student 

distribution has again taken account of the fat right-skewed characteristic of all series. The 

insignificance of the Ljung-Box Q-statistics on the squared standardized residuals for the four 

markets would indicate that the skewed Student distribution (like the Student APARCH) has 

overcome the problem of heteroskedasticity in the series. 

Figures 2 to 4 depict the volatility effects of the arrival of new information for the time-of -

day (ϕi), day-of-week (ηi) and month-of-year (ζi) effects in the skewed Student APARCH model. 

Tests in Table 3 of the null hypotheses that all time-of-day coefficients (not shown) are jointly zero 

reject the null hypotheses at the 0.10 level or lower in three markets with the exception of the NSW 

market, indicating that the time-of-day has a systematic influence on electricity price volatility in 

Australia. Some interesting patterns are illustrated in Figure 2, with price volatility increasing from 

midnight and reaching a maximum between 5:30 and 7:30, falling and increasing again until 

another maximum is reached between 17.00 and 18:30 and then falling again and peaking again 

between 21:30 to 23:00. The day-of-week effects are depicted in Figure 3.  Hypothesis tests of joint 

insignificance are likewise rejected with the exception of the SA market. Volatility in the QLD and 
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SA markets is shown to be highest on Monday, falling progressively through the week. In the NSW 

market, however, volatility increases during the week and falls over the weekend. Volatility is 

lowest on Wednesday in SA, on Friday in QLD and VIC and on Saturday in NSW. 

<TABLE 3 HERE> 

The month-of-year volatility effects as estimated by the skewed Student APARCH process are 

presented in Figure 4. Joint tests for month-of-year effects in Table 3 are once again significant for 

all four markets. A familiar price volatility pattern emerges with volatility being highest in June, 

July and August (winter) and December and January (summer). By way of comparison, Solibakke’s 

(2002) analysis of the Nordic spot electricity market also indicated that peaks in price volatility 

corresponded with peak demand, though just in summer. However, Hadsell, Marathe and Shawky 

(2004) found that while calendar months exhibited different volatility behavior in US electricity 

markets, none was unique with respect to magnitude or volatility. The month-of-year effects are 

also jointly significant in explaining price relative volatility in the four markets.  

<FIGURES 2-4 HERE> 

In summary, and according to all five models, all four markets exhibit a significant own mean 

spillover from their own lagged price relative (τ1). In all cases, the mean spillovers are positive. The 

own-innovation or ARCH spillovers (α1) are also all significant indicating the presence of strong 

ARCH effects, while the lagged volatility or GARCH spillovers (β1) are also significant and larger 

in magnitude for the first four models. In the skewed Student APARCH models for QLD and SA 

the GARCH effects are also larger, but the reverse is true for NSW and VIC. The estimated 

coefficients for news arrival denoted by the contemporaneous volume of demand are all positive 

and significant thus implying that increases in demand increase price volatility. In addition, the 

three APARCH models indicate that the estimated asymmetric coefficients (γ1) are significant and 

negative for all four regional markets indicating that positive shocks (good news) are associated 

with higher volatility than negative shocks (bad news). This lies counter to evidence from stock 

markets. In most cases, the power coefficients (δ) of the standard deviation processes are all 

positive and significantly different from one and two, thus indicating it is more relevant to model 

the conditional standard deviation in a non-linear form. Finally, the asymmetric coefficients of the 

Student distribution (ξ) are positive and significant for the four markets indicating the price relative 

series are skewed to the right.  
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CONCLUDING REMARKS 

This study presents an analysis of intraday electricity price volatility in the four Australian 

electricity markets of New South Wales, Queensland, South Australia and Victoria. The data 

consists of half-hourly prices for the period 1 January 2002 to 1 June. Five different GARCH 

volatility processes consisting of the GARCH, Risk Metrics, normal, Student and skewed Student 

APARCH models are estimated. The results indicate that intraday price volatility in most of the 

Australian electricity markets is best described by an asymmetric skewed Student APARCH 

specification. This accommodates both the right-skewed, fat-tailed properties of the observed data 

and the contemporaneous volume of demand, time-of-day, day-of-week and month-of-year effects 

as proxies for the arrival of new market information. In sum, an increase in the volume of demand, 

positive price spikes, early-morning, late afternoon and early evening hours, Mondays and peak 

winter and summer months are all associated with significantly higher volatility than low demand 

volumes, negative price spikes and other times of the day, week and year. This suggests that 

systematic influences on electricity price volatility can be easily quantified from readily available 

market information.  

However, the market, information and calendar effects examined are at best only a partial 

explanation for the price volatility found in Australian electricity markets. Fortunately, other 

influences have been put forward and these provide fruitful avenues for further research, especially 

building upon the range of GARCH models used in this study. One distinct possibility is market 

power. Robinson and Baniak (2002), for example, have argued that generators with market power 

might have the incentive to create volatility in the spot market in order to benefit from higher risk 

premiums in the contract market. Proxying changes in the competitive environment may then be 

able to provide empirical evidence whether competition increases or decreases price volatility. 

Another potential factor affecting volatility is regulatory change. For example, Robinson and Taylor 

(1998a, 1998b) have linked changes in regulation and regulatory risk with regional electricity 

company shares in the United Kingdom and it is feasible that changes in regulatory regimes could 

be included as exogenous factors in a study of electricity prices more directly.  

Similarly, changes in purchasing or contracting behavior by large purchasers of electricity 

may also have an influence on price volatility. Smith (2003), for instance, argues that the US spot 

electricity markets lost much of their volatility as large consumers, like California, moved out of 

electricity purchases to long-term contracts. Finally, there is the prospect to examine volatility 

interactions between geographically close and linked markets using variants of the GARCH models 

used in the current analysis. For example, Herbert (2002) discusses the interactions between the 
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electricity and gas markets as substitutable sources of energy. Worthington, Kay-Spratley, and 

Higgs (2003) examine the volatility interactions between regional electricity markets, though using 

only basic GARCH models with no allowance for systematic influences on electricity price 

volatility.   
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Table 1 Descriptive Statistics for Australian Electricity Price Relatives by Market 

 NSW QLD SA VIC 
Observations 24767 24767 24767 24767 
Mean -8.69E-04 -1.08E-03 -8.98E-04 -8.03E-04 
Median -0.5786 -0.6237 -0.1833 -0.7168 
Maximum 394.2530 489.1307 472.6716 477.6408 
Minimum -494.5365 -476.5178 -483.8354 -479.5675 
Standard deviation 22.4033 29.4379 24.3649 22.5804 
Skewness 0.5556 0.6545 0.2788 1.0585 
Kurtosis 84.3674 80.5308 76.4694 77.9228 
Jarque-Bera statistic 6.83E+06 6.20E+06 5.57E+06 5.80E+06 
JB p-value 0.0000 0.0000 0.0000 0.0000 

This table provides measures of central tendency, dispersion and shape 
for the changes in the half-hourly spot prices for NSW - New South 
Wales, QLD - Queensland, SA – South Australia and VIC - Victoria. 
The sample period is from 1January 2002 to 1 June 2003. The critical 
values of significance for skewness and kurtosis at the .05 level are 
0.0305 and 0.0610, respectively. JB – Jarque-Bera. 

 
 

Figure 1 Australian Electricity Price Relatives by Market 
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Table 2 Estimated Coefficients for Conditional Mean Price and Variance Covariance Equations 

 NSW QLD SA VIC 
 Coefficient Std. error p-value Coefficient Std. error p-value Coefficient Std. error p-value Coefficient Std. error p-value 

GARCH 
τ0 -0.7950 0.0844 0.0000 0.0059 0.1325 0.9644 0.0194 0.1117 0.8620 0.0448 0.1148 0.6966 
τ1 0.1722 0.0052 0.0000 0.1570 0.0059 0.0000 0.1503 0.0052 0.0000 0.1606 0.0053 0.0000 
α0 -2.0587 13.4810 0.8786 0.0515 31.6030 0.9987 -4.5291 8.9855 0.6142 -0.3828 24.1760 0.9874 
α1 0.4319 0.0050 0.0000 0.1607 0.0014 0.0000 0.0984 0.0009 0.0000 0.0485 0.0007 0.0000 
β1 0.5345 0.0041 0.0000 0.8803 0.0005 0.0000 0.9222 0.0005 0.0000 0.9473 0.0005 0.0000 
ψ1 0.4063 0.0433 0.0000 0.1265 0.0574 0.0276 0.3945 0.0366 0.0000 0.0616 0.0109 0.0000 
LL -100790   -108259   -106417   -105934   
AIC 8.1447   8.7479   8.6690   8.5601   
SC 8.1676   8.7708   8.6918   8.5831   

Q2(10) 4.9288  0.7652 12.8316  0.1178 93.4114  0.0000 179.1110  0.0000 
Risk Metrics 

τ0 0.0105 0.1545 0.9458 0.0100 0.1151 0.9307 -0.3727 0.0908 0.0000 0.0102 0.1333 0.9392 
τ1 0.1215 0.0055 0.0000 0.0153 0.0048 0.0016 0.1879 0.0050 0.0000 0.0302 0.0057 0.0000 
α0 0.0500 25.3560 0.9984 0.0507 21.0750 0.0024 3.5282 4.7641 0.4590 0.0507 24.1960 0.9983 
α1 0.0529 0.0005 0.0000 0.0574 0.0003 0.0000 0.2589 0.0017 0.0000 0.0504 0.0005 0.0000 
β1 0.9471   0.9426   0.7411   0.9496   
ψ1 0.0468 0.0198 0.0182 0.0494 0.0260 0.0572 0.9336 0.0959 0.0000 0.0485 0.0251 0.0531 
LL -104917   -108631   -105092   -107379   
AIC 8.4779   8.7778   8.5611   8.6767   
SC 8.5005   8.8004   8.5836   8.6993   

Q2(10) 128.8050  0.0000 26.4380  0.0009 20.3747  0.0090 114.7580  0.0000 
Normal APARCH 

τ0 -0.2488 0.0872 0.0043 -0.9534 0.0686 0.0000 -0.0214 0.0814 0.7930 -0.9319 0.0890 0.0000 
τ1 0.2222 0.0059 0.0000 0.1664 0.0043 0.0000 0.1828 0.0057 0.0000 0.2596 0.0057 0.0000 
α0 -9.2683 2.1758 0.0000 -2.7865 1.0742 0.0095 2.5766 1.8487 0.1634 0.9629 2.5855 0.7096 
α1 0.2730 0.0047 0.0000 0.3261 0.0038 0.0000 0.3081 0.0029 0.0000 0.3315 0.0041 0.0000 
β1 0.4886 0.0059 0.0000 0.5930 0.0037 0.0000 0.6606 0.0035 0.0000 0.4659 0.0061 0.0000 
ψ1 0.2156 0.0142 0.0000 0.0835 0.0061 0.0000 0.2094 0.0156 0.0000 0.1188 0.0092 0.0000 
γ1 -0.5445 0.0137 0.0000 -0.6359 0.0081 0.0000 -0.2936 0.0076 0.0000 -0.3285 0.0097 0.0000 
δ 1.2552 0.0213 0.0000 1.0365 0.0147 0.0000 1.2752 0.0151 0.0000 1.1596 0.0203 0.0000 

LL -97311   -100654   -102352   -100817   
AIC 7.8639   8.1339   8.3383   8.1471   
SC 7.8875   8.1575   8.3621   8.1707   

Q2(10) 76.4993  0.0000 10.1465  0.2549 15.6308  0.0480 23.3778  0.0029 
Student APARCH 

τ0 -0.4977 0.0954 0.0000 -0.9022 0.0716 0.0000 -0.2002 0.0609 0.0010 0.0020 0.0707 0.9775 
τ1 0.2483 0.0066 0.0000 0.1462 0.0064 0.0000 0.2053 0.0057 0.0000 0.3092 0.0055 0.0000 
α0 0.1568 6.3817 0.9804 4.5537 4.1324 0.2705 4.3546 3.4524 0.2072 5.6732 2.9878 0.0576 
α1 0.3147 0.0109 0.0000 0.3584 0.0131 0.0000 0.3612 0.0125 0.0000 0.4380 0.0216 0.0000 
β1 0.4709 0.0140 0.0000 0.4512 0.0142 0.0000 0.4765 0.0124 0.0000 0.4416 0.0153 0.0000 
ψ1 0.1879 0.0624 0.0026 0.1137 0.0492 0.0209 0.3688 0.0545 0.0000 0.0223 0.0109 0.0409 
γ1 -0.4668 0.0227 0.0000 -0.4120 0.0241 0.0000 -0.4724 0.0223 0.0000 -0.7528 0.0241 0.0000 
δ 1.6070 0.0713 0.0000 1.3757 0.0573 0.0000 1.2376 0.0407 0.0000 1.0191 0.0431 0.0000 
υ 4.5667 0.1092 0.0000 3.3471 0.0674 0.0000 2.9767 0.0573 0.0000 2.6288 0.0622 0.0000 

LL -97815   -97517   -97271   -98582   
AIC 7.9047   7.8806   7.9248   7.9666   
SC 7.9286   7.9045   7.9489   7.9906   

Q2(10) 4.5802  0.8014 4.2745  0.8315 0.0788  1.0000 4.5917  0.8002 
Skewed Student APARCH 

τ0 0.6508 0.1097 0.0000 0.1745 0.0746 0.0194 0.3681 0.0779 0.0000 0.0740 0.0629 0.2392 
τ1 0.2401 0.0067 0.0000 0.2091 0.0059 0.0000 0.1811 0.0055 0.0000 0.2462 0.0054 0.0000 
α0 5.7889 3.6619 0.1139 6.1363 3.3238 0.0649 8.7298 4.5844 0.0569 0.7168 0.7766 0.3560 
α1 0.4376 0.0191 0.0000 0.3858 0.0141 0.0000 0.2530 0.0107 0.0000 0.5761 0.0251 0.0000 
β1 0.3677 0.0166 0.0000 0.4337 0.0133 0.0000 0.5422 0.0133 0.0000 0.3057 0.0143 0.0000 
ψ1 0.0842 0.0307 0.0061 0.0674 0.0192 0.0004 0.2605 0.0629 0.0000 0.0621 0.0088 0.0000 
γ1 -0.4538 0.0244 0.0000 -0.7173 0.0242 0.0000 -0.6565 0.0317 0.0000 -0.4013 0.0223 0.0000 
δ 1.3470 0.0565 0.0000 1.2272 0.0455 0.0000 1.3222 0.0492 0.0000 0.7704 0.0330 0.0000 
υ 3.3812 0.0924 0.0000 3.1602 0.0670 0.0000 2.8959 0.0581 0.0000 2.6149 0.0608 0.0000 



 

 NSW QLD SA VIC 
 Coefficient Std. error p-value Coefficient Std. error p-value Coefficient Std. error p-value Coefficient Std. error p-value 

ξ 0.0703 0.0102 0.0000 0.0891 0.0087 0.0000 0.1036 0.0081 0.0000 0.0877 0.0074 0.0000 
LL -96662   -96542   -97645   -98064   
AIC 7.8117   7.8020   7.9553   7.9249   
SC 7.8359   7.8262   7.9797   7.9491   

Q2(10) 11.8230  0.1593 2.0073  0.9808 1.6953  0.9890 0.0790  1.0000 
This table provides the estimated coefficients, standard errors and p-values for the mean and conditional standard deviation equations 
for the NSW - New South Wales, QLD - Queensland, SA – South Australia and VIC - Victoria electricity markets. τ0 is the constant in 
the conditional mean equation, τ1 is the degree of mean spillover, α0 is the constant in the conditional standard deviation equation, α1 is 
the ARCH coefficient, β1 is the GARCH coefficient, γ1 is the leverage effect, ψ1 is the coefficient to the contemporaneous volume of 
demand, δ is the power of the conditional standard deviation process, υ is the degrees of freedom, ξ is the asymmetric coefficient. LL is 
the log likelihood, AIC and SIC are the Akaike Information Criterion and Schwartz Criteria, respectively. Q2(10) is the Ljung-Box Q-
statistic on the squared standardized residuals of order 10. 

 
 

 

Table 3 Joint hypothesis tests for estimated variance covariance coefficients 

 NSW QLD SA VIC 
 df χ2 p-value χ2 p-value χ2 p-value χ2 p-value 

Time-of-day 47 29.8545 0.9758 62.0277 0.0698 61.6563 0.0742 65.6096 0.0376 
Day-of-week 6 27.9899 0.0001 33.8892 0.0000 9.7213 0.1369 39.4242 0.0000 
Month-of-year 11 29.3993 0.0020 41.4733 0.0000 35.9321 0.0002 53.5040 0.0000 

This table presents joint hypothesis tests for the estimated conditional standard deviation coefficients in Table 2 for 
NSW - New South Wales, QLD - Queensland, SA – South Australia and VIC - Victoria. The joint significance tests 
are χ2 tests that all coefficients are jointly zero for the skewed Student APARCH model, demand volume, time-of-
day, day-of-week and month-of-year coefficients.    

 
 

 

Figure 2 Time-of day effects for the skewed Student APARCH model by market 

-20
-15
-10

-5
0
5

10
15
20

0:3
0

2:0
0

3:3
0

5:0
0

6:3
0

8:0
0

9:3
0

11
:00

12
:30

14
:00

15
:30

17
:00

18
:30

20
:00

21
:30

23
:00

NSW QLD SA VIC
 

 
 
 
 



  
  

  

 

 
 
 
 

Figure 3 Day-of-week effects for the skewed Student APARCH model by market Figure 3 Day-of-week effects for the skewed Student APARCH model by market 

Figure 4 Month-of-year effects for the skewed Student APARCH model by market Figure 4 Month-of-year effects for the skewed Student APARCH model by market 
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