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1. INTRODUCTION

A long time ago, Rayleigh [1, p. 350] noted that "the fixation of the centre of a

vibrating circular membrane does not alter the pitch". The observation was based on a

consideration of the effect of raising an excitation frequency through the lowest

natural frequency of an ideal membrane.  At first glance, this phenomenon appears

curious. One is tempted to argue along the following lines. For a membrane pinned at

its centre, the amplitude is zero at radial variable r=0, so the solutions to the governing

Helmholtz equation should not involve the Bessel functions of the second kind,

Yn(kr), since these all become infinite as r tends to zero. Moreover, J0(kr) is equal to

unity at r=0, so it also should not appear in the solution. Thus the solutions should

only contain Bessel functions of the first kind Jn(kr) for n≥1 (for which the values are

zero at r=0), and so should not be able to reproduce the fundamental frequency of the

complete circular membrane which comes from the fundamental mode involving

J0(kr). However, it can be deduced that there is something wrong with this line of

argument, because then the fundamental mode would involve J1(kr) cos(θ), where θ is

the polar angle, and so would have nodal radii, contradicting the absence of internal

nodal curves for a fundamental mode.

This apparent impasse is resolved by a careful consideration of the problem of

an annular membrane with small central exclusion and the behaviour of Y0 for small

argument in relation to the resulting characteristic equation, as has been analyzed

recently by Wang [2]. The pinned membrane corresponds to central core radius

tending to zero. In this paper we elaborate on this phenomenon, and also consider the

limit of a "collared" annular membrane with free boundary condition on its inner rim.

2.  THE PINNED CIRCULAR MEMBRANE
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The radial part of the solution to the Helmholtz equation in plane polar

coordinates resulting from the two-dimensional wave equation for a vibrating

membrane takes the form

)()()( krYbkrJaru nnnnn +=     ,                          (1)

where Jn and Yn are ordinary Bessel functions of the first and second kinds [3]. The

angular number n = 0,1,2, … corresponds to the angular part of the solution of the

form cos or sin of nθ. In eq.(1), k = ω/c , where ω is the radian frequency of vibration

and c is the free wave speed. For an annular membrane with fixed rims at r=εR and

r=R, the boundary conditions yield the characteristic equation to be satisfied by k (as

in [2], but here with unnormalized outer radius) for the fundamental mode

(independent of θ : n=0)
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For small inner or core radius, i.e. small ε, an analytical approximation to the

fundamental frequency may be found by using Taylor series expansions and the fact

that J0' = - J1 , Y0' = - Y1 , as well as series expansions for the Bessel functions [3,4],

to obtain (c.f. [2])

κ+= 1,0jkR     ,                                                        (3a)
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where j0,1=2.40482556 is the lowest zero of J0 . Thus, as observed explicitly by Wang

[2], there is the surprising result

    kR→j0,1  as  ε→0    ,                                                                       (4)
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so the fundamental frequency for a pinned circular membrane equals that of the

ordinary complete circular membrane of the same outer radius.

The parameter ε actually has to be extremely small before the solution to (2)

approaches j0,1 closely, because 1/|ln(ε)| tends to zero rather slowly as ε tends to zero.

Moreover, good numerical agreement of the approximation (3a,b) with the exact

solution to eq.(2) is achieved only for very small ε. For instance, even for ε = 10-6,

there is agreement to 3 significant figures only:  kR≈2.52 .

To see how the fundamental mode function itself behaves, it is necessary to

carry the analysis a little further. From (1) which vanishes on the outer rim r=kR and

(2), the ratio of coefficients is

b0/a0   =   -J0(kR)/Y0(kR)   ≈   (π/2) (1/ ln(ε) )                              (5)

(where this result follows from (3) and the above-mentioned properties of the Bessel

functions). Thus the coefficient b0 of the singular function Y0(kr) in (1) tends to zero

as the core radius ε tends to zero (the "infinitely small coefficient" mentioned by

Rayleigh [1, p.350]). However, the product b0Y0(εkR) may consequently be shown to

tend to the finite limit -a0 as ε tends to zero, consistent with the fact that the full mode

function (1) vanishes on the inner boundary. Furthermore, for radial variable r not

infinitesimally near the inner boundary, in eq.(1) u0 → a0 J0(j0,1r/R) as ε→0 by (4) and

(5), i.e. for nonzero r the fundamental mode function for infinitesimal core tends to

the usual fundamental mode function for the complete circle as the annular membrane

tends to the pinned case.

To understand better how this limiting behaviour manifests itself, we now

consider a point infinitesimally close to, but not actually on, the inner boundary for

infinitesimal core, i.e. we let r = (1+h)εR, with h>0. Then it can be shown that
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u0((1+h)εR)/a0   ≈   [ln(1+h)]/ ln(ε)    as ε→0    .                                        (6)

This shows mathematically how the fundamental mode function (1) evaluated near the

inner boundary tends to zero near the infinitesimal core.

The slope du0/dr near the inner core may be evaluated from eq.(1) and other

properties and is found to be
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This shows explicitly how the cross-sectional slope of the (ideal) annular membrane at

its inner rim becomes infinite in the pinned circular limit (ε→0), and explains how the

annular mode function is able to approach the complete circular mode function for all

nonzero r as the core shrinks to a point. In the limit, the mode solution is

discontinuous at the origin. Of course, the linear theory no longer actually applies

since equation (7) contradicts the assumption of small deflections as ε→0. However,

the above analysis does serve to explain precisely the fundamental frequency result

which was obtained in [2] as a limit within the linear formulation.
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3.  THE COLLARED CIRCULAR MEMBRANE

The properties of the pinned circular membrane revealed above may seem

rather counter-intuitive. The behaviour of a complete circular membrane with fixed

perimeter, i.e. Dirichlet boundary condition

u(r)   =   0   at   r  =  R    ,                                    (8)

might in fact be expected to be more like a membrane with excluded core if the inner

boundary was free, i.e. satisfied the Neumann boundary condition

∂u/∂r   =   0   at   r = εR    .                                              (9)

This corresponds to an inner massless "collar" free to slide orthogonally to the plane

of the undeflected annular membrane. We now show that the behaviour of the

fundamental mode of this collared annular membrane indeed approaches that of the

complete circular membrane as the collar radius ε tends to zero. (For the fundamental

mode of the complete circular membrane, it is not necessary to specify the condition

0/ =∂∂ ru  at the centre, as it is a consequence of the standard solution.)

The modal function will be written here as

u0(r)   =   a0 J0(Kr)  +  b0 Y0(Kr)    .                              (10)

The characteristic equation following from the boundary conditions (8) and (9) is then

J0(KR) Y1(εKR)  -  Y0(KR) J1(εKR)   =   0    .            (11)

For small ε, a careful tracking of orders of ε eventually leads to

µ+= 1,0jKR     ,                                            (12a)
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Thus

KR  →  j0,1    as  ε→0    ,                                                     (13)

so, as anticipated, the fundamental frequency for the collared annular membrane

approaches that of the complete circular membrane as the collar radius shrinks to zero,

and does so fairly rapidly because of the 2nd order smallness in (12b). In contrast to

the pinned case of Section 2 above, the approximation (12a,b) to the exact solution to

eq.(11) is also very good. For instance, even with ε=0.1, the approximation (12a,b)

agrees with the exact solution to eq.(11) to almost 4 significant figures: KR≈2.448

(exact eq.(11)); 2.449 (eqs.(12).

Further analysis shows that, for the coefficients in the mode function (10),

b0/a0   =   - J0(KR)/Y0(KR)   ≈   (π/4) j0,1
2 ε2                         (14)

and the product b0Y0(εKR) appearing in the mode function (10) at the inner (collar)

boundary approaches zero like -(a0/2) j0,1
2 ε2   ln(ε)  as ε→0 . Thus at the collar

u0(εKR)→a0 as ε→0 . For any r, in (10) u0(r)→ a0 J0(j0,1r/R) as ε→0, i.e. the mode

function tends to the complete circle mode function as the collar shrinks to zero.

Unlike the pinned membrane case, the limiting function is continuous at the origin,

with the expected value a0 .

The slope du0/dr at r=εR can be shown to be less than order ε for ε small. Thus

the slope tends to zero as the collar shrinks, and in the limit the centre of the

membrane is an extremum as for the complete membrane. It is therefore this nearly-

closed free-fixed annular membrane which has the property that its fundamental mode

is everywhere near that of a complete circular membrane.
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4.  DISCUSSION

Whilst it is obvious that central pinning of a circular membrane will not affect

those modes having a nodal line passing through the origin (i.e. n≥1 in eq.(1)), it is

perhaps unexpected that pinning will not affect the fundamental mode frequency, as

described by Wang [2] and elaborated upon in Section 2 above. Indeed, it will not

affect any mode since this conclusion evidently holds for the higher circularly-

symmetric modes by replacing the lowest solution of  equation (2) by the higher

solutions and the first zero j0,1 of J0 by its higher order zeros j0,s .

This phenomenon appears to be related to the "infinite capacity for pliancy" of

an ideal membrane in relation to point effects. As discussed and diagrammed by

Morse [5, p.176], unlike the case of the one-dimensional stretched string, a finite force

acting over an infinitesimal region of a tensioned ideal membrane produces an

indefinitely large deflection. Thus the ideal membrane is able to sustain indefinitely

large changes, and hence can adapt itself to accommodate the narrow well-like cross-

sectional modal shapes with high gradients near the origin, as found at the end of

Section 2 above. There also appears to be a similarity with classical billiards

containing a circular obstacle whose radius shrinks to zero so that it becomes a point

scatterer. As noted by Seba [6], since the trajectories which hit the resulting scattering

point are of measure zero, the system does not “feel” the point scatter.

It should be stressed that all the preceding mathematical expositions assume an

ideal membrane satisfying the linear two-dimensional constant-speed wave equation

with simple boundary conditions. Whilst we are not in a position to perform

experimental work, we would expect that for a real circular membrane pinned at the

centre (finite but very small excluded central core), the lower angle-dependent modal
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frequencies and cross-sectional shapes might be reasonably close to those of the

complete circular membrane (whose modes have the origin on a nodal line). However,

the frequencies, and especially the cross-sectional mode shapes, of the angle-

independent modes of a real pinned membrane would be expected to be quite different

from those of the unpinned system with an anti-node at the origin, due to the finite

stiffness of the membrane which would mitigate against the mathematical “pliancy”

mentioned above. Rayleigh [1] deduced that fixing more than one point of an (ideal)

membrane does not alter the characteristic frequency. According to the preceding

statement, we would expect that in these instances the real behaviour would be even

less like the mathematical result.

Rayleigh also deduced that the results should hold for ideal membranes of any

shape. Wang [2] dealt with regular polygonal membranes with circular core, and

confirmed this numerically for the hexagon as the core radius shrank to zero.

Finally, we may conjecture that, because pinning is a local phenomenon, the

shape of the small excluded core should not affect the above results. For instance, the

calculations of [2] might be repeated for a small central polygonal core similar to the

outer shape, with point matching on inner as well as outer boundary.
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