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Abstract

It is not surprising that there is strong interest in k-
NN queries to enable clustering, classification and outlier-
detection tasks. However, previous approaches to privacy-
preserving k-NN are costly and can only be realistically ap-
plied to small data sets. We provide efficient solutions for
k-NN queries queries for vertically partitioned data. We pro-
vide the first solution for the L∞ (or Chessboard) metric as
well as detailed privacy-preserving computation of all other
Minkowski metrics. We enable privacy-preserving L∞ by
providing a solution to the Yao’s Millionaire Problem with
more than two parties. This is based on a new and practi-
cal solution to Yao’s Millionaire with shares. We also provide
privacy-preserving algorithms for combinations of local met-
rics into a global that handles the large dimensionality and
diversity of attributes common in vertically partitioned data.

1 Introduction
Data mining has been identified as one of the most useful

tools for the fight on crime [19]. But the information needed
resides with many different data holders, that may mutually
do not trust each other, or between parties that have con-
flicts of interest. All parties are aware of the benefits brought
by collaboration, but none of them wants the others or any
third party to learn their private data. For this kind of col-
laboration, data privacy becomes extremely important. For
most data mining algorithms, the data is encoded as vectors in
high dimensional space. For these algorithms, a measurement
of similarity (or dissimilarity) is necessary and many times
fundamental for their operation. In large databases, content-
based retrieval under the vector model must typically be im-
plemented as k-nearest-neighbour (k-NN) queries, whose re-
sult consists of the k items whose features most closely re-
semble those of the query vector according to the similarity
measure. Nearest neighbor (NN) queries [20] have been ex-
tensively studied in the past [3, 5, 7]. The k-NN queries en-
able Local Outlier Detection [21], Shared NN Clustering [21]
and k-NN Classification [2, 18, 21]. These wide variety of
data mining tasks, for which k-NN queries is a fundamental
operation, has recently prompted approaches to privacy pre-
serving k-NN [2, 18, 21, 23, 24]. However, these approaches
do have some serious shortcomings. For example, the suite
of privacy preserving algorithms [24] to create a privacy pre-

serving version of Fagin’s A0 algorithm [10] proved costly
despite the authors argued that disclosure of some additional
information (the union of all items in a set required to get k
intersecting items) was necessary for reasonable efficiently.
Other limitations have commonly been the need to compute
all pairs of distances [23], to have the query-point public [18],
or to deal with horizontally partitioned data [2, 21]. To man-
age very large data sets, we use a privacy-preserving SASH .
With a theoretical analysis we also illustrate the efficiency of
our approach with an empirical evaluation.

2 Private collaborations
We study collaboration between several parties that wish

to compute a function (say f ) of their collective databases.
Each wants the others to find as little as possible of their own
private data. In vertically partitioned data, every record in
the collective database is an attribute-value vector, where ev-
ery party owns some part (a number of attributes) from that
vector. For simplicity, we can identify each domain with one
party if we assume existance of virtual parties 1, so the dimen-
sion m of the records is also used as the number or parties.
This simplifies the notation in the algorithms and commu-
nication between two virtual parties of the same party does
not need to occur. Our approach is based on the theory de-
veloped under the name of “secure multiparty computation”
(SMC) [12]. Yao’s Millionaires Problem [27] provides the
origin for SMC. Secure multi-party computation under the
semi-honest model [12] has regularly been used for privacy-
preserving data mining [8, 9, 22]. Here, we work under the
semi-honest model as well, which means all parties will fol-
low the protocol since all are interested on the results. How-
ever, all parties can use all the information collected dur-
ing the protocol to attempt to discover the private data or
some private values from another party. The SMC literature
has a general solution for all polynomially bound computa-
tions [13]. However, the general solution requires f to be
explicitly represented as a Boolean circuit of polynomial size.
Even if represented as a circuit of polynomial size, the inputs
must be very small for the circuit to be practical. This means,
the sub-task that uses this result must be used on very small
inputs, a constraint difficult to meet in data mining applica-
tions.

1If Alice(the first party) holds 5 attributes, then there are 5 virtual parties,
one for each columns.
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2.1 Yao’s two millionaires problem - solu-
tion with shares

One advantage of the “secret shares” theoretical result is
that one can easily decompose the result f(~x, ~y) into a share
sA for Alice and a share sB for Bob, so that sA + sB =
f(~x, ~y), but neither party can find f(~x, ~y) from their share.
This allows to use a protocol for one task (like Yao’s com-
parison of two values) in a larger protocol (e.g. sorting). We
present here a practical solution to Yao’s millionaires prob-
lem, but provide the output in secret shares. Recall that here
Alice holds a and Bob holds b, but then, after the protocol,
they do not share knowledge of the output (a > b?), but the
output for Alice is ra and for Bob rb, where ra + rb = 1 if
a > b and ra + rb = 0 if a ≤ b. There are several algo-
rithms [18, 21, 23] that invoke a subroutine for Yao’s com-
parison with secret shares, and all of them rely on the cir-
cuit evaluation generic “shares” theoretical solution [12]. We
present here a practical and inexpensive solution that we apply
in our algorithms. It uses a third untrusted party (also com-
monly used in the privacy-preserving literature [9]). Checking
whether a > b is the same as checking whether a+(−b) > 0.
In our protocol, we will use an untrusted non-colluding third
party (also called semi-trusted [6]).
Protocol 1 1. The third party generates a random number Ra

and sends Ra to Alice, who then generates random number R,
where R ∈ <\{0} and sends (R, aR + Ra) to Bob.
2. Bob adds −bR, and sends (a−b)R+Ra to the third party,
who subtracts Ra and checks whether (a− b)R > 0.
3. The third party then generates two pairs of values (r0

a, r0
b )

and (r1
a, r1

b ), where r0
a+r0

b = 0 and r1
a+r1

b = 1. If (a−b)R <
0, then the third party sends (r0

a, r1
a) to Alice and (r0

b , r1
b ) to

Bob. If (a − b)R ≥ 0, then the third party sends (r1
a, r0

a) to
Alice and (r1

b , r0
b ) to Bob.

4. If sign(R) = 1 (i.e. R > 0) Alice and Bob use as their
shares the first value in the pair received from the third party.
While if sign(R) = −1, each picks as their share the second
number in the pair received from the third party.
Here Alice obtains R, Ra and the set {r1

a, r0
a}. However, has

no way of telling which one is which in the set {r1
a, r0

a}. Bob
obtains R, the set {r1

b , r0
b}, and a · R + Ra. Again, Bob can

not tell which one is which on the set {r1
b , r0

b}. The third party
gets Ra, r1

a, r0
a, r1

b , r0
b , and (a−b)·R. Note that, the third party

does not know the sign of a− b, since sign(R) ∈ {−1, 1}. A
small concern is that in the case a = b, the third party learns
that a = b, although it does not learn anything else (the values
a and b remain unaccessible to the third party). It is possible
to increase the uncertainty in the third party by Alice and Bob
using the third party with additional dummy Yao’s tests. A
security proof by simulation [12] is obvious, Bob just needs
to get a random value for a · R + Ra and in polynomial time
adds−b·R wth output given by the third party. Alice’s simula-
tion is even more trivial since she receives nothing from Bob.
The output is also from the third party. We have implemented
the sing-based solution presented above. Implementation re-
quires some adaptation, since the value R ∈ <\{0} generated
by Alice cannot be any non-zero real. However, all implemen-
tations of a solution to Yao’s Millionaires problem assume

that the values of a for Alice and b for Bob are in a large but
bounded interval; that is a, b ∈ [0,M ] where M is very large
(and known to both Alice and Bob). Even those solutions that
do not provide the answer with shares require this and typi-
cally assume further that a and b are integers in a very large
field. Therefore, our implementation of the sign-based solu-
tion also assumes that a and b are integers with a, b ∈ [0,M ],
and M is known to the implementer. Since Bob will learn R
and aR+Ra, the value Ra produced by the commodity server
must mask aR (otherwise Bob may learn some bits about a).
Since aR can have as many bits as log2 M + log2 R, we typ-
ically let Alice chose R so that |R| > M and the third party
chooses Ra > 2M . For example, Alice can chose R uni-
formly in [−2M,M) ∪ (M, 2M ]. After this adjustment, the
implementation does not reveal information to Alice or Bob
about each others value. However, the third party does learn
(a − b)R and because |R| is bounded (in fact, the distribu-
tion of |R| will be know to the third party), this party learns
approximations to |a − b|. That is, the third party will not
learn whom between Alice and Bob holds the larger value,
but will gain an idea on the gap that exists between the two.
We regard this leak of information in the sign-based protocol
as innocuous given the estimates of |a− b| have relative error
and the other advantages it provides. First, it is the first imple-
mentable protocol for Yao’s millionaires problem with shares
(we have a C++ implementation over sockets). Second, it is
far more efficient that other solutions to Yao’s millionaires
problem, even without shares. Cachin’s solution [6] 2 is lin-
ear on log2(a + b); however, it also requires a semi-trusted
party and very heavy cryptographic machinery. A solution
that has been demonstrated to be efficient enough for ETH-
ERNET networks [17] requires quadratic time and quadratic
number of messages on log2(a + b) and also as many oblivi-
ous transfers as log2(a+ b). Other practical protocols [4] also
require O(log2(a + b)) rounds of oblivious transfer. Oblivi-
ous transfer implementation usually requires at least two mes-
sages with a key each. The sign-based protocol requires three
message with a log2(a+ b) (one from the third party to Alice,
one from Alice to Bob and one from Bob to the third party).
The last round of messages have constant size 2 bits. So we
have linear complexity on the size of the message (with a con-
stant value 2) and constant number of messages. This analysis
is so overwhelming clear in favor of the sign-based protocol
that we feel direct comparison to any other implementation of
a solution to Yao’s millionaires unnecessary.

3 Privacy-Preserving Metrics
Obviously, if all parties know the r-th Minkowski dis-

tance M(~p, ~q) between two points ~p and ~q in the database,
they will also know the value [M(~p, ~q)]r by each raising the
Minkowski distance to the r-th power. Conversely, if the par-
ties find [M(~p, ~q)]r, they can take r-th roots and find the de-
sired distance value. Since the i-th party knows a range of the
attributes of the vectors ~p and ~q, we have

[M(~p, ~q)]r =
mX

i=1

X
attr. known
to party i

„
j-th attr. in ~p

owned by i
− j-th attr. in ~q

owned by i

«r

.

2We let log2(a + b) denote the number of bits of a + b.
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Letting vi be the r-th Minkowski distance of those attributes
known to the i-party, then [M(~p, ~q)]r = vr

1 + · · · + vr
m, and

the problem reduces to finding the value of the sum of val-
ues distributed among m parties (each contributes the knowl-
edge of the r-th Minkowski distance raised to the power r in
the projection that they own). This can be computed by cir-
cular accumulator sum (also called secure sum [25]). Note
that if we halt the circular sum (at the second party Bob),
then the distance value will be shared between Bob and Al-
ice. This means Alice holds a = vr

1 − R and Bob holds
b = (vr

2+· · ·+vr
m+R) where R is a random number produced

by Alice and [M(~p, ~q)]r = a + b . In some applications (in
particular, k-NN queries) the calculation of the metric is an in-
termediate step. Although distance values may be considered
innocuous information, it is more acceptable to use shares as
this adheres to the ideal principle of SMC where parties learn
only what is implied by the final output. In fact, we can use
encryption modulo a field F so that the shares sa of Alice and
sb of Bob are such that sa + sb = [M(~p, ~q)]r mod F . The
Minkowski distance protocol with shares is trivial in the case
m = 2 parties, since in this case, each party uses its projected
metric value as its share and they exchange no messages at all.
Thus, m > 3 parties use the Minkowski distance protocol,
no party learns other parties’ data; ie, no attribute in a fea-
ture vector is revealed to another party. If the protocol is the
shares distance version, no party learns any information even
if m = 2. This is clear, beacuse the protocol calculates the
distance between ~p = (p1, · · · , pm) and ~q = (q1, · · · , qm).
During the calculation each party Pl (l = 2, · · · ,m) obtains
Sl = (pl+1−ql+1)r+· · ·+(pm−qm)r+R mod F . Thus, for
party Pl it is impossible to learn any value from (pl+1−ql+1)r

up to (pm − qm)r and (p1 − q1)r. In the case of the first
party (l = 1), it obtains the actual distance [M(~p, ~q)]r by
subtracting R, adding its projection and taking r − th root
from the sum. Here, because several terms are involved in the
sum, the 1st party cannot learn any attribute pi or qi, where
i = 2, · · · ,m. The case for shares follows by the discus-
sion above. Again, a security proof by simulation [12] is
obvious, since each party takes as input a simulated random
number from the previous party and proceeds in polynomial
time. The overall result is obtained because the first party
can use in the simulation the overall result. The L∞ metric
(some prefer the name “Chessboard distance”) is defined as
dist(~x, ~y) = max(|vx

1 + (−vy
1 )|, ..., |vx

m + (−vy
m)|) for vec-

tors ~x = (vx
1 , · · · , vx

m)T and ~y = (vy
1 , · · · , vy

m)T . Note that if
~x and ~y are owned by several parties on vertically partitioned
data, each party can identify the largest absolute difference
vi = |vx

i + (−vy
i )| in its projection. So the problem reduces

to which of the m parties has the largest value.

Protocol 2 Find maximum value with shares.
1. The protocol starts with each party comparing its value to
every other party.3 So Alice (the first party) compares her
value with all others, then puts the sum of her shares as the

3Note that, the <Alice vs Bob> comparison is not the same as the <Bob
vs Alice> comparison. For instance say Alice’s value is smaller than Bob’s,
then <Alice vs Bob> will output shares that add up to zero, but <Bob vs
Alice> will output shares that should add up to one.

first component in her shares column vector P1. All other
parties put their shares, that come from comparisons with Al-
ice, again as the first component of their shares column vector.
This creates a distributed row vector.
2. Bob (the second party) compares his value with all oth-
ers4, and puts the sum of his shares as the second component
in his shares column vector P2. All other parties put their
shares, that come from these comparisons with Bob as the
second component of their shares column vector. This creates
a distributed row vector.
3. The protocol continues until each party’s value is compared
with all others and all column vectors are obtained.
This provides the information shown in the Table 1 where Ci

ij

P1 P2 · · · PmX
j=2,..,m

C
1
1j C2

12 · · · Cm
1m

C1
21

j 6=2X
j=1,..,m

C
2
2j · · · Cm

2m

· · · ·

C1
m1 C2

m2

.

.

.
X

j=1,..,m−1
C

m
mj

Table 1. Shares after all comparisons.

belongs to Pi, C
j
ij belongs to Pj , and Ci

ij+Cj
ij = 1 if vi > vj ,

when vi ≤ vj then Ci
ij +Cj

ij = 0 Note that now, each column
is owned by one party only; therefore we can treat them as the
vectors distributed, one to each party. Moreover, the sum of
the elements in the i-th row is

Pj 6=i
j=1,..,m Ci

ij +
Pj 6=i

j=1,..,m Cj
ij ,

will show us exactly how many vj were smaller than vi. That
is, the ranking of the distance projection owned by the i-th
party. The problem now reduces to finding the ID (identi-
fier) of the maximum in a sum of vectors5. This can be per-
formed using the “Maximum Value in the Sum of Vectors”
protocol [2] where no party learns anything except the ID of
the entry holding the maximum value. Once the party with the
highest ranking is known, this party can broadcast the maxi-
mum value (the value of the metric).

If a version with shares is needed, the party P holding the
maximum value M can generate a random number sP = R,
so that s = M − R is made public to another party. Then,
these two parties will hold values so that sp+s = M mod F .
This algorithm is as secure as our comparison protocol, be-
cause parties do not learn winners or losers of the compar-
isons since all encoded in distributed shares. The Minkowski
metric may not be powerful enough to handle the fact that,
in k-NN queries among parties sharing vertically partitioned
data, it is likely the attributes may belong to very diverse do-
mains. Each party may be applying a local metric MPi to
the projection each holds of the two records ~p and ~q. This
results in the value vi = MPi

(~p, ~q). Thus, the global met-
ric could be a weighted sum

∑m
i=1 ωivi of the local metric

values vi. The problem of computing it would be solved by

4Note that Bob does not need to compare with Alice again, he rather uses
the second share provided from the third party.

5If all distances are different we know the maximum value is always m−
1. Our protocol works even if some comparisons are between equal values.
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secure sum protocol. Alternatively, the global metric could be
a weighted maximum maxm

i=1 ωivi. In this case, our Proto-
col 2 generalizes to compute the global metric from the local
metric values on the attributes known to each corresponding
party. This allows for very flexible metrics that take into ac-
count issues like different units of measure and data types on
the attributes. One realizes that computing the Hamming
distance H(~p, ~q), which is the number of entries where the
vectors ~p and ~q differ, reduces to computing again the sum
of the Hamming distances in the projection by each party.
If we now consider metrics, like the usage/access metrics or
frequency metrics, we see that these metrics have the form
~pT · ~q/‖~p‖2‖~q‖2. That is, they are the cosine of the angle
between the vectors ~p and ~q. Here we are more interested in
computing cos(α) = ~pT · ~q/(‖~p‖2‖~q‖2) and split output in
shares sa + sb = cos(α) where again, sa is know by Alice
only and sb is know by Bob only. Since dot products on ver-
tically partitioned data are sums and can be computed with
shares by secure sum [25], only Alice knows constants A1,
A2 and A3 and Bob knows only B1, B2 and B3 so that

cos(α) = A1+B1
(A2+B2)(A3+B3)

= A1+B1
A2A3+A2B3+B2A3+B2B3

= A1+B1

A2A3+(A2,A3)T ·
„

B3
B2

«
+B2B3

Using the scalar product with shares [9], we obtain values A4

and B4 so that A4 + B4 = (A2, A3)T ·
(

B3
B2

)
, A4 is known

only to Alice and B4 only to Bob. With B5 = B4 + B2B3

and A5 = A2A3 + A4 we have the derivation.

cos(α) =
A1 + B1

A2A3 + A4 + B4 + B2B3
=

A1 + B1

A5 + B5

where A5 is only known by Alice and B5 is known by Bob.
For division that provides output with shares we propose the
following protocol.
Protocol 3 Alice holds (a1, a2) and Bob holds (b1, b2), Alice
gets A and Bob B, with A + B = (a1 + b1)/(a2 + b2).
1. Alice produces a random number r1 and Bob produces a
random number r2.
2. Alice obtains r2(a2+b2) = (a2, 1)T ·

„
r2

r2b2

«
by using the scalar

product protocol [9] 6 but provide an answer to one party
only, and Bob obtains r1(a2 + b2) = (b2, 1)T ·

„
r1

r1a2

«
.

3. Alice and Bob use again the scalar product [9], but provide
an answer with shares A and B using the above input vectors
from each party.

A + B =

 
r1a1,

1

r2(a2 + b2)

!T

·

0B@ 1

r1(a2 + b2)
r2b2

1CA
3.1 Private k-Nearest Neighbours

We now describe our first protocol for k-NN
queries. Given vectors ~v1 = (v11, · · · , v1m), · · · , ~vn =
(vn1, vn2, · · · , vnm), together with a vector ~q = (q1, · · · , qm)
(where m is the number of parties), we find P (~q, k),
where P (~q, k) is the ids for the k-NN to ~q. When
dist(~p, ~q) = da

pq + db
pq and dist(~p, ~r) = da

pr + db
pr

(with da
pq, da

pr known only to Alice and db
pq, db

pr known
only to Bob), then dist(~p, ~q) < dist(~p, ~r) if and only if
da

pq − da
pr < db

pq − db
pr.

6Here Bob sets his private share V2 = 0. As authors of this protocol
remarked in the original paper [9](page 6), this does not let Alice to learn any
of Bob’s private data.

Protocol 4 PP k-NN.
1. The parties calculate metrics with shares. After this, we
can assume the first party Alice holds a vector ~sa of dimension
n and Bob holds a vector ~sb so that sa

i + sb
i = dis(~q,~vi) (in

fact, it is possible to assume encryption modulo a field F ; i.e.
sa

i + sb
i = dis(~q,~vi) mod F ).

2. Alice computes the matrix DA whose ij entry is |sa
i − sa

j |,
while Bob computes the matrix (DB

ij) = (|sb
i − sb

j |).
3. Alice and Bob engage in Yao comparisons with share for
each respective entry of DA and DB . Let σa

ij be Alice’s share
of comparing DA

ij with DB
ij (Bob’s share is σb

ij).
4. Let Alice compute the vector V A whose i-th entry is∑n

j=1 σa
ij while Bob’s V B is such that V B

i =
∑n

j=1 σb
ij .

5. Alice and Bob use the secure add vectors protocol where
Alice obtains π−1(V A + V B) with π known only to Bob.
6. Alice sorts and sends the top k fake-ids to Bob. Bob broad-
cast π−1(fakeIDs) (IDs for k-NN of ~q).
Note that, Alice only learns counts of da

pq − da
pr < db

pq − db
pr

comparisons. The security proof follows from the composi-
tion theorem. This protocol is quadratic on n. The following
protocol is O(n log n).
Protocol 5 Fast PP k-NN.
1. Same as Protocol 4.
2. Bob (the second party) uses a random value Rb only know
to him and adds the vector ~Rb = (Rb, ..., Rb) (that consists of
all entries set to one random number Rb). He adds ~sb + ~Rb.
3. Alice and Bob use the add-vectors protocol for ~sa known
to Alice and ~sb + ~Rb known to Bob. This gives Alice a ran-
dom translation of the distances dist(~q,~vi), for i = 1, ..n,
permuted by a random permutation π that only Bob knows.
4. Alice sorts and sends the top k fake-ids to Bob. Bob broad-
cast π−1(fakeIDs) (IDs for k-NN of ~q).
We remark that Alice learns the distribution of the distance
values translated by a random number, which we believe is
innocuous information. No other information is disclosed.
Also if we use the versions with shares over a field for com-
puting metrics, then it is possible to use binary search over a
field for the top k-neighbours [24]. The field binary search
requires Yao’s comparisons with shares. This would protect
from Alice learning the distribution of the distance values at
the expense of as many as O(n log |F |) Yao comparisons.

4 The Private SASH Data Structure
While above algorithms for the k-NN query adapts them

in the privacy-preserving context, these algorithms should be
used for small data sets, since its complexity is proportional
to the number n of data vectors. For large data sets, we should
use data structures that allows much better performance on the
number N of items in the database. This can be illustrated by
the role that R-Trees play in the efficiency DBSCAN [1]. To
manage very large data sets, we provide a privacy-preserving
SASH . The SASH [16, 15] makes minimal assumptions
about the nature of the metric for associative queries. It also
does not enforce a partition of the search space, as for exam-
ple R-Trees do. A partition of the space enables the parties
to learn bounding boxes for other’ data [2] — a less private
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Average Size S of the union for A0 algorithm SASH
number m of parties

k 4 6 8 10
10 2,982±218 3,694±138 4,535±136 5,092±117 952

20 3,100±203 4,037±141 4,835±106 5,438±55 952

25 3,429±161 4,270±127 5,004±98 5,448±69 952

50 3,704±150 4,689±125 5,294±68 5,628±44 989

Table 2. Performance of A0 and SASH on dataset “The
Insurance Company Benchmark (CoIL 2000)”.

approach. For approximate k-NN (k-ANN) queries on the
large sets, the SASH consistently returns a high proportion of
the true k-NNs at speeds of roughly two orders of magnitude
faster than sequential search [15]. The SASH has already
been successfully applied to clustering and navigation of very
large, very high dimensional text data sets [14]. However, the
current form of the SASH would be inappropriate for privacy
preservation. The SASH internally uses a k-NN query on
small sets. We replace this internal k-NN query, by our algo-
rithm for the privacy preserving context. This approach has
been used before [2]. The end result is a data structure for the
privacy-preserving context.

5 Performance Evaluation
We show that for our protocols and algorithms, the cost

is essentially as for a distributed non-private setting (DNPS )
where parties would still need to incur local calculations and
communication costs between them or to a central party. Also,
the implementation of our privacy-preserving algorithms is
feasible. Using our Yao-comparison with shares and our Pro-
tocol 2 increases the complexity of the Chessboard distance
to quadratic in the number of parties. However, the number of
parties would be of the order of about 10. Thus, very afford-
able for the additional privacy. For the Minkowski metrics,
the main cost is the communication cost, which is compara-
ble to DNPS . In fact any other local cost (computing local
projections of the metric) would also be performed in DNPS .
For the combination metrics (like sum/max of local metrics)
the performance will be the same as for the Minkowski met-
rics for sums and Chessboard for maximums. Note that, like
in the overwhelming majority of methods for k-NN queries
and associative queries, the major cost is not the computa-
tion of distances per se, but how many of these computations
are performed. The only possible competitor to our privacy-
preserving SASH method to perform k-NN queries is the
privacy-preserving version [24] of Fagin’s A0 algorithm [10].
However, for a vertically partitioned database with N records,
this algorithm’s complexity (time and communication cost)
includes as a factor the number S of candidates generated. It
is well recognised that S can be as large as N and in the best
case as small as k. The accepted [10, 24] worst-case theo-
retical analysis is that the complexity is O(N (m−1)/mk1/m)
where m is the number of parties. However, there are no stud-
ies on what is the expected performance of this algorithm.
We evaluated the size S of the union of Fagin’s AO algo-
rithm in 5 well-known large data sets. The CoIL 2000 Chal-
lenge [26] contains data that consists of 86 variables. We re-
peated the following experiment 100 times. We partition the

attributes randomly into m parties, we selected random met-
rics for each party (among Euclidean, Hamming, Chessboard
and Minkowski with r = 1), we selected a random query
point from the data and computed the k-NN using Fagin’s A0
algorithm. The Table. 2 shows the average size S of the union
in Fagin’s AO algorithm for this data set with 95% confidence
intervals. This data set has 5, 822 records and we can see that
most of the entries of the table are above 3, 000 while several
are above the 5, 000. It is disappointing that when asking for
10 neighbours among 8 parties we expect a union size to be
78% of the size N of the database. Note that the worst case
for all query sizes k is above 5, 000 and that the size of the
union in the best observed case is well above 500 × k, and
rapidly above 50% the size of the file. Similar results occur
for the Census-Income Database holding multivariate PUMS
census data (from KDD UCI repository). The inefficiency of
AO is also reflected in three large datasets previously used
for k-NN queries [11]. The data set named Histogram corre-
sponds to a color histogram, while the one named Stock cor-
responds to a stock market price. Finally, an aerial image
dataset was tested, which gave similar results. Another rea-
son for performing this analysis is that the privacy-preserving
version of Fagin’s AO algorithm [24] leaks all the ids of the
union. Therefore, the size S of the union not only determines
the inefficiency of the method but is also a strong measure of
the lack of security in the algorithm. The privacy-preserving
AO algorithm will perform at least as many distance evalua-
tions as the number S of candidates (or the size of the union).
We have chosen the SASH because this data structure is very
efficient invoking a number of distance computations which
is bounded by pcN log 2N [16, 15] (for construction), while
the bound for an approximate k-NN query under the uniform

search is ck log 2N , and k
1+ 1

log 2N

k
1

log 2N −1
+ 2p3 log 2N for geomet-

ric search (here p and c are the constant parameters of the
SASH and k is the number of NN requested). Therefore,
the SASH will easily outperform Fagin’s A0 algorithm, and
will provide logarithmic response for k-NN queries and as-
sociative queries. The privacy-preserving SASH invokes the
Protocol 5 for small sets of size n. Our protocol does require
Θ(n log n) time on Alice side for sorting and O(n) time on
Bob side to add a random value to all the shares it holds and
to generate the random permutation π. However, the constants
involved are small and clearly the process is practical. How-
ever, the search in a field requires (n+1) log |F | rounds [24].
Typical values are F = 106, which makes a larger constant
in the O(n) for this alternative. Clearly, the local computa-
tion is far more in this aspect alone that our algorithm. In
terms of communication cost, our approach is also more ef-
ficient. Bob sends exactly n values, and Alice sends back k
values. The binary search in a field performs the communi-
cations needed for (n + 1) log |F | Yao-comparisons. Overall,
Protocol 5’s complexity depends on the number m of parties,
the number n of vectors and the number k of near neighbors
we are looking for. The implementation confirms that the per-
formance cost is dominated by Θ(n log n) time. For commu-
nication cost, the n + k complexity is dominated by n again.
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We have also implemented the SASH method and evaluated
the performance on the COIL and PUMS data sets. The per-
formance depends directly on the number of candidates gen-
erated at all levels of the SASH (the sum of ‖Pi(q, ki)‖ for
all levels [15, page 8]). Our results for COIL are the last col-
umn in Table 2. The SASH candidate generation does not
depend on m, and shows remarkable small numbers for both
data sets (about 12% for COIL and 0.5% for PUMS). This
demonstrates the efficiency of the SASH approach.
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