
Privacy Preserving Regression Algorithms

Artak Amirbekyan, Vladimir Estivill-Castro

School of ICT, Griffith University,
Meadowbrook QLD 4131, Australia

Abstract. Regression is arguably the most applied data analysis method.
Today there are many scenarios where data for attributes that corre-
spond to predictor variables and the response variable itself are dis-
tributed among several parties that do not trust each other. Privacy-
preserving data mining has grown rapidly studying the scenarios where
data is vertically partitioned. While algorithms have been developed for
many tasks (like clustering, association-rule mining and classification),
for regression, the case of only two parties remains open. Also open is the
most interesting case when the response variable is to be kept private.
This paper provides the first set of algorithms that solves these cases.
Our algorithms are practical and only require a commodity server (a
supplier of random values) that does not collude with the parties. Our
protocols are secure in the spirit of the the semi-honest model.

1 Introduction

Regression in one of the most widely used statistical tools in data analysis.
Regression allows to model a relationship between an attribute considered the
response and other attributes considered to influence such response. In this case,
this is often called multiple regression. Linear regression assumes that the re-
lationship between the response and a number of attributes is linear. Linear
regression is perhaps the most successful statistical method in data analysis.

Statistical regression modeling typically assumes that the data is freely avail-
able. However, data collection may be among several agencies resulting in large
and rich but distributed databases. The parties may not wish to share their data,
or may be in no position to share their data although they would all benefit from
the statistical analysis on the joined database. For example, data analysis is re-
garded as one of the most useful tools for the fight on crime [11]. However, the
information needed resides with many different governments and/or corporations
and these parties may mutually do not trust each other. Legal or constitutional
limitations, or conflicts of interest may pose demands on privacy. But all parties
are aware of the benefits brought by analyzing the collective datasets.

When privacy-preserving is an issue, integration of a single database is only a
partial answer [5,8,9]. All partners of the collaboration promise to provide their
private data, but none wants partners or any third party to learn their private
data. This context demands effective and efficient algorithms for privacy preserv-
ing regression [8,9,10,15]. In the privacy preserving model, data is distributed

over several parties and the goal is to compute linear regression by preserving
the confidentiality of each party’s data.

We present new methods for privacy-preserving regression analysis. Specifi-
cally, we provide advances in three aspects. First, our methods are the first meth-
ods to address the issue when the response variable is not common knowledge
to all parties. Second, we also deal effectively with the case of only two parties.
Third, we can produce coefficients and other intermediate data in shares, which
allows repetition, re-calculation and detailed analysis of model quality and fit.

We will briefly introduce necessary terminology and discuss the current state
of progress on privacy preserving regression in the next section. We then treat
separately bilinear from multiple linear regression, because they require different
solutions. We show then how to compute residuals which allows model evaluation
and model selection.

2 Regression in the Privacy Preserving Context

Regression analysis examines the relationship of a dependent variable Y (the
response variable) to specified independent variables (the predictors). Regres-
sion is a fundamental tool in data analysis used for prediction, modeling of
casual relationships, and scientific hypothesis testing about relationships be-
tween variables among many other uses. The mathematical model of the re-
lationship is the regression equation. Linear regression is a regression method
that explores a linear relationship between the dependant variable Y and the
k independent variables xi (allowing an error term ǫ). That is, the form of the
model (the regression equation) is Y = α + β1x1 + β2x2 + . . . + βkxk + ǫ.
Linear regression is the most studied re-

1 Attr 2 Attr 3 Attr 4 Attr 5 Attr 6 Attr 7 Attr 8 Attr 9

Alice knows Attr1−Attr4 Bob knows Attr5−Attr9

Recordi Attr

Fig. 1. Vertically partitioned data, Alice

knows 4 attributes while Bob knows 5.

gression approach. The coefficients α =
β0 and βi are the parameters learned
from the data.

In this paper, we study collabora-
tion between several parties that wish
to compute a regression equation us-
ing their collective data. However, each
wants the others to find as little as pos-
sible of their own private data. We fo-
cus on vertically partitioned data (see
Fig. 1). Every record in the database is an attribute-value vector1. One part of
that vector is owned by Alice and the other part by Bob. In the case of more
than two parties, then every party will own some part (a number of attributes)
from the attribute-value vector. Note that, for vertically partitioned data, the
more parties are involved, the more attributes are involved and the higher the

1 For most data analysis and data mining algorithms, the data is encoded as vectors
in high dimensional space. Attribute-vectors are the common input for learning
algorithms like decision trees, artificial neural network or for clustering algorithms
like k-Means or DBSCAN.

dimensions of the attribute-vectors. A direct use of regression algorithms on the
union of the data requires one party to receive data (collect all attributes for
all records) from all other parties, or all parties to send their data to a trusted
central place. The recipient of the data would conduct the computation in the
resulting union. Although there has been some work on privacy preserving inte-
gration [9,5], in settings where each party must keep their data private, this is
usually unsatisfactory.

Also, for simplicity, we identify each predictor variable xi with one party
(so the dimension k of the records is also the number m of parties). Typically
there will be less parties than dimensions (as in Fig. 1 where two parties have
data for 9-dimensional records). However, we consider Alice as 4 virtual parties
(one for each of the columns) and Bob as 5 virtual parties each controlling one of
Bob’s column. This simplifies the notation in the algorithms (and communication
between two virtual parties of the same party just does not need to occur). It
also may be the case that a predictor variable xi is in fact a function of several
attributes owned by one party; however, this again is a matter internal to that
party and we will not address it further.

In order to have privacy preserving liner regression one must perform several
steps which includes secure calculation of the regression coefficients βi and model
diagnostics. The calculation of the regression coefficients is an important step in
regression but the diagnostics and model selection are even more important and
challenging. Diagnostics checks whether a model is proper and the best possible
or it needs revision by further analysis. This can be carried out by graphical tools
that include plotting the residual versus the predicted response and/or residual

versus predictor plots. Model selection can be performed iteratively, controlled
by the analyst based on diagnostics analysis, or an automatically by stepwise
regression, or exhaustively, that is, running over all possible models relying on
some model selection criteria such as Mallow’s Cp statistic.

The first solution for linear regression in the privacy context [3] was based
on a series of protocols for matrix multiplication that were secure in a weak
sense [15]. Other solutions addressed the simpler case of horizontally partitioned
data [9]. Using Powell’s algorithm for solving quadratic minimization an alter-
native was provided for the vertical partitioning case [12]. All of these assume
that the response variable Y is known to all the parties. This reduces the cases
where two different parties may attempt to understand the relationship between
attributes in their data by means of linear regression. Specially, if there is no
commonly known attribute that can act as the commonly known response. For
example, one company may hold salary and education level for a large set of em-
ployees, while the medical insurer may hold data about the frequency of medical
checkups. It would be difficult to explore the relationship between education
level and the monitoring individuals perform on their health. Similarly, the po-
tential relationships between types of treatment and professional activity (that
could lead to patterns in some certain conditions due to the nature of the job).
Similarly, if there was a third party, say a retailer, then it may be interesting to
explore the types of expenses in relation to salary. This may enable the retailer

to target its advertising, and the employer to offer some employment benefits
according to some rank within the organization.

Although the previous solutions [3,12] provide privacy preserving calculation
of regression coefficients for two parties holding more that one attribute,
Vaidya and Clifton have remarked [15] on a potential privacy breach of the
attribute values when using the residual versus predictor plots to determine
whether the fitted model is proper. For example, Alice can generate the residual
versus x1 plot. In the plot, the coordinates of the points are exactly the values
of x1. If the plot is revealed to the other party (Bob), Bob may use the plot to
recover accurate values of x1 which are held by Alice. We will show that this
situation can be avoided if Alice and Bob distribute residuals in shares and apply
secure multi-party protocols for diagnosis analysis. But none of the solutions in
the literature provide coefficients as well as residuals with shares.

Another privacy risk that was highlighted previously [15], is the case of only
two parties each holding only one attribute. In this scenario, the disclosure of
the residuals immediately results in the disclosure of the attribute values of the
opposite party. We will also provide the first solution to this case.

3 Privacy Preserving Computation

We present several tools for privacy preserving computation. These tools were
originally developed under the name of “secure multi-party computation” (SMC) [6].
Here Alice holds one input vector x and Bob holds an input vector y. They both
want to compute a function f(x, y) without each other learning anything about
each other’s input expect what can be inferred from f(x, y). Yao’s Millionaires
Problem [16] provides the origin for SMC. In the Millionaires, Alice holds a num-
ber a while Bob holds b. They want to identify who holds the larger value (they
compute if a > b) without neither learning anything else about the others value.
The function f(x, y) is the predicate f(x, y) = (x > y).

It is common to use a SMC-protocol as a sub-protocol of another that per-
forms a more elaborate computation. In this case, it is not satisfactory for the
parties to learn the output of the sub-protocol as this may lead to learning in-
formation about the inputs for the overall process. We are interested in covering
the output of some particular SMC sub-protocol, and this is usually achieved by
distributing the intermediate result among the parties in what is called shares.
For example, we may be interested in finding the largest value among several par-
ties. Using Yao’s comparison protocol, we could compute which of two numbers
are grater and use this information in the maximum-finding protocol. However,
if the output of every comparison becomes public, then the parties would learn
information beyond the maximum value, perhaps even which party holds the
second largest value. It is much better to keep the results of individual compar-
isons as shares which on a second phase are summed up and find the maximum
without no party learning the outcome of any comparison [1].

The origins of secure multi-party computation were in fact presented with
the idea of each party receiving shares of the output, and this idea lead to

a theoretical result that any function f with polynomial complexity could be
described as a digital circuit of polynomial size where the parties could each
be assigned shares of each logical gate. This theoretical result implies that any
polynomial algorithm can be adapted for privacy preservation, under the semi-
honest model of computation 2. However, this result is in truly theoretical. We
rarely can describe an algorithm, like matrix multiplication, as a large digital
circuit, and such polynomial size circuit would be extremely large for the size
of databases we have in mind in data analysis or data mining, and in particular
for multiple regression.

One advantage of the “shares” theoretical result is that one can easily de-
compose the result f(x, y) into a share sA for Alice and a share sB for Bob, so
that sA + sB = f(x, y), and use this as a sub-protocol in another more elabo-
rate protocol, while neither party can find f(x, y) from their share. This usage
of a protocol as a subroutine in another protocol enables construction of more
complex and secure protocols, but transmits the impracticality of the generic
“shares” further. We believe this has been somewhat over-used in the privacy
preserving literature. There are several algorithms [7,13,14] that invoke a sub-
routine for Yao’s comparison with shares, and all of them rely on the circuit
evaluation generic “shares” theoretical solution by Goldreich [6]. Hence, they
seem hard for implementation.

To produce algorithms for multiple regression, we will require some other
secure multi-party computation sub-protocols, some of which are already in the
literature and some we present here. We introduce a protocol to compute a
division, when the parties themselves have shares of the divisor and the dividend.
The result will be shared. The current SMC division protocol [2], does not provide
an answer with shares, it gives an answer to one party only.

In the division protocol, Alice holds (a1, a2) and Bob holds (b1, b2), the goal
is for Alice to obtain a value A and for Bob to receive a value B, where A+B =
(a1 + b1)/(a2 + b2). Thus, they share the outcome and also, Alice does not learn
any of the values hold by Bob, while Bob does not discover any of the values
hold by Alice. The steps of the protocol are as follows.

1. Alice produces a random number r1 and Bob produces a random number r2.
2. Using the so called scalar product protocol [2], Alice can obtain r2(a2 + b2) =

(a2, 1)
T
·

„

r2

r2b2

«

, where Alice supplies (a2, 1)T and Bob supplies r2

„

1
b2

«

. It is important that the scalar product protocol in the literature [2] gives
the answer to only one party, in this case Alice. Similarly, using the same
protocol, but now in a way that only Bob learns the answer, and with inputs

r1

„

1
a2

«

for Alice and (b2, 1)T for Bob, we allow Bob to get r1(a2 + b2) =

(b2, 1)
T
·

„

r1

r1a2

«

.

2 Secure multi-party computation under the semi-honest model [6] means all parties
will follow the protocol since all are interested in the results. However, all parties
can use all the information collected during the protocol to attempt to discover the
private data or some private values from another party.

3. Alice and Bob again perform the scalar product [4], but a variant that pro-

vides an answer with shares. The inputs will be
“

r1a1,
1

r2(a2+b2)

”T

for Alice

and

0

@

1

r1(a2 + b2)
r2b1

1

A for Bob. Thus Alice would obtain a value A and Bob

would obtain a value B with the property that

A + B =

„

r1a1,
1

r2(a2 + b2)

«T

·

0

@

1

r1(a2 + b2)
r2b1

1

A =
a1 + b1

a2 + b2
.

4 Privacy Preserving Bivariate Linear Regression

Bivariate linear regression models the response variable Y as a linear function of
just one predictor variable X ; that is Y = α+βX+ǫ, where α and β are regression
coefficients specifying the Y -intercept and slope of the line, respectively. These
coefficients can be found by minimization of the error ǫ between the actual data
and the estimate of the line. Given n sample data points of the form (a1, b1),
· · · , (an, bn), then the regression coefficients estimated by the method of least
squares are

β =

P

n

i=1(ai − ā)(bi − b̄)
P

n

i=1(ai − ā)2
(1) and α = b̄ − βā (2)

where ā is the average of a1, · · · , an and b̄ is the average of b1, · · · , bn.
When data is vertically partitioned, Alice would know all a1, · · · , an and Bob

will have b1, · · · , bn. Thus, Alice and Bob can calculate each ā and b̄ without any
communication. The goal would be for Alice and Bob to obtain the coefficients
for Y = α+βX , while they do not learn each other’s data points. Note, however,
that knowledge of β and α by Alice and Bob implies (because α = b̄ − βā, that
each will learn something about each other’s data. Alice will discover b̄ and Bob
ā. It is commonly accepted in secure multi-party computation that anything that
can be learned from the output f(x, y), about the others party data is acceptable.
We will present this situation first. The alternative, is that the output f(x, y)
is in shares. We present this case second.

In order for the parties to find β, we provide the following protocol. First
note that the dividend in Eq. (1) is a scalar product of two vectors, each know
to one party only.

n
X

i=1

(ai − ā)(bi − b̄) =
`

(a1 − ā), · · · , (an − ā)
´T

·

`

(b1 − b̄), · · · , (bn − b̄)
´

. (3)

Using scalar product protocol [2] which provides an answer to Alice only, she
can then divide by

∑n

i=1(ai − ā)2 (which she owns) and obtain β. Alice would
then pass β to Bob. This way Alice and Bob learn the coefficients with a protocol
that is best possible in the sense that the protocol reveals to each party the final
result and only what can be discovered using the final result and one’s input.

However, if the coefficients are to be learned in shares α = sa(α) + sb(α)
and β = sa(β) + sb(β) (with sa(α), sa(β) known only to Alice and sb(α), sb(β)

known only to Bob) we need additional care. By Eq. (2), if β = sa(β) + sb(β),

then α = b̄ + [sa(β) + sb(β)]ā = b̄ + sb(β)]ā + sa(β)ā =
`

1, ā, āsa(β)
´T

·

0

@

b̄

sb(β)
1

1

A .

Because the first vector above is known only to Alice and the second is known
only to Bob, using the scalar product protocol [4] with shares would provide
the required sa(α) for Alice and sb(α) for Bob with α = sa(α) + sb(α). Thus,
providing the coefficients with shares reduces to providing β with shares.

We accomplish this requirement as follows. Recall that β is an expression
(Eq. (1)) whose dividend is a scalar product (Eq. (3)). Thus, we can obtain the
dividend as two values A1 and B1, with A1 only known to Alice and B1 only
known to Bob. Let Alice generate a random number R, that she passes to Bob,
and consider the following derivation.

β =
A1 + B1

(
P

n

i=1(ai − ā)2 + R) − R
=

A1 + B1

A2 + B2
.

This has the form of the division protocol with A1, A2 only known to Alice,
and although B1 is only known to Bob, B2 = R is known to both Bob and
Alice. Nevertheless, we can apply the secure division protocol from Section 3.
Knowledge of B2 = R by Alice results in Alice learning r2, but interestingly
enough, this is still insufficient for Alice to learn b1 or Bob’s share in the output 3.
This gives then the required shares for β.

We have provided two protocols. Firstly, Alice and Bob learn the coefficients
α and β. In the second one, they learn these coefficients, but in shares. Both
protocols are ideal, in the sense of privacy from the semi-honest model in SMC,
as what each party learns about the others data is nothing more that what can
be inferred from the specified output of the protocol and its own data.

5 Privacy Preserving Multiple Regression

In this section we investigate multiple regression. Here, several parties are in-
volved with several attributes and the goal is again to obtain linear regression
coefficient across different attributes. We once more do not assume a response
variable in common. In fact, this enables cases where the response variable is
an attribute known by one of the involved parties. This provides the ability
to find relationships between different attributes of different parties. The only
assumption now is that there are three or more non-virtual parties. (m ≥ 3).

Using the least squares method, the vector of coefficients β = (β1, β2, · · · , βm)
is β = (XT X)−1XT Y , where the matrix X = (X1, X2, · · · , Xm) has column
vectors Xj and each Xj is owned by j − th party. The response variable is a
vector Y owned by one party only. The task here is to compute β without reveal-
ing any party’s’ data. We first present a protocol that reveals β to all parties.
Let us first describe how to compute XT X . We start with the three party case,
(m = 3). If we have n data points of the form (ai, bi, ci) with ai known to Alice

3 Full proof of this requires description of the scalar product in shares, because of
space limitations this is included in an appendix for referees past the 12 page limit.

only, bi known to Bob only and ci known to Charles only, we have the following
data matrix X given by

X
T =

0

@

a1 a2 a3 . . . an

b1 b2 b3 . . . bn

c1 c2 c3 . . . cn

1

A .

Then, by using scalar product protocol [4], with output distributed in shares,
whenever we have an matrix entry with data vectors belonging to two different
parties, we obtain the following derivation4 for the symmetric matrix XT X .

X
T
X =

0

@

aT
· a aT

· b aT
· c

bT
· a bT

· b bT
· c

cT
· a cT

· b cT
· c

1

A =

0

@

aT
· a V A

ab + V B

ab V A
ac + V C

ac

V A

ab + V B

ab bT
· b V B

bc + V C

bc

V A
ac + V C

ac V B

bc + V C

bc cT
· c

1

A

=

0

@

aT
· a V A

ab V A
ac

V A

ab 0 0
V A

ac 0 0

1

A +

0

@

0 V B

ab 0
V B

ab bT
· b V B

bc

0 V B

bc 0

1

A +

0

@

0 0 V C
ac

0 0 V C

bc

V C
ac V C

bc cT
· c

1

A

Thus, XT X is computed in our protocol by matrix addition (also called secure
sum [15]) where each party owns one matrix. In order to add them securely,
Alice (the first party) cat generate a random matrix and pass it to Charles (the
third party) who will add his matrix to the random matrix received from Alice.
Charles will send this sum to Bob. Next, Bob will add his matrix to the matrix
received from Charles and send to Alice. Alice subtracts the original random
matrix and add her matrix to obtain XT X .

For the case m ≥ 3 (with n data points), we use the scalar product with

shares to obtain pT
i ·pj as V i

pipj + V j

pipj when pi, V
i
pipj is known only to the i-th

party and pj , V
j

pipj is known only to the j-th party, whenever i 6= j. Thus,

X
T

X =

0

B

B

B

B

@

p1

1
· · · p1

n

p2

1
· · · p2

n

.

.

.
. . .

.

.

.
pm
1

· · · pm
n

1

C

C

C

C

A

·

0

B

B

B

B

@

p1

1
· · · pm

1

p1

2
· · · pm

2

.

.

.
. . .

.

.

.
p1

n · · · pm
n

1

C

C

C

C

A

=

0

B

B

B

B

@

pT
1

· p1 pT
1

· p2 · · · pT
1

· pm

pT
2

p1 pT
2

· p2 · · · pT
2

· pm

.

.

.
.
.
.

. . .
.
.
.

pT
m · p1 pT

m · p2 · · · pT
m · pm

1

C

C

C

C

A

=

0

B

B

B

B

B

@

pT
1

· p1 V 1

p1p2 + V 2

p1p2 · · · V 1

p1pm + V m

p1pm

V 1

p2p1 + V 2

p2p1 pT
2

· p2 · · · V 2

p2pm + V m

p2pm

.

.

.
. . .

.

.

.

V 1

pmp1 + V m

pmp1 V 2

pmp2 + V m

pmp2 · · · pT
m · pm

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

pT
1

· p1 V 1

p1p2 · · · V 1

p1pm

V 1

p2p1 0 · · · 0

.

.

.

.
.
.

.

.

.

V 1

pmp1 0 · · · 0

1

C

C

C

C

C

A

+

0

B

B

B

B

B

@

0 V 2

p1p2 · · · 0

V 2

p2p1 pT
2

· p2 · · · V 2

p2pm

.

.

.

.
.
.

.

.

.

0 V 2

p2pm · · · 0

1

C

C

C

C

C

A

+ · · · +

0

B

B

B

B

B

@

0 · · · V m

p1pm

0 · · · V m

p2pm

.

.

.

.
.
.

.

.

.

V m

p1pm · · · pT
m · pm

1

C

C

C

C

C

A

.

We apply a similar strategy in our protocol for the computation of XT Y .

X
T
Y =

0

B

B

B

@

p1
1 · · · p1

n

p2
1 · · · p2

n

...
. . .

...
pm
1 · · · pm

n

1

C

C

C

A

·

0

B

B

B

@

y1

y2

...
yn

1

C

C

C

A

=

0

B

B

B

@

pT
1 · Y

0
...
0

1

C

C

C

A

+

0

B

B

B

@

0
pT

2 · Y

...
0

1

C

C

C

A

+ . . . +

0

B

B

B

@

0

...
pT

m · Y

1

C

C

C

A

.

4 The super-index provides the owner party.

We have that each party knows a vector and their sum is XT Y . Thus, Alice
generates a vector r with n different random values, passes this r to the last
party. Each party adds the vector given to its own vector and passes to the
previously numbered party. When the vector is back to Alice, she subtracts r

and adds her vector to obtain XT Y . Note that Alice does not know XT ; thus,
knowledge of XT Y will not enable it to derive the private values of Y when
Alice is not the party supplying Y (even knowledge of pT

1 and pT
1 · Y does not

reveal anything (unless n = 1, but we usually have more than one data point).
Also, if Y is known by Alice and no other party, Alice cannot learn data from
another party.

Hence Alice will get XT X and XT Y . She can compute β by inverting XT X
and multiplying with XT Y . In the last step of the protocol, Alice broadcasts β

to all parties.
We now introduce a protocol that distributes β in shares to at least two

parties. This protocol works as before except that now.

1. All parties will engage in the protocol for calculating XT X and the output
will go to Alice.

2. All parties and the party holding Y (say Yuri) will compute XT Y and the
output will go to a party different than Alice. The easiest is for XT Y to go
to Yuri.

3. Alice and Yuri will multiply the matrix A = (XT X)−1 and the vector B =
XT Y to obtain shares.

Step 1 and Step 2 are essentially as before. Step 3 can be archived again by using
the scalar product protocol [4] that splits into shares.

AB =

0

B

B

B

@

(a1
1, · · · , a1

m)T
· B

(a2
1, · · · , a2

m)T
· B

...

(am
1 , · · · , am

m)T
· B

1

C

C

C

A

=

0

B

B

B

@

V 1
a1b

+ V 2
a1b

V 1
a2b

+ V 2
a2b

...
V 1

amb + V 2
amb

1

C

C

C

A

=

0

B

B

B

@

V 1
a1b

V 1
a2b

...
V 1

amb

1

C

C

C

A

+

0

B

B

B

@

V 2
a1b

V 2
a2b

...
V 2

amb

1

C

C

C

A

(4)

In this way, the output β will be shared between two parties. If the fact that
XT X is known to Alice is of some concern [10], a variant of the protocol where
XT X is discovered in distributed shares can be obtained if Alice and Bob skip the
last matrix transmission in the protocol from the previous subsection. That is,
Bob does not send his sum matrix to Alice. Thus, Alice will hold A−R and Bob
will hold B + C + R, which will serve as shares for the output. Similarly, rather
than Yuri holding XT Y , the computation of the sum by passing a vector and
accumulating can be halted before the last transmission. Then (XT X)1XT Y =
(A1 + B1)

−1(Z1 + Z2) = (A1 + B1)
−1Z1 + (A1 + B1)

−1Z2. Multiplication and
inversion of a matrix sum can be performed with dedicated protocols [3].

6 Model diagnosis

As we mentioned earlier, the calculation of β is an important step in regression,
but it is only the first step. The other steps include diagnostics and model selec-
tion. Statistics reflecting the goodness of fit of a model include the correlation

coefficient R2 and the adjusted R2. The residuals play an essential role in diag-
nostics. Once β is available, we can calculate the fitted or predicted responses
as Ŷ = Xβ. The column vector of residues is ε̂ = Y − Ŷ and the residual for
the i − th data point is ε̂i = yi − ŷi. Then

R2 = 1 −

∑n

i=1(yi − ŷi)
2

∑n

i=1(yi − ȳi)2
. (5)

For simplicity, we will assume that only 3 parties are involved. For more parties,
we only need to extend the calculation of a sum of vectors among more parties
by passing around an accumulator vector. If β has been calculated to make it
available to all parties (the version without shares), then the data matrix X has
columns owned by each party and

Xβ =

0

B

B

B

@

a1 b1 c1

a2 b2 c2

...
an bn cn

1

C

C

C

A

·

0

@

β1

β2

β3

1

A =

0

B

B

B

@

a1β1

a2β1

...
anβ1

1

C

C

C

A

+

0

B

B

B

@

b1β2

b2β2

...
bnβ2

1

C

C

C

A

+

0

B

B

B

@

c1β3

c2β3

...
cnβ3

1

C

C

C

A

. (6)

Again, this is a sum of vectors each known by one party and can be computed
by summing and passing an accumulator initiated with random values by the
first party.

When β is not publicly available, that is β is distributed by shares (Equa-
tion (4)), then privacy-preserving calculation is more challenging. Here we have

Xβ =

0

B

B

B

@

a1 b1 c1

a2 b2 c2

...
an bn cn

1

C

C

C

A

·

0

@

β1

β2

β3

1

A =

0

B

B

B

@

a1 b1 c1

a2 b2 c2

...
an b3 c3

1

C

C

C

A

·

2

6

4

0

B

@

V 1
p1β

V 1
p2β

V 1
p3β

1

C

A
+

0

B

@

V 2
p1β

V 2
p2β

V 2
p3β

1

C

A

3

7

5

=

0

B

B

B

@

a1 b1 c1

a2 b2 c2

...
an bn cn

1

C

C

C

A

·

0

B

@

V 1
p1β

V 1
p2β

V 1
p3β

1

C

A
+

0

B

B

B

@

a1 b1 c1

a2 b2 c2

...
an bn cn

1

C

C

C

A

·

0

B

@

V 2
p1β

V 2
p2β

V 2
p3β

1

C

A
. (7)

Hence, we need a protocol for securely computing XV 1

pβ and XV 2

pβ where X

is the vertically partitioned matrix and V 1

pβ is a vector belonging to one of

the parties, in our case we can assume it is Alice. The XV 2

pβ belongs to Yuri,
which may or may not have any values in X . If we can calculate the scalar
product when one vector is vertically partitioned and the other one has all its
entries known to one party, the computation of Xβ will again reduce to a sum
of vectors distributed among the parties.

We are unaware of such protocol in the literature, so we propose here a
solution based on scalar product protocol [4] that provides an answer in shares.

Protocol for computing pT ·y, where p = (p1, . . . , pm), each entry pi is known
to the i-th party and the vector y is know to the first party 5.

5 The case where the owner of y is not an owner of an entry pi can be handled by this
same protocol, but has even more relaxed privacy settings.

1. The commodity server generates two random vectors 6 Ψ and Π of size m,
and lets ra + rb = ΨT ·Π, where ra (or rb) is a randomly generated number.
Then the server sends (Ψ , ra) to the first party (lets call it Alice). It send rb

to the second party (say Bob). It also sends Π i to the i-th party.
2. Alice computes a perturbed version ŷ = y + Ψ of its vector and sends the

i-th entry to the i-th party. Each party computes piŷi = piyi + piΨ i. That
is, the i-th party gets pi(yi + Ψ i).

3. Each of the parties perturbs its value with the random number provided by
the commodity server p̂i = pi +Πi and sends it to Alice. Thus, Alice obtains
the vector p + Π.

4. The parties engage in a circular accumulator sum, by which the first party
passes p1y1 +p1Ψ1 to the m-th party. The i-th party adds piyi +piΨ i to the
sum and passes it to the (i − 1)-th party until the second party (Bob) has
pT · y + pT · Ψ .

5. Bob generates a random number V2, and computes pT · ŷ + (rb − V2). He
sends this result to Alice.

6. Alice adds ra − ΨT · (p + Π) to the value from Bob and calls it V1. This is
V1 = ra − ΨT · (p + Π) + pT · ŷ + (rb − V2) = ra + rb − ΨT · Π − ΨT · p +
pT · (y + Ψ) − V2 = pT · y − V2.

This protocol produces distributed shares V1 for Alice and V2 for Bob. The shares
appear random to each but V1 + V2 = pT · y.

Thus, using this later scalar product protocol for the scalar product calcula-
tions in Equation (7), then every party will get its shares and

Ŷ = Xβ =

0

B

@

a1 b1 c1

...
an bn cn

1

C

A
·

0

@

β1

β2

β3

1

A =

0

B

@

V 1
1

...
V 1

n

1

C

A
+

0

B

@

V 2
1

...
V 2

n

1

C

A
+

0

B

@

V 3
1

...
V 3

n

1

C

A
+

0

B

@

V 4
1

...
V 4

n

1

C

A
. (8)

It is clear now that using a secure accumulator sum protocol we can obtain the
column vector of residues ε̂ = Y − Ŷ . Using this, the coefficient R2 can also be
computed by the parties without none revealing their data.

7 Conclusion

We have presented practical algorithms for performing privacy preserving regres-
sion in the more sensitive case, namely, where the response variable is private.
Naturally, our methods apply as well when the response variable is public. More-
over, we have resolved both, the case where we have two parties and the general
case of more than two parties. Most importantly, we have addressed the second
phase of the regression task, the model valuation phase. This last point is very
important, as a poor model fit may indicate the need to repeat the first phase.
Preserving privacy while performing both phases several times is crucial for the
overall success of the regression task. If there were information leaks in either
phase, iteration of the phases would increase the lack of privacy.

6 All entries are random numbers.

Privacy has a cost trade-off. Our algorithms are efficient because they offer
only a constant overhead and are linear in the number of parties. The secure
scalar product performs 4n computations rather than n for two vectors of di-
mension n. All our protocols are based on the same number of scalar product
operations and occasionally an accumulator sum. This results in an overall com-
plexity of O(4mC(n)) where C(n) is the complexity on a consolidated database.

References

1. A. Amirbekyan and V. Estivill-Castro. The privacy of k-nn retrieval for horizontal
partitioned data — new methods and applications. ADC-2007, vol 63 of CRPIT,
33–42, Ballarat, Australia, CORE.

2. W. Du and M.J. Atallah. Privacy-preserving cooperative statistical analysis. 17th

ACSAC-2001, 102–110, New Orleans, 10-14 ACM SIGSAC, IEEE Computer Soc.

3. W. Du, Y.-S. Han, and S. Chen. Privacy-preserving multivariate statistical anal-
ysis: Linear regression and classification. 2004 SIAM ICDM, Lak Buena Vista,
Florida.

4. W. Du and Z. Zhan. Building decision tree classifier on private data. 1–8, 2002.
IEEE ICDM Workshop Proceedings, Vol 14 CRPIT.

5. V. Estivill-Castro and A. Hajasien. Fast private association rule mining by a
protocol securely sharing distributed data. ISI-2007, New Brunswick, New Jersey,
IEEE Computer Soc. to appear.

6. O. Goldreich. The Foundations of Cryptography, vol 2, chapter General Crypto-
graphic Protocols. Cambridge U. 2004.

7. M. Kantarcioğlu and C. Clifton. Privatly computing a distributed k-nn classifier.
8-th PKDD, vol 3202, 279–290. Springer LNCS, 2004.

8. A. F. Karr, X. Lin, A. P. Sanil, and J.P. Reiter. Regression on distributed databases
via secure multi-party computation. DG.O, 405–406, 2004.

9. A. F. Karr, X. Lin, A. P. Sanil, and J.P. Reiter. Secure regression on distributed
databases. J. Computational and Graphical Studies, 14(2):1–18, 2005.

10. A. F. Karr, X. Lin, A. P. Sanil, and J.P. Reiter. Secure statistical analysis of
distributed databases. Statistical Methods in Counterterrorism, 237–261. Springer,
2006.

11. J. Mena. Investigative Data Mining for Security and Criminal Detection.
Butterworth-Heinemann, US, 2003.

12. A. P. Sanil, A. F. Karr, X. Lin, and J.P. Reiter. Privacy preserving regression
modelling via distributed computation. , KDD, 677–682, Seattle, 2004. ACM.

13. M. Shaneck, Y. Kim, and V. Kumar. Privacy preserving nearest neighbor search.
2006 IEEE Int. Workshop on Privacy Aspects of Data Mining.

14. J. Vaidya and C. Clifton. Privacy-preserving outlier detection. 4th IEEE ICDM

2004, Brighton, UK, IEEE Computer Soc..

15. J. Vaidya, C. Clifton, and M. Zhu. Privacy Preserving Data Mining, vol 19 of
Advances in Information Security. Springer, New York, 2006.

16. A.C. Yao. Protocols for secure computation. IEEE Symposium FOCS , 160–164.
IEEE Computer Soc., 1982.

Appendix for Interested Referees

Three models have been proposed for assessing the privacy of protocols in
privacy-preserving data mining. The most common model is the semi-honest

model, while less common are the malicious model and the weak model. The
weak model was used for many algorithms involving matrix operations and in
particular, linear regression [3,15]. In this model, security is regarded with re-
spect to certainty. Therefore, one party is considered to not have bridged the
security as long as there are an infinite number of possibilities for the values of
the other parties. This model has been criticized, and in many cases rejected,
because it can consider secure a protocol where one party learns significant in-
formation about another party’s data. For example, Alice could learn that Bob’s
b1 value is in a small range. While there are an infinite number of rationals (or
reals) in this interval, this could provide enough precision for it to be considered
a security leak. Learning or discovering an interval is discovering a distribution
of the value. If the distribution has very small variance, although a large range,
the security leak could be serious.

The malicious models expects both parties to behave as destructively as
possible in attempting to discover data from one another. Thus, parties may
supply false data, and interrupt the protocol. This model has been relegated to
extreme cases, where the parties are not interested in the final result. Parties
are not collaborating, but are attempting to infiltrate and perhaps damage each
other. Thus, the semi-honest model has prevailed as the most common model.
The formal definition of the semi-honest model is rather technical as it is the
mechanisms to prove security of protocols. However, we show that demonstrating
that a protocol is secure in the spirit of this protocol is not beyond a clear and
transparent argument. One has to demonstrate that each party does not learn
anything about another party’s data except what can be learned from its own
data and the result. All messages received appear as random values (as if they
were generated by an oracle [6]), and thus, the party could complete the protocol
correctly in polynomial time even if the messages were substituted by the random
values provided by the oracle. We are to assume that all parties will behave in
this way, and will follow and complete the protocol with genuine interest in the
results, therefore, not supplying false data that would make the result invalid.

While some protocols for vector and matrix operations have been dismissed
as only secure on the weak-model and not in the semi-honest model, we believe
one cannot discard the merit of these protocols, specially if they are regarded
as not secure in the semi-honest model by a technicality. Case in point is the
protocol for scalar product that provides the output in shares [4]. This protocol
is regarded as secure in the weak-model sense because it requires a commodity
server. We argue here that the commodity server does not contradict the spirit of
the semi-honest model. We can consider the commodity server as a third party
in the protocol, with empty input and empty output. The three parties, then
would be interested in computing f(x, y, λ) = sA + sB, where the input λ of
the third party (the commodity server) is empty and will not affect the output
value sA + sb discovered by Alice and Bob with respected private shares. As

long as the third party does not discover anything about Alice input x, Bob’s
input yr, Alice share sA and Bob’s share sB, then the protocol is secure in the
spirit of the semi-honest model. In fact, many times a protocol in the semi-honest
model among more than two parties requires a sub-protocol in which two parties
compute a value with the assistance of a third.

In what follows, we reproduce here the scalar product protocol from Du
and Zhan [4] and show that neither party (including the commodity server)
learns anything beyond its own input and what can be inferred from the result.
Therefore, this protocol is secure in a sense stronger than the weak model and
is secure in the spirit of the semi-honest model.

Protocol for computing xT · y, where x is known to Alice, and the vector y

is know to Bob. The output is V1 + V2 = xT · y so that V1 is know to Alice and
only Alice, while V2 is known to Bob and only Bob. That is, they compute the
dot product of two vectors in shares.

1. The commodity server generates two random vectors Ψ and Π of size n,
and lets ra + rb = ΨT ·Π, where ra (or rb) is a randomly generated number.
Then the server sends (Ψ , ra) to the first party (Alice). It send (Π, rb) to
the second party (Bob).

2. Alice computes a perturbed version x̂ = x + Ψ of its vector and sends x̂ to
Bob.

3. Bob also perturbs its vector with the random vector provided by the com-
modity server ŷ = y + Π and sends it to Alice. Thus, Alice obtains the
vector y + Π.

4. Bob generates a random number V2, and computes yT · x̂ + (rb − V2). He
sends this result to Alice.

5. Alice adds ra −ΨT · (y + Π) to the value received from Bob and calls it V1.
This is V1 = ra − ΨT · (y + Π) + yT · x̂ + (rb − V2) = ra + rb − ΨT · Π −

ΨT · y + yT · (x + Ψ) − V2 = yT · x − V2.

Let us remark first that the above description enables to show that knowledge
of n − 1 entries on Bob’s vector y by Alice is insufficient for Alice to learn the
remaining entry. There will be still two unknowns (V2 being one) in the equation
V1 + V2 = xT · y for Alice. Thus, the division protocol in Sec. 4 is secure.

The second point correspond to the fact that Bob, Alice and the commodity
server do not learn anything about each other’s data. Clearly the commodity
server does not learn anything since it never receives any messages. Bob receives
a perturbed vector from Alice, with all entries appearing random. Symmetrically,
Alice receives Bob’s vector completely masked by random values and thus these
also appear as totally random values 7. Bob generates its own random V2 and will
not receive anything else from Alice; therefore he cannot learn anything about
Alice’s data. Although Alice receives the additional value yT · x̂+(rb −V2) from
Bob, yT · x̂ + rb is totally masked by the random value V2. Alice cannot learn
anything either.

7 In practice, these values could range over a very large field F , and display a uniform
distribution on such field; making impossible to either party even to learn their
magnitude.

	Privacy Preserving Regression Algorithms
	 Artak Amirbekyan, Vladimir Estivill-Castro

