
IEEE MULTIDISCIPLINARY ENGINEERING EDUCATION MAGAZINE, VOL. 2, NO. 2, JUNE 2007

1558-7908 © 2007 IEEE Education Society Student Activities Committee (EdSocSAC)
http://www.ieee.org/edsocsac

55


Abstract— This paper describes an extension of the Generic

Automated Marking Environment (GAME-2) and provides an
analysis of its performance in assessing student programming
projects. GAME-2 has been designed to automatically assess
programming exercises written in C, C++ and JAVA languages
based on a number of factors including meaningful comments, the
structure of functions and the detection and correction of
compile-time errors. The assessment is marked based on these
metrics using heuristic and fuzzy rules. In this research, GAME-2
has been tested on a number of student programming exercises
and assignments. The system has attained encouraging results as
compared to a human marker.

Index Terms—Area measurement, Fuzzy logic, Human factors,
Programming languages.

I. INTRODUCTION

he development of automatic assessment systems has
become important with applications in a number of areas
over the last few decades. In particular, interest has grown

in the development of tools for automatic assessment of
computing programs. These tools can be used in the field of
education, proving to be useful for instructors in assisting
students based on their capabilities and providing useful
feedback according to their skills [1].

The A significant aim of automatic marking systems is to
perform the grading of assignments as close as possible to a
human marker. Although some limited systems currently exist,
there is still much research that must be undertaken to develop
an accurate marker for computer programs written in a variety
of languages. However the difficulties in determining a clear
marking methodology and also understanding the comments
contained in a program remains a major challenge for
researchers [2].

Since Fuzzy logic enables the automated marking of
programming assessments to be performed with the sort of
decisions, which a human marker would undertake it. What is

The authors are with the School of Information and Communication
Technology, Griffith University – Gold Coast, Australia
(Roozbeh.Matloobi@student.griffith.edu.au,
m.blumenstein@griffith.edu.au , S.Green@griffith.edu.au).

Publisher Identification Number 1558-7908-IMCL2007-06

more impressive is that fuzzy logic offers a way of processing
these decisions so that a final result is still correct [3].

In the next section, some existing systems that have been
designed for automatic assessment are reviewed. The
description of GAME-2 and its functionality is reported in
section III. Section IV provides some experiences in evaluating
GAME-2 and in section V, results and experiments are shown.
Finally, in section VI, conclusions and future work are
presented.

II. CURRENT AUTOMATED MARKING SYSYTEMS

There are numbers of automated systems, which have been
developed [2]-[9]. Reek [4] proposed a program called TRY,
which took a student’s PASCAL source file, compiled it, and
ran it on a predefined set of input files. Their system did not take
into account style or design issues. Jackson and Usher [2]
planned a system called ASSYST that tests the accuracy of an
ADA program by analyzing its output and comparing it to a
correct specification using in-built tools of the UNIX operation
system. PRAM [5] is a Prolog Automatic Marking system,
whereby the main objective is to mark students’ Prolog
programs. A final mark covering style, complexity and
correctness of programs is presented to the student by PRAM
along with some comments on the code. Saikkonen [6]
proposed a system called Scheme-robo for assessing
programming exercises written in the functional programming
language Scheme. The system assesses individual procedures
instead of complete programs.

 Ghosh et al. [7] developed a fully automated system for
marking and plagiarism detection of programs written in the C
language. The system compiles and executes each student
program and performs a simple comparison between the
program’s output and a model output file. Automatic control
educational software (ACES) proposed in [8], presents an
interactive software platform. ACES automatically grades
assessment items and produces a mark in the range according to
the grade of correctness of a student’s answer, by using a fuzzy
grading technique. Finally, GAME [9] has been designed to
automatically assess programming assignments written in a
variety of languages based on the structure of the source code
and the correctness of the program’s output. The system is able
to mark programs written in Java, C++ and the C
language.cc
c

An Enhanced Generic Automated Marking
Environment: GAME-2

Roozbeh Matloobi, Michael Blumenstein, Steve Green

T

IEEE MULTIDISCIPLINARY ENGINEERING EDUCATION MAGAZINE, VOL. 2, NO. 2, JUNE 2007

1558-7908 © 2007 IEEE Education Society Student Activities Committee (EdSocSAC)
http://www.ieee.org/edsocsac

56

Fig. 1. Overview of GAME-2

A. Problems of Previous Systems

One of the main limitations of most automated marking
systems is that they can only mark one type of programming
language. However, GAME was designed with the intention
that it could mark a wide variety of programming languages, by
looking at what was common to all programming assessments.
The previous version of GAME was able to assess C, C++ and
Java, but there were still some deficiencies in the marking
methodology, which affected its accuracy, including the
problem of dealing with errors in programs.

ACES grades the answers of students’ exercises and produces
a mark based on fuzzy grading principles, whereby an overall
grade is produced. If the answer is correct, the student receives
full credit. With any other answers that are incorrect, it gives a
partial credit based on the closeness of the correct answer [8].
ACES provides fuzzy sets with triangular membership functions
and grading principles applied [10]. Although ACES
demonstrates good results in marking HTML code, and some
programs written in Visual C++, the ACES platform is unable to
mark programs written in Java and other object-oriented (O-O)
programming languages and thus is not generic.

III. SYSTEM DESIGN OF GAME-2

GAME-2 was based on the previous version for marking
Java, C, and C++ assignments (GAME) [9] and was developed
in SDK 1.5. It was designed to overcome the limitations of the
C-Marker system, and other existing systems. A summary of
GAME-2 is presented in Fig. 1. A major aim of automatic
marking is to be able to mark assignments as close as possible to
a human.

A. GAME-2 Functionality

Based on previous results obtained from the GAME system
[9], it was evident that the next version of GAME needed to
address the following points: 1) The analysis of meaningful
comments, 2) The ability to accurately examine the structure of
students’ source code and 3) Amendment of simple compile
errors in the code. In an earlier version of GAME, the three
requirements mentioned above were pointed out as important
aspects of future work. In following sections, a detailed
description of GAME-2.s functionality is presented including a
discussion of the components addressing the above deficiencies.
Ooo
ppp
B. Description of the Fuzzy Grading Component

Computer logic is exact, deterministic, relates to finite states
and numbering systems. Computer logic marks distinct
boundaries between any states. Whereas, fuzzy logic enables a
computer to make decisions, which are more in line with the sort
of decisions made by humans. In this research, a fuzzy grading
system is applied and is composed of a single fuzzy unit. The
inputs to the fuzzy unit are the comments and function/method
structures in source code. The meaning of comments and
algorithms contained in functions/methods are two
measurements for detecting limitations and/or correctness in a
program. Depending on the stage of the marking process, a
fuzzy decision can be made to find an appropriate mark [10].

C. Meaningful Comments

A large aspect of writing maintainable code is to provide
meaningful commenting. Source code headers, function pre and
post conditions, and in line comments provide valuable
documentation for understanding the source code. A human
marker considers the quality of comments as part of their
marking criteria. The question that may be asked is, which
criteria need to be considered to identify useful comments?
GAME-2 processes a comment in two ways, by identifying and
dealing with Meaningful and Artificial comments. An Artificial
comment is identified as such when more than one quarter of the
comment’s words are a member of .A. (as defined below),
which is considered as code that has been commented out, and
fuzzy logic is used to assign zero marks for this type of
comment.

IF (more than one quarter of words present
in a comment is a member of A) THEN (assign
zero marks) (1)
Where A= {; { } [] =:= ==! = .if. .else.
.import. .while. . do. switch. .for. .white
space.}

Meaningful comment words are comprised of alphabetic
word. There are two kinds of Meaningful comments: Block and
Inline Comments. A block comment is usually located prior to
the header of the function/method and inline comments are
located inside of the function/method body.

Each Meaningful comment is marked according to simple
mathematical calculations. The value for block comments is
considered as 10% of the total mark (5% of the whole mark is
assigned to inline comments) [11]. Each function/method
should have a block comment as a header to explain the function
operation. So the number of block comments might be equal to
the function/method number. As a result, the value for each
block comment is [10% / number of functions]. Processing
meaningful comments is applied by the following metrics. At
present the GAME-2 system performs two operations with
respect to meaningful comments: 1) comment words are
analyzed in terms of the number of nouns and preposition
articles present and 2) an evaluation of the number of comment
words that are conjunctions. The result is evaluated using
simple fuzzy rules. A particular advantage of using fuzzy rules
for this operation is that, it will be possible to extend this

Algorithm Analyzing

Compiling and
Execution

Meaningful Comment

Web
Browser

 Results

Assessments
CGI

Algorithm
Analysing

Compiling and
Execution

Meaningful
comments

Web
Browser

IEEE MULTIDISCIPLINARY ENGINEERING EDUCATION MAGAZINE, VOL. 2, NO. 2, JUNE 2007

1558-7908 © 2007 IEEE Education Society Student Activities Committee (EdSocSAC)
http://www.ieee.org/edsocsac

57

component with relative ease in future versions of the system by
adding additional rules.

MeaningfulProportion=
(NumberOfNounArticles/NOW),
(NumberOfConjuctionWords/NOW) (2)

The number of words in each comment (NOW) was
calculated by counting the number of nouns, prepositions and
conjunction articles. The "NumberOfNounArticles" was
obtained by determining the number of noun and preposition
articles. Finally, "NumberOfConjuctionWords" is considered
by the number of conjunction articles present. A human marker
was consulted to determine a reasonable fuzzy grading schema
that would assess a suitable commenting percentage as required
in a source code file. The most important component for the
human marker was the number of noun and preposition words
used in the comment and the conjunction words were the other
important factor to define meaningful comments. Fuzzy rules
were set based on these tests; one third of the marks were
allocated by analyzing the number of words, half of the marks
were allocated by the number of words composed of nouns and
preposition articles and one sixth was allocated by the
conjunction words. The exact shape of the fuzzy membership
function employed (e.g., bell-shaped) and the corresponding
span of the fuzzy membership function are obtained through
experimentation on different types of student assignments.
Then, GAME-2 grades the comments and produces a partial
mark instead of giving full credit for correct answers and zero
credit for wrong answers, a fuzzy grading system was used as
detailed in Appendix A.

IF (each word in a comment is not a member
of set A and each character is not alphabetic)
THEN (marks are allocated based on the

function detailed in Appendix A). (3)

D. Algorithm analysis

Good algorithm design [9] is another important area that
students need to learn in order to produce high-quality software
and for making it accessible to succeeding programmers. To
examine the quality of an algorithm (specifically when a
program dose not compile), GAME-2 currently looks at the
"main" aspects present in the student’s source file manifested in
a given assignment. These points are program complexity,
which includes the number of iteration statements, selection
statements as well as the number of data structures (i.e. arrays),
assignment statements, inline comments and other important
aspects of algorithm structure. So, the accuracy of an
algorithm’s structure is based on:

AlgorithmAccuracy = (NumOfIterations,
NumOfConditions,NumOfAssignments,
NumOfInlineComments,NumOfArrays). (4)

The fuzzy AlgorithmAccuracy is analysed by
calculating the ratio of the number of items obtained, to the

number of items from a model algorithm set by the instructor.
To assign AlgorithmAccuracy marks, the result obtained
from the human marker were analyzed to create realistic fuzzy
rules that would be instructive to mark the function/method
algorithms. For example, the algorithm of a search function is
compared to the model of an instructor’s algorithm.
Consequently, if the number of iteration and condition
statements is two, GAME-2 gives full mark for this part if there
is a match with the model solution. Otherwise, a partial mark is
allocated by the system. Therefore, GAME-2 gives a partial
mark (2.5 out of 3), if a search function has 2 iteration
statements and 1 condition statement, as is shown in Fig. 2.
Moreover, the number of assignment statements and arrays is 4
providing full marks for this part. For other situations,
depending on the number of arrays and assignments, partial
marks are allocated. However, the mark is full (1 out of 1) in the
current case.

E. Assessing non-compiling Assignments written in Different
Languages

One of the main negative aspects of the previous version of
the GAME system [9] was that it could not analyse
programming projects containing compile errors. So, one of the
new features of the GAME-2 system was to enable marking of
programming assignments containing compile errors and the
correction of limited errors rather than providing the student
with a mark of .zero.. The GAME-2 system is currently able to
mark programming projects with compile errors and can give
partial marks for the source files. This was achieved by
representing all student source files as a "Compile object". The
Compile object employs a simple method to identify such
anomalies as missing semicolons (“;”) and parentheses in
programming assignments. After recognizing the errors in a
program, GAME-2 is able to amend the limited errors, which
have been detected (currently less than 4 are acceptable) and
save the compiled program in a new file for further processing.

F. The GAME-2 GUIs

The GAME-2 GUI provides a simple interface to enable the
user to mark programming assessment. In order to operate the
system, the user is first required to select a student assignment in
the root directory containing all student folders and their
programming assessment. Once the student assignment has been
entered, the user may then press the Mark Button. When the
student’s program has been marked, a summary of the students’
source code details is displayed as a graphical document within
the system’s main window. The summary includes a
function/method analysis and a percentage indicating
meaningful comments (See Fig. 2).

IEEE MULTIDISCIPLINARY ENGINEERING EDUCATION MAGAZINE, VOL. 2, NO. 2, JUNE 2007

1558-7908 © 2007 IEEE Education Society Student Activities Committee (EdSocSAC)
http://www.ieee.org/edsocsac

58

Fig. 2. GAME-2 GUI

The program output displays a total mark for meaningful
comments explained in sub-section III.C and function/method
analysis described in sub-section III.D based on fuzzy rules.
When the marking component is completed, the user may then
click on the .Error Detection button. If there are some limited
and simple errors, the Amending source file button will correct
the errors and save the amended source code in a separate file.

IV. EXPERIMENTS

A number of experiments were carried out on real-world data
to examine the capability of GAME-2. Three different types of
programming assessments were marked and the results
produced by GAME-2 were compared to a human marker and
the previous version of GAME. The three different types of
programming assessments were written in Java, C++ and C. All
assessments were marked based on the meaning of comments,
source code (algorithm) analysis and correction of compile
errors.

A. Object Oriented (o-o) Programming Evaluation

The first type of assessment item evaluated was set in O-O
courses at the current institution involving a simple
programming structure. The experiments were conducted with
12 Java files and 13 C++ students’ projects. The assessment
types were obtained from first and second year programming
courses. This assessment involved only a small amount of
coding using single source files. In performing source code
(algorithm) analysis, GAME-2 performed reasonably well, with
eighty-four percent (84%) agreement with the human marker.
However, the original GAME could not analyze the algorithm
in the source code, hence could not be used for comparison. In
the meaningful comment component of the marking criteria, the
GAME-2 system performance compared well to the human

marker with (76%) similarity. On the other hand, the previous
version of GAME simply identified a comment or
non-comment and could not provide a result in a meaningful
way.

B. Assignments of C programming

The second major experiment devised to test GAME-2 C.
involved assignments from a first year C programming course.
Twenty-five student assessments of IT Masters students were
selected for marking by GAME-2. The assignments involved
not only arrays but also linked list structures. The results
obtained were similar to that of the O-O assignments in both
meaningful comments and algorithm analysis. In the case of
meaningful comments, the human marker agreed with GAME- 2
in 78% of the cases and for algorithm analysis in 88% of cases.

C. Compiling and Amending Errors

All the student assignments including the O-O and C course
assessments were examined by GAME-2 for correctness in
terms of detecting and amending limited compilation errors.
This component was mainly used to modify missing
semicolons, parentheses and comment symbols. The results
obtained from GAME-2 show that the system can detect and
add the missing elements in a separate file without any errors.
However, the previous version of GAME could not correct
these compilation errors.

V. DISCUSSION

A. Object Orient Programming

GAME-2 disagreed with the human marker in four out of
twenty five (16%) of the time in terms of algorithm analysis.
The main reason for the disagreements is that GAME-2 is only
able to assess limited types of functions in student assignments.
However, there is no limited ability with a human marker.
Hence, there are some functions, which are not assessed by
GAME-2. So, the human marker gives partial or full marks
based on the algorithms present, but GAME-2 gives a mark of
zero.

The largest discrepancy for analysing comments was
obtained for the marking of parameter explanations. Four out of
twenty-five assessments showed that the human marker
disagreed with GAME-2 in terms of the explanation of
parameters in comments. The main reason is that the GAME-2
system could not identify that the comments were describing the
function parameters. Therefore, GAME-2 provided full or
partial marks in this situation based on what it thought were
meaningful comments. However, the human marker gave lower
marks because the comment was not an exact explanation of the
parameters.

B. Assignments of C programming

The largest percentage of disagreement for marking C
assignments was for the commenting mark, where the human
marker differed from GAME-2 in 22% of assessments. The
human marker in 72% of the disagreements gave fewer marks
than the GAME-2 system. The main reason is that GAME-2
could not tell if the comment was related to the function. In

IEEE MULTIDISCIPLINARY ENGINEERING EDUCATION MAGAZINE, VOL. 2, NO. 2, JUNE 2007

1558-7908 © 2007 IEEE Education Society Student Activities Committee (EdSocSAC)
http://www.ieee.org/edsocsac

59

these cases the comments were meaningful but the explanation
was different to the function/method’s purpose. So, after
GAME-2 recognized that the comment was meaningful, it
provided corresponding marks. However, the human marker
provided lower marks because the comment was not describing
the function/method operation.

The next component of the structure mark was the
programming (algorithm) analysis. In this section, the human
marker disagreed with the GAME-2 system 12% of the time.
The main reason that the human marker provided higher marks
on these occasions was that the human marker examined the
algorithm according to the function operation. However,
GAME-2 could only identify function operation based on its
name. In two assignments, the function name was not related to
the function operation. Hence, GAME provided lower marks as
compared to the human marker.

VI. CONCLUSIONS AND FUTURE WORK

An enhanced version of the Generic Automated Marking
Environment (GAME-2) for marking programming assessment
in university level courses has been designed and investigated.
The generic and fuzzy nature of the system makes it a powerful
tool for marking different assessment items of varying criteria
and languages. The results obtained for a variety of assessments
and programming languages, comparing GAME-2’s
performance to a human marker and the previous version of
GAME, are very encouraging. In the future, there are many
areas to examine in order to reduce the discrepancy between the
human marker and GAME-2. Firstly, a more appropriate metric
for modifying errors in source code will be used. Secondly, to
improve GAME-2’s ability to mark the meaning of variables, a
schema will be considered which more accurately captures the
meaning. Thirdly, a greater number of metrics for algorithm
analysis will be investigated to provide adequate feedback to
students in order to enhance their programming skills.

APPENDIX A

This appendix explains, by example, how fuzzy grading
principles have been applied in meaningful comments. If the
number of functions in the project is two, the fuzzy membership
function is applied [10] in the following manner. In terms of the
number of words, full (10/3) marks is applied when the number
of words is in the range of 15 to 20; whereas, a student receives
partial marks (50%) in the range of 7 and for less than 2 and
more than 30 words a student receives no marks. In the noun and
preposition articles component, if the number of nouns and
prepositions in a comment makes up 18 to 22% of all words, it
was allocated a full mark (10/4). Otherwise, a student receives a
partial (50%) mark in the case where 14 to 31% of comment
words are noun and preposition articles. For less than 10 and
more than 40% of noun and preposition articles out of total
number of words, the mark will be
zero.lyyy
yy
yyyyyynnn
nnn
pplllllll

lllcccccccccccc
cccccccccccccccccccccccccccccccccccccccj
cff
ff

If the comment includes 15 to 20% of conjunction words, it
receives (10/12) of the full marks by the system and partial
(50%) marks (10/24) for the range of 10 to 28% and zero marks
for greater than 35% of the total number of comment words.
suggestions about the contents of this lecture note.

REFERENCES

[1] L. Malmi, R. Saikkonen, and A. Korhonen, Experiences in Automatic
Assessment on Mass Courses and Issues for Designing Virtual Courses,
Proceedings of The 7th Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE, Aarhus Denmark,
2002.

[2] D. Jackson and M. Usher, Grading student programs using ASSYST,
Proceedings of 28th ACM SIGCSE Tech. Symposium on Computer
Science Education, San Jose, California, USA, 1997, pp. 335-339.

[3] P, Hajek, What is mathematical fuzzy logic, Fuzzy Sets and Systems, Vol.
157, no. 5, 2006, pp. 597-603.

[4] K. A. Reek, The TRY system or how to avoid testing student programs,
Proceedings of SIGCSE, 1989, pp. 112-116.

[5] Z. F. Mansouri, C. A. Gibbon and A. C. Higgins, Prolog Automatic
Marker, Innovation and Technology in Computer Science Education,
ITiCSE, Dublin, Ireland, 1998, pp. 166-170.

[6] R. Saikkonen, L. Malmi and A. Korhonen, Fully automatic assessment of
programming exercises, Proceedings of The 6th Annual Conference on
Innovation and Technology in Computer Science Education, ITiCSE,
Canterbury United Kingdom, 2001, pp. 133-136.

Fuzzy mark
1

0.5

 0
 10 14 18 22 31 40 % of no word

Fig. 4. Fuzzy Marking for Noun and Preposition Articles

Fuzzy mark
1

0.5

0
 10 15 20 35% of no word

Fig. 5. Fuzzy Marking for Conjunction Articles

Fuzzy mark
1

0.5

0

1 7 15 20 25 30 no word
Fig. 3. Fuzzy Marking for Number of Words

IEEE MULTIDISCIPLINARY ENGINEERING EDUCATION MAGAZINE, VOL. 2, NO. 2, JUNE 2007

1558-7908 © 2007 IEEE Education Society Student Activities Committee (EdSocSAC)
http://www.ieee.org/edsocsac

60

[7] M. Ghosh, B. Verma and A. Nguyen, An Automatic Assessment Marking
and Plagiarism Detection, First International Conference on Information
Technology and Applications, ICITA, Bathurst, Australia, 2002.

[8] V. Petridis, S. Kazarlis and G. V. Kaburlasos, an Interactive Software
Platform for Self-Instruction and Self-Evaluation in Automatic Control
Systems, IEEE Trans. On Educ, vol. 46, No 1, 2003, pp. 102-110.

[9]]M. Blumenstein, S. Green, A. Nguyen and V. Muthukkumarasamy,
GAME: A Generic Automated Marking Environment for Programming
Assessment, International Conference on Information Technology:
Coding and Computing, ITCC, Las Vegas, USA, 2004, pp. 212-216.

ooo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oooooooooppp
ppppppppppppp

[10] J. R. Echauz and G. J. Vachtsevanos, Fuzzy grading system, IEEE Trans.
Educ., vol. 38, 1995, pp. 158.165.

[11] D. Jackson, A. Software system for Grading Student Computer
Programs, Computers Education, Great Britain, vol. 27, No. 3/4, 1996,
pp.171-180.

