
Correcting Stored RFID Data with
Non-Monotonic Reasoning

Peter Darcy 1, Bela Stantic 1, Roozbeh Derakhshan 2

1 Institute for Integrated and Intelligent Systems
Griffith University, Brisbane, Australia

2 ETH Zurich, Switzerland
{P.Darcy, B.Stantic}@griffith.edu.au, droozbeh@inf.ethz.ch

Abstract. Radio Frequency Identification (RFID) technology has been
held back from wide-scale commercial deployment for years due to the
high level of errors in data. Despite the process of filtering the data at
the edge (where RFID tags are being scanned), a significant portion of
incorrect data is still inserted into the database. This incorrect data can
cause inconsistency in database and can significantly influence a business
logic. The errors that cause these inconsistencies include duplicate read,
miss read and redundant read. While some work presented in the litera-
ture addressed the issue of cleaning RFID data, existing methods cannot
solve problems if there is more that one solution or the solutions are cou-
pled ambiguously. In this study, we present a Non-Monotonic Reasoning
method that utilises two techniques to clean the RFID data stored in the
database, in order to enhance its accuracy. Experimental results show,
that Non-Monotonic Reasoning can be efficiently used for cleaning RFID
data, and can also obtain a higher cleaning rate when compared with the
two traditional cleaning techniques alone.

1 Introduction

For the past few years, Radio Frequency Identification (RFID) technology has
been developed to the point of universal scale deployment. When analysing the
quality of a scan, it may be observed that there is a need for improvement of the
quality of recorded data. Researchers and industries have attempted to compen-
sate the inaccuracies for RFID reading by providing users with smoothing filters
for the RFID data before it is stored into the database and also, programming
languages to write rules in order to clean the data when needed. At the moment,
state of the art technology has not yet enabled the data to be transformed into
perfectly accurate form and, as a result, there is a need to seek out other ways
to enhance the performance of these methods used.

Several research studies such as [11] that use a deferred cleaning method have
been found to be concerned with devising an efficient algorithm for cleaning data
and thus focus more upon the time expenses and ease of use by an end user rather
than the accuracy, whereas others such as [8] have been found to relate more to
the use of probability to determine a high level set of data rather than low level

International Journal of Principles and Applications of Information Science and Technology
December 2007, Vol.1, No.1

raw data like the data used in this study. The majority of research discovered
as, for example, [1] and [7] cannot be considered comparable due to the fact
that they are concerned with filtering data at the edge rather than cleaning the
data at a later time after the data input has been made. Additionally, existing
methods for cleaning RFID data cannot cope with situations when more than
one solution exists or when solutions are ambiguous.

In this study, we presents two novel techniques which have been combined
with a Non-Monotonic Engine using Plausible Logic to find the correct course
of action to clean dirty sets of data. To this end we have devised two algorithms,
the Later Instance algorithm and the Item Hierarchy algorithm to demonstrate
how the results may be compared to a simulated version of other rules. The Later
Instance algorithm has been based on Missing Rule proposed in [11] whereas the
Item Hierarchy algorithm has resembled what we believe a data mining algo-
rithm would set out to accomplish in this work. After analysing the results, it has
been discovered that this approach has enhanced the cleaning when compared
with the utilisation of one of the techniques with no Non-Monotonic Reasoning.

The main contribution gained from this research includes the discovery that
Non-Monotonic Reasoning may be used to determine the correct course of action
when faced with ambiguity in cleaning.

2 Background

RFID is an efficient mechanism for tracking certain objects from destinations as
it allows items to be located in real time for a low cost with relative accuracy.
An RFID tag is comprised of a small chip, antenna and power source on more
expensive tags [4]. The purpose of these tags is to emit a unique identifier to be
picked up by a scanner. This provides a low cost solution (estimated at 5 cents
a tag) and a work load for several items to be gathered and counted as well as
tracked through destinations [4].

Industry, in particular the retail industry, may benefit in several ways by
using the RFID. First, if everything is automated with the use of RFID, there
is no reason to pay for a check-out operator swiping each item past a barcode
reader. Secondly, there will be a highly accurate depiction of stock actually held
when unforeseen circumstances become apparent. Also, the utilisation of RFID
will ensure an automated system running constantly to monitor stock levels and
will result in there being no longer instances where stock is hiding in a back
room when it should be displayed on the shelf. Furthermore, retailers may paint
a detailed picture of exactly where their stock is within the Supply Chain [5].
Due to these reasons, businesses may increase profits, reduce manual labor and
provide a faster service for customers. RFID Technologies, however, suffer from
different errors in data. Some of these include:

– Duplicate Reads: When a tag that is identical to another is entered into the
database

– Missed Reads: Where a tag has been omitted from the read for various
physical problems

66 International Journal of PAIST, Dec. 2007, Vol.1, No.1

– Redundant Reader: When two or more readers overlap the same space and
record the same observations

2.1 Non-Monotonic Reasoning

A way to address the uncertainty accompanied with RFID technology is to
develop a system that harnesses non-monotonic reasoning. This reasoning stems
from the exact reverse of conventional logic. In conventional logic, there is a
solution based on a set of information and assumptions. As more assumptions
are made, in order to comprehend these, more possible solutions are revised and
developed [6].

Plausible Logic The specific logic that will be applied in this study will be a
logic known as Plausible Logic (PL) [2]. PL refers to a logic that has been built
from the existing logic known as Defeasible Logic [10]. There are three different
attributes associated with Defeasible Logic:

– Strict Rules: Rules that are known facts
– Defeasible Rules: Rules that are usually correct
– Undercutting Defeaters: Anything that overrides the Defeasible Logic is

stated here.

Plausible Logic is built upon the concept of defeasible logic but, it is impor-
tant also to kept in mind that eventually this logic will be implemented on a
computer [2]. For an example of Plausible Logic, the following argument could
be considered: Birds usually fly. There is an exception to this rule as certain
birds such as quails do not fly. In this situation there is no clear superior answer
unless the information of what specie of bird is provided [3].

Fig. 1. A diagram logical map showing that birds usually fly however there is an
exception for certain species of birds.

There are several proof algorithms which may be used as a setting to deter-
mine the strength of the reasoning. The algorithms used to reason a situation’s
validity are explained in detail:

Peter Darcy et al. 67

– μ: Only correct information is used when proving the theory. Anything
against proving the item must be nulled out. There must be strict and plau-
sible rules that lead to the item. The item’s conjunction of its antecedents
must be proved.

– Π: Ambiguity is increased in this method. Specifically, the antecedent of a
statement is examined to prove the negative conjunction.

– β: As opposed to the Π algorithm, ambiguity is blocked from the decision.
Specifically, the proofs of the antecedent of a statement is examined to see
if it fails in a number of steps that will not get into an infinite loop.

– α: In this algorithm, both of the Π and β algorithms must be proven for
any proof to be returned.

– δ: In this algorithm, either Π or β algorithms must be proved to be correct
for any proof to be returned.

3 Existing Techniques

Currently RFID technologies deal with cleaning the data sets after the items are
stored in a database by developing a programming language for users to input
their own algorithms to clean up data. A typical algorithm for cleaning missed
reads has been shown in Algorithm 1 and Algorithm 2 [11]. As seen in Algorithm
2, an item “A” is only kept if two items including itself at one time was at the
same location in under 5 minutes.

Algorithm 1 Missing Rule - Case Near By
if A == Pallet AND (X != Pallet AND A.loc = X.loc AND A.Time - X.Time < 5
Minutes) OR (Y != Pallet AND A.loc = Y.loc AND Y.Time - A.Time < 5 Minutes)
then

A.casenearby = 1
end if
end

Algorithm 2 Missing Rule - Keeping A
if A != Pallet OR (A.casenearby = 0 AND B.casenearby = 1) then

KEEP A
end if
end

4 Cleaning RFID Data with Non-Monotonic Reasoning

Considering the examples of off-line cleaning techniques such as that for missing
data in Algorithms 1 and 2, it is reasonable to assume that there is a disadvantage

68 International Journal of PAIST, Dec. 2007, Vol.1, No.1

present for there is little tolerance when faced with ambiguous situations. To this
end, it has been sought out to determine if there is a method that may take all
known data, conduct an analysis and perform the correct course of action for
varying situations. In this work we present the use of the Plausible Logic engine
which uses Non-Monotonic principles to obtain the correct response to any given
situation.

4.1 Scenario

In a Supply Chain, Items I will be inserted into Cases, C. The Cases then will be
put on Pallets, P, and the Pallets will be loaded onto a Truck, T. It is important
to know the whereabouts of a particular item for the sake of informing customers
about the status of his/her order. In particular, is it important to present clean
data to the customer who may wish to view the status of his/her order online
and to eliminate any ambiguity that could be present when the locations are not
known at every point.

For above reasons, it is important to track the locations of the articles even if
they have already reached another destination. Usually, sensors will miss some of
Electronic Product Code (EPC) Tags which cause errors and possible ambiguity.
Cleaning algorithms along with non-monotonic reasoning need to be used to
enhance the integrity of the data.

4.2 The Process of the Scenario

In order to demonstrate the process by which Non-Monotonic Reasoning may
be used to clean up some ambiguity, the following scenario is proposed. A truck
filled with several RFID tagged items is travelling enroute towards a destination
and passes under several RFID readers along the way.

As shown in this example, there are several items which are shown at each
location. As each tag is read at the different locations, it may be assumed that
some tags will not be read due to various circumstances. An analysis will then
pass findings onto the Logical Engine to have a response returned which de-
termine the importance of the insertion of the data. Figure 2 presents how this
idea would be implemented and how the program would interact with its various
components.

4.3 Assumptions

There are a number of assumptions which need to be declared to follow through
with this scenario. The first assumption is that the hierarchy structure of the
Pallets, Cases and Items are known throughout the process. Next, the Pallets,
Cases and Items have to be assumed that they can go missing at anytime. Finally
it may be assumed that, if all the container’s subset Items/Cases are present,
then the container must also be found. This does not have to be physically true

Peter Darcy et al. 69

Fig. 2. A diagram demonstrating how the program will cope with a contradicting
situation. The Program first looks for inconsistent data then finds the correct course
of action to act upon this data and finally, usees a trigger to insert or delete the data.

as having all the subset Items/Cases present is sufficient reason to insert the con-
tainer as it should just be an empty shell housing it. Therefore, the reading of the
Pallet’s/Case’s tag is not as significant as the very presence of the Item’s/Case’s
tag. Further evidence would involve a Pallet/Case not falling off/being stolen
without the rest of its subset Cases/Items missing too. Additionally, it may be
assumed that if being stolen, the thief would not only take the tags, but rather
the whole package.

The assessments made in the experimentation coupled with the assumptions
listed above have been chosen to simulate the realistic nature of an RFID enabled
supply chain.

4.4 Contradictions within the Scenario

Within the chosen scenario, there are several instances when the Non-Monotonic
Reasoning Engine must be used. These instances are based on the finding of
subset relatives and the presence of later instances of the tag in question. For
example, if it is found that there are subset relatives on the level below which
are present, it may be assumed that the Tag should be inserted. However, if it
is found that not all the relatives are found under that subset Tag several levels
through the hierarchy, it should not be inserted. If there is a later instance of
this value, then it may be ascertained that this is correct despite the lack of
evidence of a complete subset and, the assumption that, requires insertion.

70 International Journal of PAIST, Dec. 2007, Vol.1, No.1

4.5 Database Setup

The database structure has its entity relationships setup resembling the Data
Model for RFID Applications (DMRA) schema [9]. Out of a whole model, only
the entities “Object”, “Reader” and “Observation” have been chosen to be used.
This is due to the fact that the “Observation” entity illustrates the raw data that
later is transformed into meaningful data. The “Object” and “Reader” tables
also need to be populated as the “Observation” entity is a derived and weak
entity relying on both these tables for primary keys.

4.6 Logical Engine Set up

The Logical Engine used in this study is based upon logic which is implemented
on the Sony AIBO Robots in the 2005 RoboCup [3]. As discussed previously,
the Non-Monotonic Reasoning logical engine comprises two main components.
First is the input being passed to it, and secondly, the logical rules that must
be followed to derive a conclusion. To initialise the engine, the code is written
in Decisive Programming Language (DPL) which is used to illustrate the logic
in a recognisable set of commands [3].

For the Logical Engine, several rules have been defined to allow the engine
to determine which course of action is correct. The Non-Monotonic rules which
have been implemented is represented graphically in Figure 3. The rules which
outweigh others are defined as an arc connecting the more important anticlock-
wise rule to the less important clockwise rule.

Fig. 3. A Graphical Representation of how the rules are known to act and interact
with each other in the Non-Monotonic Reasoning Engine.

The following rules are the DPL equivalent of the Non-Monotonic Reasoning
engine’s logic illustrated in Figure 3:

Peter Darcy et al. 71

type (x) ← suspicious data

DefaultRule: {} ⇒ -validData.

SubsetRule: subsetValuesFound(x) ⇒ allSubsetFound.

NonSubsetRule: oneSubsetMissing(x) ⇒ -allSubsetFound.

NonSubsetRule > SubsetRule:

AllSubsetRule: allSubsetFound(x) ⇒ validData. AllSubsetRule > Default-
Rule.

LaterRule: laterInstancesFound(x) ⇒ validData. LaterRule > AllSubsetRule.

Prior to the programs execution, x is declared to have suspicious data con-
tained in it that needs to be analysed. The DefaultRule states that, if there is
nothing passed into it via x, the missed value should be invalid. The SubsetRule
states that, if the subset values are found in x, must be indicated. The NonSub-
setRule states that, if there is only one subset value missing in any part of the
hierarchy of x, then AllSubsetFound must be stated as false. The NonSubsetRule
outweighs the SubsetRule. The AllSubsetRule states that, if AllSubsetFound is
correct, the missed value must be declared valid and this rule overrides the De-
faultRule. The LaterRule states that if there is a LaterInstanceFound is true in x
then declare the missed value as valid. The LaterRule defeats the AllSubsetRule
which, in turn, defeats the DefaultRule.

5 Algorithms

The Algorithms proposed in this work consist of three main reasoning systems.
The first checks the presence of a later instance of the missed value; the second
checks to see if all the subset relations of the missed value are present; and the
third combines these algorithms and employs Non-Monotonic Reasoning to find
the superior algorithm in any situation.

5.1 Later Instance Reasoning Algorithm

The Later Instance Reasoning algorithm draws its fundamental principles from
the evidence that a later instance of a value [9] exists and, therefore, it may be
assumed that every missed instance prior to this may be inserted. This reasoning
architecture may be described in pseudo code in Algorithm 3.

72 International Journal of PAIST, Dec. 2007, Vol.1, No.1

Algorithm 3 Later Instances approach to correct the data
for All the Missing Data do

Check if there is a later instance
end for
if There is a Later Instance then

Insert value into Database
end if
end

5.2 Item Hierarchy Reasoning Algorithm

The Item Hierarchy Reasoning algorithm was inspired by various data mining
techniques, which states, if all subset relations for any superset exist then the
superset may also exists. This reasoning architecture is described in pseudo code
in Algorithm 4.

Algorithm 4 Item Hierarchy approach to correct the data
for All the Missing Data do

Check if items are present one level under missed value in hierarchy
Check if all items are present under missed value in hierarchy

end for
if Subset members are present then

Insert value into Database
end if
end

5.3 Non-Monotonic Reasoning Algorithm

The Non-Monotonic Reasoning will reflect the reasoning of Later Instance and
Item Hierarchy algorithms but it will also have the ability to distinguish which
one of the two has precedence using the engine. The algorithm essentially searches
for evidence of the suspicious data being valid. If there is a lack of evidence or
no complete subset can be found then the algorithm will leave the database in
its current state, however, evidence of a later instance or a complete subset will
allow the algorithm to confidently insert the missed value. The process to which
the Non-Monotonic Reasoning engine reaches a decision is illustrated in Figure
3.To see the DPL logic code used in this Figure, please see Section 4.6.

6 Experimental Evaluation

To show the relevance of our approaches to clean RFID data, we conducted
extensive experiments. The experiments were conducted for each of the reasoning

Peter Darcy et al. 73

Fig. 4. A graphical representation what the program will be looking at and checking
to get enough confidence to insert a value back into the database.

algorithms on each data set. More specifically, Later Instance Algorithm, Item
Hierarchy Algorithm and Non-Monotonic Algorithm are tested on each of the
data sets created. Furthermore, within the Non-Monotonic Reasoning algorithm,
each of the five proof formulas (μ, α, β, π and δ) are tested.

6.1 System Architecture

The system implemented in this experiment is utilised in Oracle RDBMS using
PL/SQL environment and calling external procedure written in C. As seen in
Figure 2, the Oracle code searches for data that might be incorrect based on
a mining algorithm, whenever there is an ambiguous situation it calls the C
Plausible Logic Engine to determine if the data needs to be inserted back into
the database or not. C Plausible Login Engine returns True or False to Oracle
code which fulfills appropriate action by inserting the data in or alternatively
leaves the database state as it is. The Oracle System communicates to the C
logical engine by calling a command and passes certain numbers of parameters.
These parameters are discussed in detail in Section 4.6.

6.2 Environment

he environment being used in this paper consists of using the general Data Model
for RFID Applications (DMRA). Specifically, this consists of using the tables of
OBSERVATION where the EPC of an object is recoded, the location of where
the object was scanned is also stored and the time of starting the scanning of the
item and ending of scanning the item is noted as well [9] (For more information
about the Database Setup please see Section 4.5). The computer being used to
run these experiments is a Microsoft Windows XP Professional Version 2002 with
Service Pack 2 system with Intel(R) Pentium(R) 4 CPU 2.79GHz and has 1.00
GB of RAM. The Database was written and compiled in Oracle SQL*Plus 8.0

74 International Journal of PAIST, Dec. 2007, Vol.1, No.1

while the Logical Engine was written in C and implemented using the Cygwin
Version 1.5.24-2.

6.3 Data Sets

The data set being inserted into the database consists of generated test data
based on the chosen scenario. This consists of three different readers which have
recorded fifteen different EPC tags at one given moment. Additionally twelve
different tags have been deleted from the complete data set to align properly
with the scenario. Along side this test data, four other sets of data have been
created with randomly chosen tags to be removed to attempt to simulate how
missed readings would affect a database. A small example of a data set is shown
in Table 1.

Table 1. Sample data set used in experimentation (The tag 9994534562440003 is
missing at reader 1000000000000001)

Reader Tag Timestamp

1000000000000001 9994534562440001 11:05:23-29-SEP-07
1000000000000001 9994534562440002 11:05:23-29-SEP-07
1000000000000001 9994534562440004 11:05:23-29-SEP-07
· · · · · · · · ·

7 Results and Analysis

The results of the testing of the five data sets and three different reasoning
algorithms are shown in Table 2. The numbers inside the table represent how
many inserts took place for that cross-reference. The abbreviations used in this
table has the following meaning:

– L.I.R. = Later Instance Reasoning.
– I.H.R. = Item Hierarchy Reasoning.
– μ, α, π, β, δ = Non-Monotonic Reasoning Proofs

When analysing the results provided in Table 2 it may be seen that when
using the algorithms which incorporate Non-Monotonic Reasoning, achieved
greater precision results than the Later Instance and Item Hierarchy Algorithms.
Figure 5 displays in a graphical representation of the results extrapolated from
Table 2. As observer, the Later Instance Algorithm, the Item Hierarchy Algo-
rithm and the Non-Monotonic Reasoning Algorithm are all compared with each
other to see how many inserts have been made. The expected number of inserts
for the sample and the first random data sets is 10, for the second and third

Peter Darcy et al. 75

Fig. 5. A Bar Graph showing the Results of Table 2 of both algorithms from this
experiment with Percentage of Amount of Inserts on the y axis vs. the Data Sets on
the x axis.

Table 2. A table illustrating the results of number of inserts

Data Sets L.I.R. I.H.R. μ α π β δ

Sample 7 1 0 10 10 10 10
Random 1 9 1 0 10 10 10 10
Random 2 9 0 0 9 9 9 9
Random 3 9 1 0 9 9 9 9
Random 4 5 0 0 5 5 5 5

random data sets the expected amount of inserts to be obtained is 9 and the
fourth random data set has an expected number of inserts of 5.

The Non-Monotonic Reasoning algorithm performed the most successfully
in both the Sample data set and Random data set 1. The Later Instance algo-
rithm tied with the Non-Monotonic Reasoning algorithm for amount of inserts
in Random data sets 2 to 4. Finally, the Item Hierarchy Reasoning algorithm
performed the least successfully one row of data in the Sample data set and
Random data sets 1 and 3 being inserted. The results for the Non-Monotonic
Reasoning algorithm may be explained by the algorithm having both the advan-
tages of the Later Instance and Item Hierarchy algorithms. The results for the
Later Instances may be explained by the fact that there is very little chance in
a Random data set where the Item Hierarchy algorithm may be used. There-
fore, the Later Instance receives the same amount of Non-Monotonic Reasoning
inserts for the Random data sets 2, 3 and 4.

76 International Journal of PAIST, Dec. 2007, Vol.1, No.1

8 Conclusion

In this study, we addressed the issue of cleaning RFID data stored in the
database. We provided an experiment that evaluated the effects of the Non-
Monotonic Reasoning, Later Instance Reasoning and Item Hierarchy algorithms
on one sample data set and five randomly generated data sets with missing in-
stances deleted. The reason for this was to illustrates that the Non-Monotonic
Reasoning may be used to combine two novel algorithms and to provide more
accurate results than either of the algorithms could achieve by themselves. The
results achieved through the various data sets have supported this argument.

As a future work, the employment of different techniques to search for a
missed value, different methods to compare/enhance the Non-Monotonic En-
gine such as Neural Networks and using the successor of Plausible Logic known
as Clausal Defeasible Logic (CDL) have been displayed as proof that intriguing
results may be derived, which paves the way for future research ideas.

References

1. Y. Bai, F. Wang, and P. Liu. Efficiently Filtering RFID Data Streams. In CleanDB,
2006.

2. D. Billington. The proof algorithms of plausible logic form a hierarchy. In Pro-
ceedings of the 18th Australian Joint Conference on Artificial Intelligence, Sydney,
Australia, 5-9 December 2005. Lecture Notes in Artificial Intelligence vol. 3809
ISBN 92-990021-0-X, Springer, pages 796–799, 2005.

3. D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock. Non-monotonic reasoning
for localisation in robocup. In Proceedings of the 2005 Australasian Conference on
Robotics and Automation ISBN: 0-9587583-7-9, 2005.

4. S. S. Chawathe, V. Krishnamurthy, S. Ramachandran, and S. E. Sarma. Managing
RFID Data. In VLDB, pages 1189–1195, 2004.

5. R. Derakhshan, M. E. Orlowska, and X. Li. RFID Data Management: Challenges
and Opportunities. In RFID 2007, pages 175 – 182, 2007.

6. G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and
Computation, 2(3):379–412, 1992.

7. S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom. A pipelined
framework for online cleaning of sensor data streams. In ICDE, page 140, 2006.

8. N. Khoussainova, M. Balazinska, and D. Suciu. Probabilistic rfid data manage-
ment. UW CSE Technical Report UW-CSE-07-03-01, March 2007.

9. S. Liu, F. Wang, and P. Liu. A Temporal RFID Data Model for Querying Physical
Objects. Technical Report TR-88 , TimeCenter, 2007.

10. D. Nute. Defeasible reasoning. In In Proceedings of the 20th Hawaii International
Conference on System Science, pages 407–477, 1987.

11. J. Rao, S. Doraiswamy, H. Thakkar, and L. S. Colby. A Deferred Cleansing Method
for RFID Data Analytics. In VLDB, pages 175–186, 2006.

Peter Darcy et al. 77

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

