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Abstract: We examine the multiscale influence of environmental and hydrological features of the riverine landscape on
spatial and temporal variation in fish assemblages in eastern Australia. Multiresponse artificial neural network models
provided accurate predictions of fish assemblages in the Mary River based on species presence–absence data (mean
Bray–Curtis similarity between predicted and observed composition = 84%) but were less accurate when based on spe-
cies relative abundance or biomass (mean similarity = 62% and 59%, respectively). Landscape- and local-scale habitat
variables (e.g., catchment area and riparian canopy cover) and characteristics of the long-term flow regime (e.g., vari-
ability and predictability of flows) were more important predictors of fish assemblages than variables describing the
short-term history of hydrological events. The relative importance of these variables was broadly similar for predicting
species occurrence, relative abundance, or biomass. The transferability of the Mary River predictive models to the
nearby Albert River was high for species presence–absence (i.e., closer match between predicted and observed data)
compared with species abundances or biomass. This suggests that the same landscape-scale features are important de-
terminants of distribution of individual species in both rivers but that interactions between landscape, hydrology, and
local habitat features that collectively determine abundance and biomass may differ.

Résumé : Nous examinons à des échelles multiples l’influence des caractéristiques environnementales et hydrologiques
d’un paysage de rivière sur la variation spatiale et temporelle des peuplements de poissons en Australie orientale. Des
modèles de réseau neural artificiel à réponses multiples génèrent des prédictions précises des peuplements de poissons
dans la rivière Mary à partir des données de présence et d’absence des espèces (similarité moyenne de Bray–Curtis
entre les compositions prédites et observées = 84 %), mais elles sont moins exactes lorsqu’elles se basent sur
l’abondance relative ou la biomasse des espèces (similarités moyennes respectives de 62 % et de 59 %). Les variables
à l’échelle du paysage ou à l’échelle locale (par ex., la surface du bassin versant et la couverture de la canopée de la
rive) et les caractéristiques du régime d’écoulement à long terme (par ex., la variabilité et la prédictibilité des débits)
sont de meilleures variables explicatives des peuplements de poissons que les variables qui décrivent le déroulement à
court terme d’événements hydrologiques. L’importance relative de ces variables est grosso modo semblable pour la
prédiction de la présence, de l’abondance relative et de la biomasse des espèces. Les modèles prédictifs mis au point
sur la rivière Mary peuvent être utilisés sur la rivière Albert avoisinante avec plus de succès (c’est-à-dire avec un
meilleur accord entre les valeurs prédites et observées) dans le cas de la présence–absence des espèces que dans celui
des abondances et des biomasses des espèces. Ces observations indiquent que les mêmes facteurs à l’échelle du pay-
sage sont importants dans la détermination de la répartition des espèces individuelles dans les deux rivières, mais que
les interactions entre le paysage, l’hydrologie et les caractéristiques locales de l’habitat qui déterminent ensemble
l’abondance et la biomasse peuvent être différentes.

[Traduit par la Rédaction] Kennard et al. 1359

Introduction

Understanding the mechanisms that structure riverine com-
munities requires a multiscale approach that recognizes the

nested physical hierarchy of natural river systems (Fausch et
al. 2002; Lowe et al. 2006). Ecological patterns observed at
small scales are the product of both local habitat structure and
dynamics and constraints imposed at broader spatial and tem-
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poral scales. In this context, riverine flow regimes are a key
driver of lotic ecosystem structure and function (Poff et al.
1997; Bunn and Arthington 2002) and their hierarchical influ-
ence may be manifested at multiple spatial and temporal
scales (Biggs et al. 2005). Long-term variations in flow mag-
nitude, and the timing, frequency, and duration of flow
events, define the physical habitat template over large spatial
scales (e.g., catchments and subcatchments), whereas the
short-term history of hydrological events influences habitat
availability and connectivity at smaller spatial scales (e.g.,
within and among river reaches). These factors collectively
influence the availability of refuges, food resources, opportu-
nities for movement and migration, and conditions suitable
for spawning and recruitment of fish and other biota (e.g.,
Schlosser 1991; Humphries et al. 1999; Magoulick and Kobza
2003).

To date, many of the hierarchical linkages in riverine
ecosystems are poorly understood and inadequately vali-
dated and remain expressed largely as descriptive hypothe-
ses rather than as predictive or quantitative models. In this
paper, we use a hierarchical conceptual framework to ad-
dress two issues that have impeded efforts to link variation
in local fish assemblages to the independent and interactive
effects of hydrological variation with the physical features
of stream channels at multiple scales. First, the utility of
multiscaled approaches is increasingly recognised, yet few
empirical studies have explicitly attempted to characterise
environmental processes influencing local assemblages
simultaneously through both space and time (Lowe et al.
2006). Typically, species–environment relationships are
evaluated at one or more spatial or temporal scales, but not
both (Jackson et al. 2001). Second, the manner in which bi-
ological assemblages are characterised may influence the
strength and nature of species–environment relationships
detected (Cushman and McGarigal 2004); however, this has
received little attention in studies of aquatic ecosystems.
For example, species occurrence at a particular location
and time may be due to a combination of large-scale fac-
tors (e.g., climate and catchment morphology), whereas the
relative abundance or biomass of species in an assemblage
is more likely driven by processes operating at the local
scale (Rahel 1990).

We conducted our study in a region of eastern Australia
characterised by highly variable and unpredictable flow
regimes and, hence, challenging conditions for predictive
model development (Pusey et al. 2000; Kennard et al.
2006a). Spatial and temporal patterns of fish assemblage
structure in the Mary River, southeastern Queensland,
were expressed as three biotic measures (species presence–
absence, species relative abundance, and species relative
biomass). These measures were modelled as a function of
a hierarchy of environmental and hydrological variables
using multiresponse artificial neural networks (Olden
2003). We then tested the transferability of the Mary
River predictive models on a smaller set of independent
data from the nearby Albert River. Our ultimate objectives
were to gain insight into the relative influence of
multiscaled environmental and hydrological features of
the riverine landscape on different properties of fish as-
semblages and to evaluate the generality of these relation-
ships among nearby catchments.

Materials and methods

Study area
Southeastern Queensland, Australia, is a region of transi-

tional temperate to subtropical climate constituting a single
freshwater fish biogeographic region (Unmack 2001). The
majority of rainfall and streamflow occur in the summer
months of January to March, often followed by a second mi-
nor discharge peak between April and June. Inter- and intra-
annual variation in discharge is substantial, where high and
low flows may occur at any time of year (Pusey et al. 2004).
Our study systems, the Mary River (9400 km2) and Logan–
Albert River (4195 km2) catchments, drain to the eastern
coast of Australia and are bounded to the west by extensions
of the Great Dividing Range (Fig. 1). Sampling sites were
arrayed widely throughout each catchment (located on third-
to seventh-order streams and rivers) to encompass as much
of the natural biological and environmental variation as pos-
sible. Sites were selected according to a stratified random
sampling design (i.e., randomly stratified by relative position
within the catchment), which was constrained by available
access points to the river, water depth (see below), and a de-
sire to avoid areas affected by human activity. Reaches cho-
sen for study represented the best condition available (sensu
Hughes 1995) (i.e., minimally disturbed riparian vegetation
and bank and channel structure in natural condition), and the
degree of flow regulation was minimal. Human impacts
were therefore not expected to influence fish assemblage dy-
namics and relationships with flow and habitat described in
our study. Sixteen sites in the Mary River were sampled sea-
sonally (Austral winter, spring, and summer) on nine or 10
occasions between 1994 and 1997 (n = 158 samples). Eleven
sites in the Albert River were sampled seasonally on six or
seven occasions between 1995 and 1997 (n = 71 samples).

Fish sampling
Fish surveys were conducted in wadeable stream reaches

(<1.5 m maximum depth). We avoided sampling immedi-
ately after high flow events, and on occasions when high
flows occurred, we waited at least 2 weeks until flows had
subsided and fish sampling could be conducted efficiently.
Study sites were between 70 m and 80 m of stream length,
usually constituting an entire meander wavelength or one
riffle–run–pool sequence. We sampled three contiguous indi-
vidual mesohabitat units (i.e., riffles, runs, or pools) within
each reach and combined this data to represent each site.
Each mesohabitat unit was blocked upstream and down-
stream with weighted seine nets (11 mm stretched-mesh) to
prevent fish movement into or out of the study area. Fish
assemblages were intensively sampled using multiple-pass
electrofishing (Smith-Root model 12B Backpack Electro-
fisher; Smith-Root Inc., Vancouver, Wash.) and seine netting
(11 mm stretched-mesh) (see Kennard et al. (2006b) for a
complete description and evaluation of the sampling proto-
col). All fish collected were identified to species, counted,
and measured (standard length to the nearest millimetre).
Australian native fish were released at the point of capture,
whereas nonindigenous species were sacrificed (using
benzocaine) in accordance with the Queensland Fisheries
Act (Queensland Parliamentary Council 1994). The weight
of each fish was estimated by reference to published rela-
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tionships between body length and mass for each species
(Pusey et al. 2004). We calculated the following fish assem-
blage attributes for each site and sampling occasion: species
composition (the presence or absence of species); species
relative abundance (the percentage of the total number of in-
dividuals); and species relative biomass (the percentage of
the total biomass of fish).

Environmental and hydrological descriptors
A set of the most ecologically relevant environmental and

hydrological predictor variables were chosen from a larger
number of candidate predictor variables derived from the lit-
erature and prior research in the study region (see Pusey et
al. (2004) and references therein). Bivariate plots and
Spearman’s correlations among variables were used to iden-
tify and remove highly correlated variables. Spearman’s
correlation coefficients among the final set of predictor vari-
ables usually ranged between –0.5 and +0.5. Two landscape-
scale variables and four local-scale variables were selected
to describe environmental characteristics of the study sites
(Table 1). The two landscape-scale variables (upstream
catchment area and distance to the river mouth of each site)
were estimated from 1:100 000 topographic maps using a
digital planimeter. On each sampling occasion for each study
site, the four local-scale environmental variables were mea-
sured or estimated using standard protocols described in
Pusey et al. (2004). Mean wetted stream width, mean water
velocity, and mean water depth were calculated from a series
of 40- to 60-point measurements located randomly through-

out the site. Mean riparian canopy cover was estimated from
three site measurements using a spherical densometer.

We quantified antecedent flow conditions over three dif-
ferent time periods: long term (25 years), short term (the
4 months immediately preceding the time of sampling), and
the preceding spawning season (September to March). The
long-term hydrological record summarises conditions relat-
ing to disturbance regimes, aquatic habitat connectivity,
overall habitat availability, and temporal variation in habitat
structure and its spatial variability. We hypothesised that
these factors were potentially important to fish via long-term
temporal variation in individual species recruitment patterns
and the frequency of local colonisation and extinction
events. Short-term hydrological conditions indicate the pres-
ence of potential disturbance events prior to sampling, as
well as the extent to which conditions at the time of sam-
pling differ greatly from those in the preceding 4 months.
The third group of flow attributes characterized spawning
season conditions for the majority of fish species in south-
eastern Queensland (Pusey et al. 2004).

Six variables describing the long-term hydrological re-
gime were calculated (Table 1). These included mean daily
runoff (daily discharge standardised by upstream catchment
area), variability (coefficient of variation) of daily flow,
mean duration of zero flow events, and predictability of
mean daily flow, minimum instantaneous flow, and maxi-
mum instantaneous flow in each month. Colwell’s (1974) in-
dex (P) was used to quantify predictability in terms of a
constancy factor (C) and a contingency factor (M), the sum
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Fig. 1. (a) Location of the study sites in two river basins in southeastern Queensland. The insets (b) and (c) show the location of the
study area in Queensland, Australia.



of which equals P. This index ranges from 0 (random) to 1
(totally predictable). We allocated discharge values to one of
11 flow classes with a central class of 20 times mean daily
flow, using log2 classes (Marsh et al. 2003). We distinguish
variability, which is insensitive to temporal pattern, from
predictability, a measure of temporal uncertainty in periodic
phenomena, and expect both to be ecologically important
(Poff and Ward 1990; Pusey et al. 2000).

Short-term antecedent conditions (Table 1) were charac-
terised by four variables: mean daily runoff, coefficient of
variation of daily flow, number of zero flow days, and the
number of high flow events (flow events greater than
1.67 year average recurrence interval) for the 4 months im-
mediately preceding the time of sampling. We chose this
high flow threshold as it approximates bankfull flow condi-
tions and hence the flow magnitude yielding close to maxi-
mum water velocities, turbulence, shear stress, and stream
power. The magnitude of the 1.67-year average recurrence
interval flood was estimated from a 25-year hydrological re-
cord at each site using the annual duration series. The flood
event independence criterion was defined as 7 days for these
calculations. Lastly, we characterized hydrological condi-
tions prevailing over the spawning period prior to sampling
by estimating the mean daily runoff and coefficient of varia-
tion of daily flow (Table 1).

All flow variables for each study site were derived using
25 years (1974–1997) of daily discharge data simulated us-

ing integrated quantity and quality models (IQQM; Simons
et al. 1996). IQQM, a tool used widely in Australia and else-
where for water resource planning and assessment, can sim-
ulate flow volumes under various management scenarios
including before water resource development, existing water
use, and hypothetical future water demand. IQQM uses the
Sacramento rainfall–runoff model based on rainfall and
evaporation data for the generation of subcatchment runoff
and operates on a continuous basis with a daily time step.
IQQM parameters are determined by calibration against ob-
served streamflow data (Simons et al. 1996; Merritt et al.
2003). IQQM for the Mary and Albert rivers were developed
by the Queensland Department of Natural Resources and
Water and were calibrated using daily flow data from 28 and
9 stream gauging stations in the Mary and Albert rivers, re-
spectively (see Brizga et al. (2004, 2006) for further details
on IQQM development and calibration). We used daily flow
data simulated for existing water use (which was minimal
for our study sites). Use of IQQM modelled flow data to es-
timate summary hydrological statistics for short temporal se-
quences (i.e., within-year) may be prone to greater error than
when based on longer time series. We do not view this as
being problematic in our study as all sampling sites were lo-
cated within 20 km of stream gauges used to calibrate the
IQQM developed for each river basin. Therefore, the tempo-
ral sequence of flows modelled by IQQM should accurately
represent the existing pattern of flow as measured at the
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Mary River (training data) Albert River (test data)

Predictor variables Code Mean 95% CI Mean 95% CI

Landscape-scale environment
Catchment area upstream of site (km2) catarea 815.6 46.8, 1584.4 194.9 39.5, 350.2
Distance to river mouth (km) distm 202.2 167.2, 237.1 77.0 57.8, 96.2

Long-term flow regime
Mean daily runoff (ML·km2) l_mdr 0.63 0.49, 0.76 0.83 0.73, 0.92
CV of daily flow l_cvd 6.53 5.79, 7.27 5.81 5.17, 6.45
Predictability (P) mean daily flow (month) l_pmndf 0.22 0.19, 0.25 0.15 0.14, 0.16
Predictability (P) minimum monthly flow l_pmidf 0.16 0.13, 0.19 0.11 0.10, 0.13
Predictability (P) maximum monthly flow l_pmxdf 0.57 0.52, 0.63 0.40 0.37, 0.44
Mean duration of zero flow events (days) l_mdzf 12.0 5.6, 18.4 0 0, 0

Local-scale environment
Mean riparian canopy cover (% shaded) ripcov 44.8 40.8, 48.8 35.1 29.6, 40.6
Mean wetted stream width (m) width 10.5 9.1, 11.8 8.3 7.5, 9.1
Mean water column depth (m) avdepth 0.38 0.35, 0.41 0.40 0.36, 0.45
Mean water velocity (m·s–1) avvel 0.14 0.12, 0.17 0.19 0.16, 0.21

Short-term flow history
No. of zero flow days, 4 months before sample s_zfd 18.6 13.5, 23.7 0 0, 0
No. of flow events greater than 1.67 annual return interval,

4 months before sample
s_hfe 0.44 0.34, 0.55 0.54 0.37, 0.70

Mean daily runoff, 4 months before sample (ML·km2) s_mdr 0.35 0.28, 0.42 1.02 0.72, 1.32
CV daily flow, 4 months before sample s_cvd 2.65 2.39, 2.91 2.01 1.72, 2.29
Mean daily runoff, spawning season before sample (ML·km2) s_mdrsp 0.41 0.37, 0.45 0.51 0.45, 0.57
CV daily flow, spawning season before sample s_cvdsp 4.09 3.84, 4.35 3.28 2.96, 3.60

Note: Variable abbreviations are used in Fig. 3. CV, coefficient of variation.

Table 1. Means and 95% confidence intervals (CI) for environmental and hydrological variables used as predictors in the neural net-
work models developed for the Mary River and tested in the Albert River.



stream gauges. All flow variables were calculated using the
river analysis package (Marsh et al. 2003).

Statistical analyses

Multiresponse artificial neural network
Species presence–absence, relative abundance, and rela-

tive biomass in the Mary River samples were modelled as a
function of the 18 environmental and hydrological variables
using a multiresponse artificial neural network (see Olden
2003; Olden et al. 2006a). In addition to the flexibility of
neural networks to model multiple response variables, they
are capable of modelling nonlinear associations with a vari-
ety of data types, require no specific assumptions concerning
the distributional characteristics of the independent vari-
ables, and can accommodate interactions among predictor
variables without any a priori specification (Bishop 1995).
Neural networks have been shown to exhibit substantially
higher predictive power (based on empirical and simulated
data) when modelling nonlinear relationships compared with
logistic regression, linear discriminant analysis, or classifica-
tion trees (Olden and Jackson 2002).

We used feed-forward neural networks trained by the back-
propagation algorithm to model spatial and temporal varia-
tion in three response variables: species presence or absence,
relative abundance, and relative biomass. The architecture of
these networks consisted of a single input, hidden, and out-
put layers. The input layer contained one neuron for each of
the environmental variables (18 in total). The number of
neurons in the single hidden layer was chosen to minimize
the trade-off between network bias and variance by compar-
ing the performances of different cross-validated networks,
with 2 to 50 hidden neurons (increasing by increments of 2),
and choosing the number that produced the greatest external
network performance. This resulted in the selection of 8, 9,
and 14 hidden neurons for the modelling of species
presence–absence, relative abundance, and relative biomass,
respectively. The output layer contained one neuron for each
fish species being modelled, representing either the probabil-
ity of species presence–absence (decision threshold of 0.5),
species relative abundance, or species relative biomass.

Model training involved the cross-entropy error function
for species presence or absence (suitable for binary vari-
ables) and sums of squared error function for species relative
abundance and biomass (suitable for continuous variables).
Learning rate (η) and momentum (α) parameters (varying as
a function of network error) were included during network
training to ensure a high probability of global network con-
vergence and a maximum of 1000 iterations for the back-
propagation algorithm to determine the optimal axon
weights. We refer the reader to Olden (2003) and Olden et
al. (2006a) for more methodological details. The contribu-
tions of the environmental and hydrological variables in the
neural networks were quantified by calculating the product
of the input–hidden and hidden–output connection weights
between each input neuron and output neuron and then sum-
ming the products across all hidden neurons. This approach
is deemed the most appropriate as it has been shown to out-
perform other techniques for quantifying variable contribu-
tions in neural networks (Olden et al. 2004). All neural
network analyses were conducted using computer macros

written in the MatLab® (The MathWorks, Natick, Massachu-
setts) programming language.

Model validation and performance
Model validation was conducted in two ways. First, n-fold

cross validation was used to generate model predictions and
assess classification performance of the neural networks
based on the Mary River data. This validation method ex-
cludes one observation, constructs the model with the re-
maining n – 1 observations, predicts the response of the
excluded observation using this model, and repeats the pro-
cedure n times. Second, external validation was conducted
by using the Mary River neural networks to predict the fish
assemblages in the Albert River samples. This analysis pro-
vided an opportunity to assess the generality or transferabil-
ity of the Mary River models to other river systems within
the same biogeographic region in eastern Australia. Model
performance for species presence–absence was assessed by
calculating three metrics: overall classification performance
(percentage of sites where the model correctly predicts spe-
cies presence–absence), sensitivity (percentage of the sites
where species presence was correctly predicted), and speci-
ficity (percentage of the sites where species absence was
correctly predicted) (see Fielding and Bell 1997). Model
performance for species relative abundance and biomass was
assessed using Pearson’s product–moment correlation coeffi-
cient (r) (a measure of prediction accuracy) and root mean
square error (RMSE) (a measure of prediction precision).
We assessed the statistical significance of species predictions
following the protocols of Olden et al. (2002). Null distribu-
tions of correct classification rates (CCRs) for each species
presence–absence were generated by randomly permuting
the original observations among the stream sites, construct-
ing an artificial neural network using the randomized data
and the original environmental variables, and calculating the
CCR (based on n-fold validation). This procedure was then
repeated 9999 times and the significance level of the predic-
tive model was calculated as the proportion of random CCRs
(including the observed CCR) that were larger than or equal
to the observed CCR. The randomization test was repeated
for species relative abundance and biomass using the corre-
lation coefficient (r). We assessed the overall performance of
the neural network models by calculating the degree of con-
cordance between predicted and observed fish assemblages
(defined by species presence–absence, relative abundance,
and biomass) using the Bray–Curtis similarity coefficient
(Krebs 1999).

Results

Characteristics of the fish fauna and the riverine
environment

Twenty-five fish species from 13 families were collected
in the Mary River, 18 of which were also present in the Al-
bert River (Table 2). Fourteen species, each representing
greater than 1% of the relative abundance, were used for
prediction of species relative abundance and biomass. Al-
though fish assemblage characteristics varied between the
two rivers, there were significant correlations among rivers
in terms of species frequency of occurrence (Pearson’s r =
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Mary River (training data) Albert River (test data)

Fish taxa Common name FOC RA RB FOC RA RB

Anguillidae
Anguilla reinhardtii

Steindachner, 1867
Long-finned eel 86.1 5.60 43.78 98.6 10.06 51.84

A. australis Richardson,
1841

Short-finned eel 2.5 0.01 0.01 11.3 0.56 0.03

Retropinnidae
Retropinna semoni (Weber,

1895)
Australian smelt 77.8 10.24 2.24 87.3 28.70 4.73

Plotosidae
Tandanus tandanus Mitch-

ell, 1838
Eel-tailed catfish 84.2 2.42 24.42 83.1 2.89 26.35

Neosilurus hyrtlii
Steindachner, 1867

Hyrtl’s tandan 7.0 0.05 0.27

Atherinidae
Craterocephalus marjoriae

Whitley, 1948
Majorie’s hardyhead 82.9 11.32 4.88 67.6 10.85 1.19

C. stercusmuscarum
(Günther, 1867)

Fly-specked hardyhead 50.0 3.99 1.01

Melanotaeniidae
Melanotaenia duboulayi

(Castelnau, 1878)
Duboulay’s rainbowfish 88.6 10.70 6.14 80.3 21.64 5.51

Pseudomugilidae
Psuedomugil signifer Kner,

1865
Pacific blue-eye 96.2 26.95 3.34 31.0 3.34 0.38

Synbranchidae
Ophisternon sp.

(undescribed)
Swamp eel 1.9 0.02 0.04

Chandidae
Ambassis agassizii

Steindachner, 1867
Agassiz’s glassfish 58.9 4.18 1.60 16.9 0.25 0.07

Percichthyidae
Macquaria ambigua Rich-

ardson, 1845
Yellowbelly 0.6 0.02 0.58

M. novemaculeata
(Steindachner, 1866)

Australian bass 0.6 0.02 0.01 2.8 0.02 0.01

Nannoperca oxleyana
Whitley, 1940

Oxleyan pygmy perch 0.6 0.01 0.01

Therapontidae
Leiopotherapon unicolor

(Günther, 1859)
Spangled perch 29.7 0.59 1.86 11.3 0.13 0.56

Apogonidae
Glossamia aprion (Rich-

ardson, 1842)
Mouth almighty 27.8 1.05 2.43

Eleotridae
Gobiomorphus australis

(Krefft, 1864)
Striped gudgeon 1.9 0.01 0.10 36.6 5.30 5.88

Hypseleotris compressa
(Krefft, 1864)

Empire gudgeon 14.6 0.78 0.39 14.1 1.69 0.32

H. galii (Ogilby, 1898) Firetailed gudgeon 69.0 5.33 0.94 47.9 5.48 1.21
H. klunzingeri (Ogilby,

1898)
Western carp gudgeon 65.2 6.66 1.15 46.5 2.01 0.63

Table 2. Characteristics of the fish fauna in Mary River and Albert River.



0.74, p < 0.001), relative abundance (r = 0.47, p < 0.05), and
relative biomass (r = 0.95, p < 0.001) (Table 2). The range
of variation in environmental and hydrological conditions at
the Mary River sites was generally similar to, or greater
than, the range at Albert River sites (Table 1). This implies
that fish should respond in similar ways to environmental
and hydrological conditions in each river and therefore that
a predictive model developed for the Mary River may have
the capacity to predict fish assemblages in the Albert River.
The major exception was that sites in the Albert River were
situated relatively closer to the river mouth than sites in the
Mary River, primarily because the Albert River catchment is
smaller in size. The predictability of mean and maximum
flows, and the incidence of zero flows, were lower in the Al-
bert River. Mean daily runoff prior to sampling was usually
higher and the variability of daily flows was usually lower
in the Albert River than in the Mary River (Table 1).

Species-level model performance
The neural network model exhibited high success in pre-

dicting individual species presence or absence in the Mary
River samples (Table 3). Mean correct classification rate was
87.3%, where 20 of the 25 species were correctly classified
(p < 0.05) and all but one species (Hypseleotris klunzingeri)
had correct classification rates exceeding 77%. Overall, the
model was better able to correctly predict the absence of spe-
cies than their presence (mean specificity = 76.2% and mean
sensitivity = 60%), an expected result given the low frequency
of occurrence of many species in the data set. The model had
difficulty predicting the presence of rare species (i.e., low sen-
sitivity) and the absence of some widespread species (low
specificity). For example, those species present in less than
3% of samples were never correctly predicted (sensitivity val-
ues = 0%), and the five most widespread species (blue-eye
(Psuedomugil signifer), rainbowfish (Melanotaenia dubou-
layi), eel (Anguilla reinhardtii), catfish (Tandanus tandanus),
and hardyhead (Craterocephalus marjoriae)) present in more
than 82% of samples had among the lowest specificity values
(50% or less) (Table 3). When applied to the Albert River

sites, the Mary River model did not perform as effectively.
Although the mean correct classification rate across all 25
species was 73%, only 12 of the 25 species were correctly
classified (p < 0.05). Mean specificity (56.8%) and sensitivity
(57.0%) values were also lower for the Albert River data set
than for the Mary River data set (Table 3).

The predictive model of species relative abundances was
moderately accurate in the Mary River. The abundances of
six of the 14 species modelled could be accurately predicted
(p < 0.05), although correlations (Pearson’s r values) be-
tween predicted and observed values were greater than 0.5
for nine of the 14 species examined (Table 3). The neural
network based on species relative biomass was less accurate,
however, with predictions of individual species biomass be-
ing significant for only two species and r values being gen-
erally low (Pearson’s r > 0.5 in only 2 of 14 species).
Predictions of species abundance and biomass data for
Albert River were less accurate than for Mary River. The
abundance and biomass of three species and of one species,
respectively, were significantly predicted in the Albert River,
but correlations between observed and expected values were
less than 0.5 in all but one species comparison. No consis-
tent pattern in the precision (as assessed by RMSE values)
of species predictions was evident between rivers or assem-
blage data type (abundance versus biomass) (Table 3), and
the predictive accuracy and precision appeared unrelated to
the overall relative abundance or biomass of each species in
the data set (Tables 2 and 3).

Assemblage-level model performance
Assessments at the assemblage level showed that the neu-

ral network predictions of fish species composition (based
on presence–absence data) in the Mary River were highly
concordant with observed composition. Mean Bray–Curtis
similarity between predicted and observed species composi-
tion was 84.3%, and nine-tenths of samples contained fish
assemblages that were greater than 70% similar to those pre-
dicted (Fig. 2). Model performance for assemblage estimates
of relative abundance and biomass were lower, where mean
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Mary River (training data) Albert River (test data)

Fish taxa Common name FOC RA RB FOC RA RB

Mogurnda adspersa
(Castelnau, 1878)

Purple-spotted gudgeon 57.6 1.67 1.63

Philypnodon sp.
(undescribed)

Dwarf flathead gudgeon 43.0 0.72 0.26 16.9 0.41 0.09

P. grandiceps (Krefft,
1864)

Flathead gudgeon 41.1 0.87 0.71 19.7 0.49 0.37

Poeciliidae
Gambusia holbrooki

(Girard, 1859)*
Eastern mosquitofish 36.1 4.82 1.25 53.5 6.02 0.75

Xiphophorus helleri
Heckel, 1848*

Swordtail 17.7 1.97 0.96 8.5 0.19 0.08

Samples Individuals Biomass Samples Individuals Biomass

n = 158 68 815 712.6 71 20 697 131.4

Note: The frequency of occurrence (FOC), relative abundance (RA), and relative biomass (RB) of each species are shown for each river. These data are
expressed as percentages of the total (n) number of samples, total number of individuals, and total biomass (kg) of fish collected in each river, respec-
tively. Fish families are arranged in approximate phylogenetic order (after Pusey et al. 2004). An asterisk (*) indicates nonindigenous species.

Table 2 (concluded).
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Bray–Curtis similarity between predicted and observed
species assemblage structure was 62% and 59%, respec-
tively. For both data sets, one-half of samples contained fish
assemblages that were greater than 70% similar to predicted
assemblages. In summary, a closer match between predicted
and observed assemblages was observed for species
presence–absence data than for species abundance or bio-
mass data, the latter data being predicted with generally
equivalent accuracy in the Mary River (Fig. 2). In all cases,
model performance was greater for Mary River sites than for
Albert River sites (Fig. 2).

Environmental and hydrological drivers of fish
assemblage structure

Large- and local-scale environmental variables were im-
portant predictors of species occurrences in the Mary River
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Fig. 2. Comparison of overall accuracy of artificial neural network
(ANN) models to predict fish assemblages based on presence–
absence (P/A, solid bars), relative abundance (AB, hatched bars),
and relative biomass (BM, open bars) data for (a) Mary River
(training data) and (b) Albert River (test data). Histograms are fre-
quency distributions (percentage of samples) of Bray–Curtis simi-
larities between fish assemblages predicted by ANN models and
those observed using the same 14 species in each data set. Arrows
represent the mean Bray–Curtis similarity.

Fig. 3. Relative contributions of environmental and hydrological
variables for predicting fish assemblages based on (a) presence–
absence, (b) relative abundance, and (c) relative biomass data
averaged (±1 standard deviation) across the 14 fish species com-
mon to each artificial neural network (ANN) model. Open por-
tions of each bar represent the relative frequency with which
each predictor variable had a positive influence on species pre-
dictions, and solid portions of each bar indicate the relative fre-
quency of negative influences on species predictions. Codes are
defined in Table 1.



(Supplemental Table S1).2 Catchment area and distance to
river mouth were relatively important predictors (mean rela-
tive contribution = 8% and 9%, respectively) of the total
variation in assemblage composition. Three of the four local
environmental variables (riparian cover, stream width, and
mean depth of channel) were also important predictors
(>5%) of the total variation. Increasing catchment area and
distance from river mouth typically had a negative influence
on the predicted presence of a species, whereas the local-
scale environmental variables usually had a positive effect
(Supplemental Table S1).2 Characteristics of the long-term
flow regime were also important predictors of assemblage
composition, particularly mean daily runoff, coefficient of
variation of daily flow, the predictability (Colwell’s P) of
mean daily flow, and predictability of minimum instanta-
neous flow. Overall, short-term flow variables were compar-
atively less influential (mean relative contribution < 5%),
except those describing mean daily runoff during the spawn-
ing season before sampling and the number of zero flow
days during the 4 months before fish collection.

Comparison of variables for predicting species composi-
tion (Supplemental Table S1),2 relative abundance (Supple-
mental Table S2),2 and relative biomass (Supplemental Table
S3)2 across the 14 species common to each model (Fig. 3)
revealed similar patterns in the major classes of important
predictor variables. However, some variation in the impor-
tance of individual variables within each class of predictors
was evident. Landscape environment, local environment, and
long-term flow variables were comparatively more important
than short-term flow variables in predicting each biological
response data set. However, catchment area and stream
width were stronger predictors of variation in species rela-
tive biomass than species composition and abundance
(Fig. 3). The importance of long-term flow predictability
was comparatively higher for species relative abundances in
comparison with the other fish assemblage data sets. Fur-
thermore, most aspects of short-term flow history assumed
generally equal importance for species relative biomass in
comparison with only one or two variables dominating
within this class of predictors for species composition and
relative abundances.

The magnitude and direction of connection weights in the
neural network (Fig. 4) reveal nonlinear species–environment
relationships. We highlight several examples in which strong
variable interactions were important for model predictions of
fish assemblage composition. Some of the linkages demon-
strate the importance of interactions between long-term flow
and local-scale habitat structure. For example, note the inter-
action between variability of daily flows (long-term) and wa-
ter depth via hidden neuron G for eels (A. reinhardtii), smelt
(Retropinna semoni), catfish (T. tandanus), rainbowfish
(M. duboulayi), blue-eyes (P. signifer), and mouth almighty
(Glossamia aprion). Increasing variability of daily flows de-
creased the probability of occurrence of these species, except
in deeper sites. Landscape-scale factors (e.g., catchment area)
were revealed by our model to influence species composition

of assemblages via interactions with the predictability of
minimum monthly flow (long-term) through hidden neuron F.
Increased predictability of these minimum flows increased the
probability of occurrence of three gudgeons (H. galii and
Philypnodon spp.), except in large subcatchments. A syner-
gistic interaction between coefficient of variation (CV) of
daily flow (long-term), number of zero flow days (short-
term), and stream width through hidden neuron D is evident
for many species. Increasing variability of daily flow coupled
with increasing duration of zero flows in wider streams de-
creased the probability of occurrence of glass perchlets
(Ambassis agassizii) and three species of gudgeons (H. galii
and Philypnodon spp.). We also found an interaction between
two short-term flow variables (mean daily runoff during the
spawning season with CV of daily flow during the spawning
season) through hidden neuron B for the gudgeon
H. klunzingeri and the nonindigenous species Gambusia
holbrooki. Increasing mean daily runoff during the spawning
season increased the probability of occurrence of these spe-
cies, except when runoff was highly variable.

Discussion

This study aimed to gain insight into the relative influence
of multiscaled environmental and hydrological features of
the riverine landscape on different properties of fish assem-
blages and to evaluate the generality of these relationships
among nearby catchments. Multiscaled approaches such as
ours should be well suited to the study of riverine fish.
Compared with other aquatic biota, fish are long-lived and
mobile and so may occupy a variety of habitats and hence
may encounter a range of environmental conditions through-
out their life span (Fausch et al. 2002). However, these
ecological factors, together with the complex hierarchical
linkages evident in natural river ecosystems, can make it
difficult to develop accurate predictive models and to isolate
the importance of individual and interacting environmental
controls on fish assemblages (Rose 2000).

The multispecies model for the Mary River provided ac-
curate predictions of individual species occurrences (high
mean correct classification rate) and assemblage composi-
tion (high similarity between predicted and observed assem-
blages). The important landscape- and local-scale
environmental factors identified by this model are well-
established correlates of, or are related mechanistically to,
species distributions and fish assemblage composition in
many river systems (Jackson et al. 2001). Attributes of the
long-term flow regime were also important predictors of as-
semblage composition and likely govern the temporal avail-
ability and predictability of suitable habitat for various fish
species. Long-term flow conditions also determine the spa-
tial variability and connectivity of habitats that, in turn, in-
fluence local colonisation and extinction events (Magoulick
and Kobza 2003; Matthews and Marsh-Matthews 2003;
Scheurer et al. 2003).

The neural network provided significant insight into the
important interactions among environmental and hydro-
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Fig. 4. Neural interpretation diagram showing linkages between environmental and hydrological variables used for predicting fish spe-
cies composition in Mary River. Line thickness is proportional to the magnitude of the axon connection weight, and line type indicates
the direction of the interaction between neurons: solid line, connections are positive (excitators); broken line, connections are negative
(inhibitors). Only statistically significant connection weights are presented (p < 0.05). Individual species with no output connections
were not accurately predicted. Multiplication of the two connection weight directions (positive or negative) indicates the effect that
each input variable has on the response variable (fish). Input variables with larger connection weights are more important in predicting
the output compared with variables with smaller weights. CV, coefficient of variation; Pred., predictability; Min., minimum; Mx., maxi-
mum; Dur., duration (mean).



logical factors and into the potential mechanisms likely to
influence variation in fish assemblage composition. The im-
portance of interactions between variability of daily flows
(long-term) and water depth identified for some fish species
suggests that deeper locations are more effectively buffered
against changes in habitat structure and quality associated
with varying water levels than are shallow sites. The inter-
action between landscape-scale factors and long-term flow
predictability suggests that species of gudgeons with benthic
habits (Pusey et al. 2004) were more likely to occur at sites
in smaller catchments if minimum flows were sufficiently
predictable to ensure the availability of suitable benthic hab-
itat over the long term. Our model also revealed the poten-
tial for aspects of the short-term flow history to influence
the composition of fish assemblages. For example, an in-
creased probability of fish stranding in wider streams with
fluctuating water levels is suggested for some species by the
negative influence of variable flow conditions interspersed
with extended dry periods. In addition, increasing mean
daily runoff during the spawning season before sampling in-
creased the probability of occurrence of two species, except
when runoff during this period was highly variable; this im-
plies an adverse effect on their capacity to either spawn suc-
cessfully or to recruit to larger sizes, or both. These positive
and negative interactions collectively highlight the impor-
tance of long-term flow variables and local-scale habitat
characteristics such as stream width and depth, enhanced or
ameliorated by a particular catchment setting and recent
flow conditions. These relationships are consistent with our
knowledge of the ecology of fish assemblages in the region
(Pusey et al. (2004) and references therein).

Comparison of model performances for the Mary River
showed that species presence–absence was more predictable
than both relative abundance and relative biomass. This scale-
dependent relationship between environmental drivers and dif-
ferent assemblage response variables is expected (see Rahel
1990). Species presence–absence is a less “noisy” signal and
less prone to spatial and temporal variation as it involves a
local extinction process, not just a shift in abundance or bio-
mass (Strange et al. 1992; Milner et al. 1993; Poff and Allan
1995). Indeed, in our study systems, spatial and temporal
variation in fine-grained fish assemblage responses such as
abundance and biomass data is much greater than for the
coarser-grained measure of fish species presence or absence
(Kennard 2005). Hence, it is not surprising that our models
more accurately predicted species presence–absence.

The relative importance of the major classes of environ-
mental and hydrological predictor variables was broadly
similar for models predicting species occurrences, abun-
dances, and biomass in the Mary River. That short-term flow
variables played a comparatively small predictive role was
contrary to our expectations, particularly for abundance and
biomass data. The recent history of hydrological events has
been shown elsewhere to be an important driver of fish
abundance patterns via recruitment processes (e.g., Schlosser
1985; King et al. 2003). However, the dynamics of recruit-
ment processes in fishes are highly complex, with environ-
mental and biologically driven variation in abundances of all
life stages contributing substantially to variability in final
abundance (Bradford 1992). It is possible that the variables
we used to quantify antecedent flow conditions were too

coarse to represent flow-related changes in factors contribut-
ing to recruitment variation. Such factors could include the
suitability and temporal stability of spawning sites, habitat
condition, and food resource availability for larvae or the
sequence of habitats and conditions necessary for juvenile
growth and survival. Similarly, the connectivity of habitats
in time and space could also be important, but the surrogate
indicators we used, such as number of zero flow days or du-
ration of zero flow days before sampling, may not represent
connectivity effectively (Scheurer et al. 2003). In addition,
our short-term flow predictors were unlikely to capture the
influence of flow variation on biotic processes such as
predator–prey relationships and competitive interactions
among species that, in turn, can have significant effects on
fish assemblage structure (Jackson et al. 2001). Furthermore,
because we did not attempt to distinguish the independent
explanatory effects of each set of environmental and hydro-
logical drivers, the importance of short-term flow variation
may have been obscured by covarying predictors at other
spatial and temporal scales (although we avoided using
highly correlated variables). It would therefore be instructive
to compare the results of the present study with those of
other methods that can uncover the unique contribution of
different variable sets, including variance partitioning meth-
ods (e.g., Magalhães et al. 2002; Pont et al. 2005), or to ana-
lyze residuals from each stage of a hierarchical analysis
(e.g., Olden et al. 2006b).

Evaluation of the transferability of our predictive models
showed that the Mary River model based on species
presence–absence data more accurately represented species–
environment relationships in the Albert River than did mod-
els based on species abundances or biomass. This result
suggests that although the landscape-scale features that drive
the distribution of individual fish species are similar between
these rivers, the particular interactions between the influence
of landscape, hydrology, and local habitat features that
collectively determine abundance and biomass differ be-
tween the two rivers. Although the importance of knowing
that particular models are transferable is well recognised
(Mac Nally 2002), previous modelling work with stream
fishes has illustrated that model transferability can vary
greatly depending on circumstances. In general, models con-
structed for one basin rarely perform as well in another ba-
sin (e.g., Fausch et al. 1988; Shirvell 1989; Leftwich et al.
1997). Our results support this earlier work but clearly show
that model transferability depends on the type of biological
response variable modelled. Model transferability may be
compromised if the environmental factors that limit species
distributions are not included or retained in the models or if
they differ between catchments (Leftwich et al. 1997). Varia-
tion in species prevalence (i.e., frequency of occurrence) be-
tween systems can also affect spatial transferability of
predictive models (Mac Nally 2002; Olden et al. 2002), and
this may apply to abundance and biomass data as well.
These issues highlight the need for a better understanding of
the factors responsible for shaping individual species distri-
butions and assemblage structure before catchment-specific
models can be applied more broadly.

In conclusion, improved knowledge of ecological responses
to the natural and human-altered characteristics of river flow
regimes is urgently required to inform water resource man-
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agement (Arthington et al. 2006; Dudgeon et al. 2006). The
demands facing managers as they attempt to allocate limited
freshwater resources are escalating and exacerbated by lim-
its in our quantitative understanding of how aquatic ecosys-
tems, and their biological communities, respond to
environmental conditions (Allan 2004). The complexity and
nested arrangement of environmental factors shaping lotic
communities makes the construction of useful predictive
models a challenging task. Yet, we were able to model both
the composition and structure (abundance and biomass) of
fish assemblages and to incorporate all species comprising the
assemblage simultaneously within a single integrated model-
ling process. This multispecies approach increases our
capacity to detect and synthesise complex biota–environment
relationships (Ferrier and Guisan 2006; Olden et al. 2006a).
Predictive modeling studies such as ours contribute to a fun-
damental understanding of river ecosystem functioning in
terms of identifying important interactions between flow re-
gime and habitat at local to landscape scales, their effects on
fish assemblage structure, and the generality of these rela-
tionships.
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