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Abstract 
In almost the last two decades, commercial Bridge Management System (BMS) packages have been 
remarkably developed. However, inconsistency between BMS inputs and bridge agencies’ existing data is 
an obstacle to implement and to operate a BMS software application. A large number of bridge datasets 
for a BMS database is an essential requirement to analyze a bridge network. Among many requirements, 
historical structural datasets are vital to compute the prioritization of bridge stock for maintenance and 
repair activities and are mostly unavailable for bridges of more than 20 years in age. 
 
This study focuses on the abovementioned difficulty to overcome the lacking historical data problem 
faced by bridge agencies to effectively use BMS applications. This paper proposes an artificial neural 
network (ANN) technique to predict missing components of time-series datasets to estimate historical 
bridge element condition ratings. Although this study only estimates historical condition ratings, the 
proposed concept can be used to compute other historical dataset requirements in the BMS database and 
hence improving the reliability of various BMS analysis modules. 
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1. Introduction  
 
The primary goal of a BMS is to determine and to implement the best possible strategy that ensures an 
adequate level of safety at the lowest possible life cycle cost (Frangopol et al., 2000). A BMS is necessary 
to extend the life cycle of the entire bridge network and to optimise the maintenance expenditures, 
because most infrastructure facilities are planned, designed, constructed, operated and modified or 
rehabilitated under uncertain and risky conditions (Hudson et al., 1997). 
 
Although BMS software applications have been commercially implemented for almost two decades, 
many bridge agencies are still hesitated to implement such systems to manage their bridge assets. The 
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main reason for this is the large amounts of BMS data requirements. Many datasets are different from 
their BMS requirements such as format or inexistence in bridge agencies. This inconsistency is the major 
reason why BMSs have not been practically implemented. For that reason, many researchers and 
infrastructure asset practitioners have recognized that deterioration of infrastructure facilities is not 
deterministic (Mishalani and McCord, 2006). To overcome this fundamental issue, a bridge agency is 
required to collect BMS data as early as possible. To adopt analytical methods in a BMS, currently 
adopted analytical methods in BMS applications regularly require updates of historical datasets to ensure 
reliable results (Das, 1996). However, during the data collection period, insufficient datasets may yield 
inaccurate BMS outcomes until sufficient data are recorded in the BMS database. 
 
Consequently, the results of periodic bridge inspection are important to keep maintain the reliability of 
BMSs. Bridge-condition related data are imperative resources and the most time consuming of the total 
requirements for proper operation of a BMS software application. Historical bridge condition ratings from 
periodic bridge inspection can be used directly and indirectly as input data for many significant functions 
in a BMS software application. More than half of the BMS outputs, about 50% of project-level and about 
67% of network-level outputs, are affected by condition rating datasets(Godart and Vassie, 1999 a). Thus, 
it is evident that the operations of those BMS modules are very difficult without bridge condition ratings. 
 
Time-series predictions are important resources to make decisions in many application (Weigend and 
Gershenfeld, 1994). In the field of bridge management, there are various available techniques to forecast 
and to analyze time-series datasets such as regression, Markov model, genetic algorithm and artificial 
neural network models. To obtain reliable prediction from conventional techniques, the size of missing 
patterns from a large dataset must be about 5% or less (Tabachinick and Fidell, 2001). Conventional 
prediction methods also cannot be applied to irregularly-sampled datasets (Karna et al., April 2006). 
 
This fundamental limitation is discussed in the conceptual model of this study. The reliable outcomes in 
recent predictions can be achieved by using ANNs, but inaccurate prediction results in over longer period 
are also obtained. The main reason is that predictions with unreliable weighting factors are trained under 
rare condition rating variances using a limited amount of existing bridge condition rating datasets (Lee et 
al., 2005a; Lee et al., 2005b). 
 
An enhanced version of ANN-based bridge condition rating models is presented in this paper. This model 
can be used to overcome the initial problems in the conceptual design. A pilot study conducted to measure 
its predictive performance using the National Bridge Inventory (NBI) from the Maryland Department of 
Transportation (DoT). This refined model called the Backward Prediction Model (BPM) predicts the 
entire or selected periods of historical bridge condition ratings to support the existing BMS input 
requirements to improve long-term prediction dependability. 
 
 
2. Outline of the BPM 
 
Generally, this research aims to use a small number of existing datasets collected over short periods to 
predict large datasets spanning over a much longer time period. In the field of bridge management, the 
history of commercialized element level inspection-based BMS is usually less than 15 years. A BMS 
requires condition rating information of structures for at least every second year. The bridge agencies that 
implemented the BMS during the early period still have only about 6 to 7 inspection records for their 
bridge assets. This can be a problem for aging bridges to recognize their historical patterns by using 
commonly available time series prediction methods. 
 
Bridge condition ratings normally do not change much over short time periods. As such, it is difficult to 
detect data trends using an ANN-embedded condition rating prediction model. However, the existing 
bridge condition ratings can be strengthened using non-bridge factors such as historical information about 
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vehicles, population and climate data surrounding the bridge area. They directly and indirectly affect the 
variation of bridge conditions, thus, non-bridge factors provide trends into the existing small quantity of 
ondition rating information throughout the ANN process. c 

Figure 1(a) schematically shows the mechanism of the BPM. It illustrates the establishment of the 
correlation between the existing condition rating data (from year n to year n+m) and nominated non-
bridge factors (from year n to year n+m). The established relationships using neural networks are applied 
to the missing years’ non-bridge factors to generate unrecorded condition rating data from year 0 to year n.  
Figure 1(b) presents the procedures for obtaining historical condition ratings from the proposed model. 
 

Element level inspection 
records (3-5 sets of 

inspections)

Required further 
data collections 
(1-2 sets more) 

Establishing 
non-bridge 

factors

Set-up data entry for ANN 
process (BPM)

Generating the historical 
bridge condition ratings by 

BPM

Post data analysis

Complete BPM process

Measuring level of 
reliablity

No

A
dj

us
t s

en
si

tiv
ity

 o
f n

on
-b

rid
ge

 fa
ct

or
s, 

if 
m

ax
. e

rr
or

 >
 ±

10
%

No

 

Present 
time

Year of 
Construction

Tim
[Year0 n n+m

Historical
Existing

InformationMissing Information

Non-Bridge Factors

Condition

Generate Historical Information

Correlation
by ANN

Ratings

Bridge

(b) Procedures for obtaining historical 
bridge element condition ratings (a) Mechanism of the BPM 

 

Figure 1: Details of the BPM 

 
2.1 Background of the obtained sample datasets 
 
The most widely used inspection method for a BMS operation is the element-level bridge inspection 
which evolves from the National Bridge Inventory (NBI). NBI information is submitted annually to 
FHWA by state highway agencies in America. NBI has been used for more than three and half decades to 
determine the needs of rehabilitation and replacement from a nation-wide perspective. The reason of 
using NBI instead of bridge element condition ratings in this study is the limitation of its availability. The 
obtained bridge condition datasets require calibration to fit into the proposed BPM model using the 
typical ANN input environment. The acceptable numerical scale for ANN modeling is from –1 to 1 (or 0 
to 1). Figure 2 illustrates the scale of NBI information for this particular study. The Condition Index (CI) 
in NBI is scaled between 0 and 9 for NBI #58 (deck), #59 (superstructure) and #60 (substructure). Every 
calibration step is assigned a different Condition State (CS) to express the bridge component’s condition 
ratings. 
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Figure 2: Scales of NBI for the BPM 
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For the non-bridge factors, based on the approximate bridge locations provided from the Maryland DoT, 
historical vehicle registrations, census population and climate data were collected by the Federal Highway 
Administration, U.S. Census Bureau, and the U.S. Department of commerce National Oceanic & 
Atmospheric Administration, respectively. 
 
2.2 Composition of the BPM 
 
Figure 3 illustrates the proposed single-layer feed-forward back-propagation neural-network model. It 
consists of an input layer, hidden layer(s) and an output layer where existing neurons in the hidden and 
output layers are connected by weighted connections. A neuron in the hidden layer obtains data from the 
input layer, which is processed by the calculation of a weighted sum and subsequently passed to another 
neuron in the output layer via a weighted connection.  
 
The specifications of the inputs, outputs and functions of the proposed BPM are detailed in Table 1. The 
input layer has 21 variables including 4 factors for the yearly vehicle data, 2 factors for the population set 
and 15 factors for climate conditions. This information is used to train the ANN to determine the 
correlation with currently-available bridge condition rating data in the output layer. 
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Figure 3: The schematic diagram of the proposed BPM 

 

Table 1: Components of the proposed neural-network model 

 
Training Algorithm Back Propagation Algorithm 
Transfer Function Log-sigmoid Function 
Inputs Vehicles (4 factors) 

Populations (2 factors) 
Climate conditions (15 factors) 

Output Bridge Condition Ratings (1 output) 
 
 
3. Validation of the BPM 
 
The entire timeframe of the bridge’ data used in the BPM is from 1966 to 2004. Among them, on 5 
occasions, inspection results have been used as BPM trained inputs and outputs (from 1996 in 2-year 
increments to 2004). The assumed condition rating at year zero (1966) of the bridge has also been used. 
The remaining years (from 1968 to 1994 with 2-year increments) of historical condition ratings can be 
generated by using the proposed BPM. Generated historical condition ratings are compared with the 
existing information to assess its reliability.  
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The timeframe of Tests #1 and #2 for the proposed BPM using NBI historical datasets is described in 
Figure 4 which shows the timeframe of inputs (Figure 4(c) and (f)) and its results (Figure 4(d) and (g)). 
The two different results are compared with the existing NBI datasets (Figure 4(e) and (h)) to measure the 
BPM performance. 
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Figure 4: BPM timeframe (Tests #1 and #2 using NBI for performance measurements) 

 
 
3.1 Backward comparisons (Test #1) 
 
NBI data generating the historical condition ratings between 1968 and 1994 is used in the first test. Figure 
5 shows the results of the generated historical condition ratings for decks, superstructures and 
substructures. Approximately 78.6% of the generated data from Test #1 can be directly compared with the 
actual NBI data to measure the prediction performance. Most artificially-generated historical condition 
ratings are obtained within the prediction error scale of less than ±10% as detailed in Figure 6. 
 
However, year 1982 in deck, year 1984 in superstructure, and years 1982, 1984 and 1986 in substructure 
possess errors larger than the allowed maximum error. In the case where the trained dataset using the 
existing uncorrelated condition ratings, the proposed neural-network model cannot provide acceptable 
condition ratings for a specific year. For example, sudden physical damages to the bridge are not reflected 
by the non-factors used in this proposed model, yielding inaccurate predictions. Nevertheless, the results 
of Test #1 can still be used as BMS input resources in further tests as will be shown in Section 3.2. 
 

 
(a) Deck (b) Superstructure (c) Substructure 

 

Figure 5: BPM results (Bridge #0312xxx1) 
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(a) Deck (b) Superstructure (c) Substructure 

 

Figure 6: Performance measurements (Bridge #0312xxx1) 
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2002 
2004 

0.6 
0.6 
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4. Minimum datasets verification for the BPM 
 
In this study, neural-network models are developed to predict historical bridge condition ratings. To 
develop the proposed neural-network model, 21 inputs (non-bridge factors) and 3 outputs (condition 
rating of decks, superstructures and substructures) using a single hidden layer feed-forward network are 
used to predict historical NBI condition ratings. Fourteen sets of historical condition ratings using 5 sets 
of available condition ratings from 1966 to 1994 are obtained, excluding the initial year of bridge 
condition. The number of neurons is denoted by the number of inspections (including those in the initial 
year) in which 6 neurons in the hidden layer are used. 
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Figure 7: Average errors for different numbers of trained inputs (Bridge #0312xxx1) 

 
 
5. Conclusion 
 
This research has been inspired by the lack of historical condition ratings for the BMS database. The 
neural-network has been employed to backward-predict the historical condition ratings for inspection 
items of bridge elements. The generated datasets fulfill one of the vital BMS requirements of improving 
the prediction reliability in future bridge condition ratings. This also affects many processes in the BMS 
analysis modules. 
 
T
different tests with NBI raw data. The comparison results using backward predictions with NBI were 
shown to possess about 6.7%, 6.7% and 7.5% of the prediction errors from 1974 to 1994 with 2-year 
increments in deck
d
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historical data from Test #1 as input data to the BPM, which produces current condition ratings to 
compare with NBI datasets (5 sets of inspections from 1996 to 2004). The results show that the average 
errors in decks, superstructures and substructure are about 3.20%, 3.10% and 3.20% respectively. 

 should be noted that this work is only valid for the obtained bridge sample dataset to provide a 
ridge agencies. The proposed BPM also provides a cornerstone for further practical 

evelopments. 
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It has been observed that the proposed model could be successfully used to predict the historical bridge 
condition ratings as long as the trained input dataset and collected non-bridge factors are sensitive to the 
bridge conditions. 
 
It
framework for b
d
 
In addition, an extension of the proposed study can be applied to similar problems in many other 
Infrastructure Managemen
analytical processes to improve the reliability of IMS outcomes. 
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