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Abstract. The parallel coordinate (PC) plot is a powerful visualization tools for high-
dimensional data.  In this paper, we explore its usage on gene expression data analysis.   We 
found that both the additive-related and the multiplicative-related coherent genes exhibit special 
patterns in the PC plots.  One-dimensional clustering can then be applied to detect these patterns.  
Besides, a split-and-merge mechanism is employed to find the biggest coherent subsets inside 
the gene expression matrix.  Experimental results showed that our proposed algorithm is 
effective in detecting various types of biclusters.  In addition, the biclustering results can be 
visualized under a 2D setting, in which objective and subjective cluster quality evaluation can be 
performed. 
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INTRODUCTION 

Data from microarray experiments are usually expressed as a large matrix 
containing gene expression levels (rows) under different experimental conditions 
(columns).  One of the challenges in gene expression data analysis is to identify co-
expressed genes which exhibit similar behavior. Traditional clustering techniques are 
global in nature in which grouping is performed along the entire rows or across the 
entire columns [1, 2].  In practice, genes co-express only under certain experimental 
conditions.  Biclustering which perform clustering simultaneously along row and 
column directions is thus highly desired [1, 3, 11, 12]. 

Besides biclustering, visualization of the gene expression data is often helpful for 
analysis.  However, the visualization is not trivial due to the high dimensional nature 
[4].  One of the powerful tools for visualizing high-dimensional data is the parallel 
coordinate (PC) plot in which each dimension is represented as a vertical axis, and the 
N-dimensional axes are drawn in parallel to each other [5, 6].  In this paper, the PC 
technique is proposed to detect and visualize biclusters embedded in the gene 
expression matrix.  First, special patterns of different types of biclusters are 
investigated using the PC plots.  Then, the biclustering problem is reformulated as 



finding these special patterns in the PC plots.  Experimental results will be presented 
to show the effectiveness of the proposed biclustering algorithm.  

 

BICLUSTER ANALYSIS USING THE PC PLOT 

In a gene expression matrix, rows represent genes while columns represent 
experimental conditions.  A bicluster is a subset of rows which exhibit coherent 
patterns across a subset of columns.  There are two general types of biclusters, namely 
additive-related and multiplicative-related biclusters [1].  Figure 1 shows examples of 
these two types of biclusters.   

 
C1 C2 C3  C1 C2 C3 
1 5 2  48 16 8 
3 7 4  24 8 4 
5 9 6  36 12 6 

         (a)   (b) 
FIGURE 1.  (a) An additive-related bicluster and (b) a multiplicative-related bicluster. 

 
A way to visualize the high dimensional data is to use the parallel coordinate (PC) 

plot.  All axes are arranged in parallel to each other on a 1D plane.  Despite the fact 
that the orthogonal property is destroyed, geometric structure can still be preserved by 
the PC plot [5, 6].  Figure 2(a) shows the PC plot of the additive-related bicluster of 
Figure 1(a).  We can see that the additive-related bicluster shows a number of lines 
with the same slope across the conditions.  Thus if {C2-C1, C3-C1} is considered as 
in Figure 2(b), the additive-related bicluster can be identified as a single clustered 
point.  For the multiplicative-related bicluster in Figure 1(b), direct PC plot in Figure 
2(c) does not show any simple structure.  However, if {C2/C1, C3/C1} is considered 
in the PC plot as in Figure 2(d), an overlapped line is obtained in which the 
multiplicative-related bicluster can be identified again as a single clustered point.  
Based on these observations, the problem of biclusters identification can be 
reformulated as finding these special structures, i.e., clustered points, in the PC plots. 

 
                 (a)                      (b)                                (c)                        (d) 
FIGURE 2.  PC plots for (a) an additive-related bicluster; (b) the bicluster in (a) with axes {C2-C1, C3-

C1}; (c) a multiplicative-related bicluster and (d) the bicluster in (c) with axes {C2/C1, C3/C1}. 
 



THE PROPOSED BICLUSTERING ALGORITHM 

Although biclusters appear as clustered points in the PC plots, their detection is 
complicated as rows and columns in a bicluster may not be in a consecutive order in a 
gene expression matrix.  The presence of unrelated rows and unrelated columns 
obscures those special structures and thus biclusters stay hidden.  To solve this 
problem, every two columns are compared so as to identify the related columns first.  
Here, the related columns mean the existence of a clustered point as in Figure 2(b) and 
Figure 2(d).  To illustrate the idea, let us consider the data shown in Figure 3.  In 
searching for the clustered points, a difference matrix, i.e., the differences between 
two columns, is formed as in Figure 4.  Consider column “C5-C3”.  There are only 
three distinct clustered points: 0 (5 counts), 1 (1 count), 2 (5 counts).  This suggests 
the existence of three biclusters between “C5” and “C3”. 

o the first bicluster is for rows R1, R3, R5, R9 and R11 in which the difference 
between “C5” and “C3” is zero, i.e., a constant bicluster; 

o the second bicluster is for rows R2, R4, R6, R8 and R10 in which the 
difference between “C5” and “C3” is two, i.e., an additive bicluster; 

o the third bicluster involves row R7 only, thus it is not a valid bicluster. 
Thus by merging “C3” and “C5”, two biclusters are formed as in Figure 5.  The 

analysis can be repeated for each of these two groups to find out whether any other 
columns can be merged to {C3, C5}, i.e., using either C3 or C5 as a reference, check 
whether C1, C2, C4, and C6 can be merged with {C3, C5}.  As in Figure 6, two 
difference matrices are obtained.  Note that the difference values can be read directly 
from the original difference matrix of Figure 4.  By examining the first difference 
matrix in Figure 6, we can see that two paired columns, “C1-C3” and “C2-C3”, show 
a single clustered point with the difference value equals to zero.  This suggest that 
columns “C1’ and “C2” can be merged to {C3, C5} for rows R1, R3, R5, R9 and R11.  
The second difference matrix also has a single clustered point with value equal to 1.  
Therefore, “C6” can be merged to {C3, C5} for rows R2, R4, R6, R8 and R10.  By this 
repeated “merge and split” process – merging the paired columns and splitting the 
rows, we can identify possible biclusters embedded in the dataset. 

 
 C1 C2 C3 C4 C5 C6 
R1 1 1 1 5 1 0 
R2 1 3 2 2 4 3 
R3 1 1 1 2 1 2 
R4 3 1 3 6 5 4 
R5 1 1 1 0 1 3 
R6 2 3 3 1 5 4 
R7 0 3 6 7 7 1 
R8 4 5 2 1 4 3 
R9 1 1 1 3 1 3 
R10 6 0 1 6 3 2 
R11 1 1 1 2 1 4 

FIGURE 3.  A dataset consists of two biclusters. 
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R1 0 0 4 0 -1 0 4 0 -1 4 0 -1 -4 -5 -1 
R2 2 1 1 3 2 -1 -1 1 0 0 2 1 2 1 -1 
R3 0 0 1 0 1 0 1 0 1 1 0 1 -1 0 1 
R4 -2 0 3 2 1 2 5 4 3 3 2 1 -1 -2 -1 
R5 0 0 -1 0 2 0 -1 0 2 -1 0 2 1 3 2 
R6 1 1 -1 3 2 0 -2 2 1 -2 2 1 4 3 -1 
R7 3 6 7 7 1 3 4 4 -2 1 1 -5 0 -6 -6 
R8 1 -2 -3 0 -1 -3 -4 -1 -2 -1 2 1 3 2 -1 
R9 0 0 2 0 2 0 2 0 2 2 0 2 -2 0 2 
R10 -6 -5 0 -3 -4 1 6 3 2 5 2 1 -3 -4 -1 
R11 0 0 1 0 3 0 1 0 3 1 0 3 -1 2 3 

FIGURE 4.  The difference matrix for the dataset in Figure 3. 
 

 {C3, C5} C1 C2 C4 C6   {C3, C5} C1 C2 C4 C6 
R1 {1, 1} 1 1 5 0  R2 {2, 4} 1 3 2 3 
R3 {1, 1} 1 1 2 2  R4 {3, 5} 3 1 6 4 
R5 {1, 1} 1 1 0 3  R6 {3, 5} 2 3 1 4 
R9 {1, 1} 1 1 3 3  R8 {2, 4} 4 5 1 3 
R11 {1, 1} 1 1 2 4  R10 {1, 3} 6 0 6 2 

FIGURE 5.  The two different groups formed by merging columns “C5” and “C3”. 
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  {C3, C5} C1-
C3 

C2-
C3 

C4-
C3 

C6-
C3 

R1 {1, 1} 0 0 4 -1  R2 {2, 4} -1 1 0 1 
R3 {1, 1} 0 0 1 1  R4 {3, 5} 0 -2 3 1 
R5 {1, 1} 0 0 -1 2  R6 {3, 5} -1 0 -2 1 
R9 {1, 1} 0 0 2 2  R8 {2, 4} 2 3 -1 1 
R11 {1, 1} 0 0 1 3  R10 {1, 3} 5 -1 5 1 

FIGURE 6.  The two difference matrix formed by merging columns “C5” and “C3”. 
 

RESULTS AND DISCUSSION 

We analyze the performance of our algorithm on both synthetic and real datasets.  
As gene expression values are often corrupted by noise, we will first investigate the 
performance of our algorithm on noisy synthetic data.  Then, we will present our result 
on a real dataset: the yeast “Saccharomyces cerevisiae” cell cycle data. 

Noisy Artificial Dataset  

The dataset is of dimension 100 by 10.  Its values are uniformly distributed between 
-5 and 5.  A bicluster pattern of 30 rows by 4 columns is embedded in which related 
columns are randomly placed.  The bicluster is an additive-related pattern with 
Gaussian noise of variance equal to 0.2.  There are two thresholds to be set in our 
algorithm.  The first is the noise threshold which is used to define the similarity of 
expression values and used in the 1D clustering among paired columns.  The second 
threshold is the minimum number of rows that should be maintained when columns 
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are merged. This threshold is important as it prevents column merging if the number 
of rows falls below the threshold after merging. 

Figure 7 shows a bicluster found by our algorithm when the noise threshold is set to 
be 1.2.  The four columns are identified correctly, but, three rows are missed. Figure 8 
shows the four columns: the rows that are found are displayed in red, while the three 
missed rows are displayed in blue. We can see that these three missing rows are 
caused by the use of a small noise threshold. In practice, we do not know the bicluster 
in advance.  We can adopt an exploratory approach for setting the appropriate noise 
threshold [6].  Starting with a small noise threshold, we gradually increase its value 
while visualizing the detected bicluster using the PC plot.  By increasing the noise 
threshold, more rows are included in the bicluster.  Then, at some point, unrelated 
rows start to creep into the bicluster.  Once this occurred and is observed in the PC 
plot, we stop increasing the noise threshold.  Using this procedure, we found that when 
the threshold is set to 1.5, all the rows are correctly detected.  This example shows that 
the PC plot can be a powerful visualization and interactive tool that allows us to 
examine the quality of the detected bicluster. 

 

 
FIGURE 7.  The PC plot of the four related columns in the additive related bicluster.  Red color shows 

rows from the true bicluster while blue color shows rows from the original dataset 

 
FIGURE 8.  The PC plot of the difference between the last three columns and the first column.  The 
red color shows rows of the true bicluster that are found by our algorithm with noise threshold = 1.2 

while the blue color shows the three rows of the true bicluster that are missed out. 

Real Dataset – Yeast S. Cerevisiae 

This dataset describes the cell cycle expression of S. cerevisiae [8]. It contains 2884 
genes and 17 conditions. By setting the minimum number of genes and the noise 
threshold to be 20 and 5 respectively, 100 biclusters are found. Table I shows the 
mean square residue score (MSRS) [8] and average correlation value (ACV) [9] of the 
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biclustering results.  A highly homogeneous bicluster should have a low MSRS and a 
high ACV.  Over the 100 detected biclusters, the average MSRS has a small value 
equal to 0.01553 and the average ACV has a high value equal to 1. Besides, we have 
found that the biggest bicluster also exhibits the lowest MSRS and the highest ACV at 
the same time.  Thus, the proposed algorithm can detect significant homogeneous 
biclusters. 
 
Table I. A summary of biclustering results using the proposed algorithm 
Bicluster Size MSRS ACV 
Average - 0.01553 1 
Biggest size 21x10 0 1 
Least variation 21x10 0 1 
Highest correlation 21x10 0 1 
 

A main concern in the study is whether biclusters with genes having the same 
function can be discovered. To evaluate the ability of the proposed algorithm in 
finding such kind of biclusters, we calculate percentage of biclusters which are 
overrepesented in one or several Gene Ontology (GO) annotation. A bicluster is 
regarded to be overrepresented in a functional category if the probability for obtaining 
the category by random (p-value) is significantly small.  We considered five types of 
categories including biological process, cellular component, deletion viability, 
molecular function and regulatory pathway with p-values less than 0.05.  The results 
are generated using the software GeneMerge [10]. The results have also been 
compared with Cheng and Church algorithm. The number of detected biclusters in 
Cheng and Church algorithm is set to be the same as that found by the proposed 
algorithm. The results are provided in Table II.  

For p-value < 0.05, the proposed algorithm shows the highest enrichment in cellular 
component categories. The percentage of enriched biclusters is 81%. Cheng and 
Church algorithm also has the highest enrichment in cellular component, but the 
percentage is 55% only.  The proposed algorithm also outperforms Cheng and Chruch 
algorithm in other categories except the regulatory pathway.  Besides the percentage 
of abundance, results for functional enrichment in cell component categories are also 
provided in Table III. Note that we only showed the results with the corrected p-value 
<0.05.  For a more comprehensive set of results and the software codes, please refer to 
the web site: http://www.eie.polyu.edu.hk/~nflaw/Biclustering.  Among the 100 
biclusters, the 24-th bicluster has the lowest p-value, which is equal to 1.23×10-5, and 
there are 11 genes associated with the cellular component category.  Despite the fact 
that not all biclusters have GO terms assigned, biclusters without category associated 
may contain genes unknown to certain functions according to current knowledge. 
Further study on those biclusters may lead to new biological findings.  More detail GO 
analysis of the detected biclusters is currently under investigation. 
 
Table II. Comparison between the proposed biclustering algorithm and Cheng and Church algorithm in 
functional enrichment. 

Categories* Algorithm p-value 
BP CC DEL MF PATH 

Proposed < 0.05 65% 81% 33% 37% 11% 



Cheng & 
Church 

< 0.05 54% 55% 11% 35% 17% 

* BP, CC, DEL, MF and PATH stand for biological process, cellular component, deletion viability, 
molecular function and regulatory pathway respectively. 
 
Table III. Details of the functional enrichment based on GO annotation of cell component categories for 
both p-value and the corrected p-value less than 0.05. 
Bicluster 
index 

Annotation P-value Corrected P-
value 

Genes 

1 
 

condensed nuclear 
chromosome 

1.04E-03 1.14E-02 YER179W, YPL194W 

5 
 

condensed nuclear 
chromosome 

1.14E-05 1.49E-04 YER179W, YHR157W, YPL194W 

7 condensed nuclear 
chromosome 

1.14E-05 1.26E-04 YER179W, YHR157W, YPL194W 

8 
 

condensed nuclear 
chromosome 

2.27E-03 2.95E-02 YHR157W, YPL194W 

9 condensed nuclear 
chromosome, 
pericentric region 

2.27E-03 3.63E-02 YGR188C, YHR014W 

condensed nuclear 
chromosome 

9.40E-04 1.32E-02 YER179W, YPL194W 15 
 

integral to membrane 3.36E-03 4.71E-02 YER060W, YFL054C, YNL194C 
16 
 

condensed nuclear 
chromosome 

9.40E-04 1.03E-02 YER179W, YPL194W 

17 
 

condensed nuclear 
chromosome 

1.14E-03 1.82E-02 YER179W, YPL194W 

22 
 

condensed nuclear 
chromosome 

1.04E-03 1.45E-02 YER179W, YPL194W 

38 prospore membrane 2.19E-03 3.73E-02 YER096W, YLR054C 
52 
 

condensed nuclear 
chromosome, 
pericentric region 

9.40E-04 1.22E-02 YGR188C, YHR014W 

57 condensed nuclear 
chromosome 

1.25E-03 1.50E-02 YHR079C, YHR157W 

81 condensed nuclear 
chromosome 

9.40E-04 8.46E-03 YHR157W, YPL194W 

 
 
 

CONCLUSIONS 

We have investigated the use of parallel coordinate (PC) plots on biclusters 
detection and visualization.  The special structures exhibited by biclusters in the PC 
plots have been studied.  With the use of these special structures, 1D clustering and a 
split and merge mechanism have been employed for biclusters detection.  Beides, the 
PC plots allow detected biclusters to be visualized interactively under a 2D setting.  
We have verified the performance of our algorithm using both artificial noisy datasets 



and real datasets.  Experimental results showed that our proposed algorithm is 
effective in detecting meaningful biclusters.   
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