
 30 

Fourth International Conference on Construction in the 21 st Century (CITC-IV) 
“Accelerating Innovation in Engineering, Management and Technology” 
July 11-13, 2007, Gold Coast, Australia  
 
 
 

GA-Fuzzy Financial Model For Optimization Of A BOT Investment Decision 
  

Md Mainul Islam 
PhD Candidate, Griffith School of Engineering, Griffith University, Gold Coast, Queensland, Australia  

 
Sherif Mohamed 

Professor, Griffith School of Engineering, Griffith University, Gold Coast, Queensland, Australia  
 

 
 
Abstract 
Financial modeling for investments to build/operate/transfer (BOT)-type projects is essentially intricate. 
The complexity stems mainly from two folds: multi-party involvement and uncertainty. Promoters need a 
systematic means for objective evaluation of financia l performance measures in order to examine whether 
a certain level of profit margin and an attractive financial proposal to clients, are possible . A clear 
research gap is perceived in simultaneous evaluation of profitability and bid-winning potential from the 
promoters’ perspective. By using a combination of genetic algorithms and the fuzzy set theory, an 
intelligent algorithm, is developed for optimization of conflicting financial interests in deriving the right 
mix of three key decision variables: equity ratio, concession length, and base price. Fuzzy sets are used to 
explicitly incorporate uncertainty in estimating economic and financial parameters due to lack of 
available data. Genetic algorithms is used for solving corresponding fuzzy objective function coupled 
with multiple constraints. A case study from prevailing literature demonstrates the excellent capability of 
the developed model to produce optimal financial scenario under uncertainty.  
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1. Introduction 
 
Following detailed feasibility studies, once BOT-type projects are scrutinized as possible investment 
opportunities, potential promoters need to submit a tender proposal along with financial offer to clients. 
One of the key challenges that potential promoters often face is how to design an attractive financial 
proposal. Although, profitability plays a central role  in evaluating their financial standing, this is not the 
sole criterion as potential promoters also look for financial interests of government, as it should be. This 
is particularly very important in competitive tendering where potential promoters need to draw keen 
attention of clients, by offering them financial proposals as attractive as possible.  
 
The next obvious question then arises is what would be the essential elements that promoters should 
emphasize from a group of available economic and financial elements, during financial modeling. It is 
well recognized in literature that concession length, bid mark-up and debt-to-equity ratio are three critical 
attributes, which possess both financial and contractual implications in evaluating long-term cash flow of 
BOT-type facilities. Excessive tuning of theses elements in favor of promoters may even yield loss of 
opportunity of winning the bid. Recognizing paramount importance of previously mentioned elements in 
financial modeling, Lianyu and Tiong (2005) developed a minimum feasible tariff model for determining 
possible lowest tariff of a BOT-type water supply project. Shen and Wu (2005) and Zhang and AbouRizk 
(2006) developed financial models for determining a suitable concession length that satisfies financial 
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interests of both promoters and clients. Bakatjan et al. (2003) employed a linear programming technique 
to determine optimal capita l structure of a BOT-type power project. Zhang (2005) also described a 
generic methodology for obtaining an optimal mix of debt-to-equity ratio  for BOT-type projects. 
Unfortunately, none of these models has considered all the three attributes together as decision vectors in 
examining their aggregated effects to cash flow modeling, and thereafter, deriving an optimal scenario for 
proposing a feasible and attractive financial offer to clients. This integration is necessary to objectively 
identify financial situations and most importantly, to establish a baseline for further negotiations for 
minimizing conflicting financial interests of both promoters and clients. The issue is more challenging to 
prospective promoters as BOT-type projects are inherently characterized by uncertainties.  
   
Previous studies incorporated uncertainties/risks in financial modeling by utilizing a probabilistic 
approach, namely Monte Carlo simulation. The primary notion is to consider decision variables as 
random numbers. Random numbers are used with prior assumption of adequacy in data availability. In 
reality, financial and economic data are often very scarce due to hidden sources, heterogeneous 
investment climate, and so on. Therefore, subjective judgments are often employed in defining probability 
distribution of model parameters that may even lead to illusion of precision of the whole process.  
 
Non-probabilistic approach, like the fuzzy set theory may be used as an alternative method to deal with 
uncertainty in financial modeling. This is more reasonable to employ when uncertainty in terms of 
imprecision and vagueness arise due to lack of data. Kutcha (2000), Kahraman et al. (2002), to name a 
few, employed the fuzzy set theory for developing fuzzy equivalents of deterministic financial 
performance measures, such as, net present value, benefit cost ratio , and so on. Unfortunately, application 
of the fuzzy set theory to financial modeling of BOT-type projects is limited. Mohamed and McCowan 
(2001) introduced possibility measures for ranking and selection of BOT-type projects from promoters’ 
viewpoint. Nevertheless, none of these studies pinpoints the practical need of prospective promoters for 
deriving a profitable yet competitive financial offer to clients within uncertain investment environment 
opportunity. The motivation of this paper thus arises from this clearly perceived theoretical gap. The rest 
of the paper is organized as follows. Section 2 provides the rationale of intended method in treating 
uncertainty associated with cash flow modeling parameters. Section 3 defines the reference problem. 
Section 4 depicts a methodology for mapping and integrating fuzzy variables into the optimization 
process. Section 5 succinctly describes GA as a solution tool for the optimization problem. Section 6 
demonstrates applicability of the proposed model through a numerical example. Finally, section 7 
concludes the paper. 
 
 
2. Methods for Treatment of Uncertainty 
 
In non-probabilistic fuzzy approach of cash flow modeling, uncertain parameters are expressed as fuzzy 
numbers. Consequently, fuzzy arithmetic operations are needed to evaluate the fuzzy objective function. 
The fuzzy extension principle , developed by Zadeh (1965) is a popular choice for executing algebraic 
operations on fuzzy numbers because of its simplicity in application. In the fuzzy extension principle, 
membership functions of output fuzzy variables are computed by using a series of discrete points on input 
fuzzy numbers. The vertex method is another alternative for mapping of output fuzzy variables. The 
vertex method is a numerical approximate method, which is based on a-cuts and standard interval 
analysis. Major advantages of using the vertex method may be viewed from two folds: numerical 
accuracy and computational burden. Regarding, quality of results, the vertex method can prevent 
abnormalities of output membership functions, which are often realized from using discretization 
technique in the fuzzy extension principle. Moreover, it can prevent widening of results due to multiple 
occurrences of variables in the function expression, as perceived in using conventional interval analysis 
method (Ross, 1995). On the other hand, the vertex method may greatly reduce computational burden of 
the fuzzy extension principle (Guan and Aral, 2005). Amount of saving in computational cost in 
employing the vertex method, is even more as the number of model parameters increases. Considering the 
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above, this study employs the vertex method for computing membership functions of uncertain 
parameters. Interested readers may refer to Dong and Shah (1987) for fundamentals of the vertex method. 
 
 
3. Problem Statement 
 
The proposed algorithm aims for deriving maximum potential of winning a fresh bid from promoters’ 
viewpoint. A new financial performance measure; bid winning index (BWI) is developed elsewhere 
(Islam et al., 2006) to objectively quantify promoters’ bid winning potential. BWI is defined as utility of 
net present value of promoters’ financial gains that may be realized from unit operation period and unit 
base price with a certain comfort leve l of equity injection to stipulated initial investment outlay. From the 
above definition, it is clear bid winning potential depends on three key contractual-cum-financial and 
economic elements: concession length, base price, and equity ratio. Therefore, these three elements are 
considered as state variables in the optimization process. Since decision vectors comprise both integer and 
floating-point continuous variables, the reference optimization problem is, in fact, a continuous mixed 
integer optimization problem. The constrained optimization (maximization) problem can be 
mathematically expressed as: 
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where ?1, ?2, and ?3 are the three non-negative decision vectors representing concession length, base price, 
and equity ratio; '

3?  is a vector of ?3, which represents equity comfort level. ? i s denotes i number of 
constraints. The objective function and constraints are defined in section 3.1 and 3.2, respectively. 
 
3.1. Objective Function 
 
The objective function as stated in Equation 1(a) is to maximize BWI. 
 
3.2 Constraint Sets 
 
3.2.1 Profitability 
Equation 1(b) illustrates promoters’ profit margin (defined as return on investment, R), which should at 
least be equal to a pre-specified limit , RE. In contrast, equation 1(c) is constructed from government 
restrictions on promoters’ profit margin, that is, it must be within a certain limit , RG (Zhang and 
AbouRizk, 2006).  
 
3.2.2 Debt servicing  
Equation 1(d) represents debt-service-coverage ratio (DSCR) in each year of the operation period until 
loan maturity, and must not be less than a threshold value (Bakatjan et l., 2003, Zhang, 2005).  
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3.2.3 Financial return to government 
Equations 1(e) and 1(f) depict financial benefits of clients (defined as net present value of government 
earnings, NPVG) from running the BOT-type project after its concession period until end of economic 
life, which must be positive (Shen and Wu, 2005).  
 
Equation 1(g) represents operation period available for running a project by promoters, and it cannot be 
less than loan maturity period, LRP. The remaining equation 1(h) imposes non-negativity condition on 
decision vectors. Note, detailed derivation of the financial model can be found in Islam et al. (2006). 
 
 
4. Methodology 
 
Section 4.1 presents steps of fuzzy transformation whereas section 4.2 illustrates constraint-handling 
mechanism used by GA. 
 
4.1 Fuzzy transformation 
 
Equations 1(b) through to 1(h) involve four financial performance measures, which do essentially become 
as fuzzy numbers when input parameters are considered as fuzzy sets. Three performance measures from 

promoters’ perspective, namely net present value of financial gains; EV~NP ; return on investment; ER~ , 

debt service coverage ratio; R
~

DSC , and one from Government perspectives GV
~

NP  are considered in 
this study. In order to evaluate uncertainties in these output fuzzy financial performance measures that 
propagates through fuzzy input variables, the vertex method is used.  
 
For simplicity of demonstration, if we consider three continuous-valued fuzzy input variables:  Initial 

Investment Outlay; cI
~

, Discount rate; d
~

 and demand; Q~  then by using a-cuts at the same level, we may 
obtain corresponding intervals of three fuzzy input variables as: 
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where aL and aR represents left and right extreme points of an interval respectively at a specified a-cut. 
 
Combining these extreme points of intervals will yield eight vertices (combination points) as follows: 
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where ß represents number of vertices, ?.   
 
For a given set of decision vectors O = f(?1, ?2, ?3), using each of the vertices mentioned in equation (4), 
extreme points of fuzzy financial performance measures will be a function of fuzzy input parameters as: 

( )ββ
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where i is an index representing number of fuzzy outputs (financial performance measures) f .   
 
The membership function of output fuzzy financial performance measures then can be obtained as:  
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Using algebraic rule, each of fuzzy financial performance measure can numerically be approximated as:  
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where j represents number of a-cuts.  
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4.2 Constraint Handling Mechanisms  
 
GA cannot directly handle constraints. The static penalty function approach is employed to convert 
constrained optimization problem into an unconstrained optimization problem by following way:   

∑
=

ℜ−=
L

i
iBWIMaximize

1

ψλ  
[ ]7,1∈∀ i  (8) 

 
where ? is the fuzzy fitness function to be optimized, ℜ  is the penalty parameter which is considered as a 
high positive value. iψψ =i , when iψ  is negative, and zero otherwise. L is total number of 

constraints. Note iψ  is defined after evaluating iϕ  as follows: 

( )*
iii ψϕψ −=      (9) 

where, *
iψ represents threshold values of each of the constraints 

 
Note all constraints are normalized prior to computation of penalty term. Normalization of constraints is 
necessary in order to use a single penalty coefficient and most importantly, to prevent ill conditioning of 
optimization performance of complex systems due to dominance of large constraints.  
 
 
5. Genetic Algorithms 
 
Optimization of fuzzy fitness function as stated in equation (8) is difficult to solve analytically. 
Mathematically, it is a NP-hard problem. Suitable methods from the family of evolutionary computation, 
like genetic algorithms (GA) may facilitate the optimization process. GA is an authoritative option in 
producing global, optimal or near-optimal solutions. GA is a probabilistic, heuristic search technique 
inspired by biological evolution of nature (Goldberg, 1989). In this study, a real-coded GA is used.  
 
The optimization process starts with generating an initial random population, and then evaluating its 
corresponding fuzzy fitness function. Next, GA enters into a reproduction cycle comprising selection, 
crossover, and mutation operation for a pre-specified number of generations. A linear-ranking selection 
scheme (Goldberg, 1989) is used in this study. Simulated Binary Crossover (SBX) operator, developed by 
(Deb and Agarwal, 1995) is applied to perform crossover operations on real-coded genes as variable-by-
variable basis. In SBX operator, a distribution index, ?c defines the shape and spread of polynomial 
probability distribution, while a probability of crossover is required for selecting a group of current 
chromosomes for crossover operation. After crossover, mutation operation is put into action to alter 
values of selected gene(s) within a specified bound. This study employs Parameter based mutation (PMB) 
operator (Deb, 2001). Rate of mutation is controlled by using a user-defined probability of mutation, Pm 
while the shape and order of perturbation is determined by a probability distribution parameters ? m. After 
mutation, elitism is applied to keep the generation monotonic . Note, details of each steps of GA 
reproduction cycle are intentionally skipped due to space limitation of this paper. Nevertheless, 
fundamentals of SBX and PMB operator can be found in Deb and Agarwal (1995) and Deb (2001), 
respectively. The algorithm is coded using the C++ programming language. 
  
 
6. Numerical Example 
 
The financial optimization model is tested with published data reported in Bakatjan et al. (2003). The 
reported case study is selected because of its comprehensiveness in data representation. The economic 
and financial parameters used in the optimization model are depicted in Table 1.  
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Table 1 : Economic and Financial Parameters Used in Optimization Model 
 

Price Variations  Economic and financial 
parameters  

Values 
Year of 

Operation 
Year wise Price as 
% of Base Price  

Economic Life  20 years Year 1 100% 
Construction Period 4 years Year 2 95% 
Loan Repayment Period 10 years Year 3 90% 
Annual O & M Cost  0.60% of Initial Cost Year 4 86% 
Inflation Rate 4.1% Year 5 81% 
Loan Interest Rate  10% Year 6 77% 
Tax Rate  11% Year 7 74% 
Demand Variation Constant Year 8 70% 

Year 9 66% 
Year 10 63% 

 

Year 11-20 25% 
 
For simplicity of demonstrating the effect of uncertainty, three input fuzzy sets are considered with 
triangular membership function as shown in Figures 1(a-c). For the purpose of comparison, it is assumed 
that most likely estimates of the input fuzzy sets: initial investment outlay, discount rate and demand are 
132565 US$, 12% and 405.8 GW.h  respectively , based on their corresponding deterministic values as 
stated in the original paper of Bakatjan et al. (2003). As seen from Figures 1(a-c), width of the support 
base reflects uncertainty. Pessimistic and optimistic estimates of input fuzzy variables are set to as (-) 
10% and +5 % of most likely values, respectively.   

 

  
Ic (x 103 US$) d (%) Q (GW.h) 

Figure 1 : Membership Functions of Initial Investment Outlays, Discount Rate, and Demand 
 
GA is then used for finding optimal mix of decision variables from a feasible solution space that 
corresponds to maximum bid winning potential. Table 2 depicts the values of parameters used in GA, 
which are selected after conducting a comprehensive sensitivity analysis.  
 

Table 2: Parameters Used in Genetic Algorithm 
 

Parameters  Value 
Population Size 50 
Maximum Number of Generations 50 
Selection Pressure 1 
Crossover Probability 0.8 
Distribution Index for SBX operator 3.0 
Mutation Probability 0.1 
Distribution Index for PMB operator 200 
Penalty Coefficient 103 
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In the process of optimization, a continuous space of decision vectors for the operation period (years), 
base price (cents/kW.h) and equity contribution (percent) is selected as [1-20], [5-15], and [10-90], 
respectively. Regarding threshold values of financial constraints, a minimum value of DSCR is 
considered as 1.5 (Zhang, 2005). The lower and upper limits of return on investment are set to 12% and 
18%, respectively. Using the values of decision vectors and thresholds of constraints, the model yields 
optimal solutions with corresponding financial performance measures. Due to space limitation, only the 
financial performance measure representing profitability is discussed further. 
 
Considering crisp values of input parameters: initial investment outlay, discount rate and demand, the 
optimal solution corresponds to concession length as 21 years, base price as 9.98 cents/kW.h and equity 
contribution as 26% with a maximum return on investment as 18%, which is comparable to the findings 
of original paper of Bakatjan et al. (2003) as (24, 9.04, 31.69). However, profitability reduces to around 
14%, if we consider the same situation but with the abovementioned input parameters as fuzzy sets. 
Resulting envelope of possibility of profitability is shown in Figure 2(a). This variation in profitability is 
due to possibilistic estimation of support base of input fuzzy numbers as shown in Figures 1(a-c). 
Profitability reduces due to a 5% increase in optimistic value and 10% decrease in pessimistic estimates 
of model parameters.  
 
By using the same set of input fuzzy parameters, the obtained optimal solution (BWI) is 30.36 with the 
corresponding set of decision vectors as (23, 10.28, 28.57). Corresponding membership function of return 
on investment is shown in Figure 2(b). The decision vectors increase in order to reduce the effects of 
uncertainty of financial and economic parameters on return on investment. Comparing Figure 2(a) and 
2(b), a 3.0 % increase of price in comparison to its counterpart crisp value is required for achieving an 
optimal solution. The increase in decision vectors, for example as observed in base price is due to cost of 
uncertainty and will be even more for a higher amount of uncertainty in parameter estimates (pessimistic). 
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Figure 2 : Membership Functions of Return on Investment, R 
 

Figure 3 reveals the optimization model converges to global solution. The solution improves quickly at 
the beginning and then gradually converges to the optimal solution.  
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Figure 3 : Convergence Graph of  GA 
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7. Conclusion  
 
In this study, an intelligent optimization algorithm has been developed for financial modeling of BOT-
type investment opportunit ies. The vertex method is embedded directly in the mixed-variable, continuous 
optimization problem, which is solved by using GA. The model will help meeting practical needs of 
prospective promoters in formulating a profitable yet competitive financial offer to clients. Propagation of 
uncertainty in evaluation of financial performance measures are considered by using possibility measures 
of continuous-valued fuzzy economic and financial parameters. Model results from the cited numerical 
example exhibits a clear reflection of uncertainty in the obtained set of decision vectors leading to optimal 
solution under fuzzy environment. Work is in progress for testing the developed model with data from 
other similar BOT-type investment opportunities subject to multiple uncertainties. 
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