
Software Systems as Complex Networks

Lian Wen Diana Kirk R. G. Dromey
Griffith University Griffith University Griffith University

Lwen@griffith.edu.au d.kirk@griffith. edu. au g. dromey@griffith. edu.au

Abstract networks [1][18]. Those networks include both those
occurring in nature, for example, neuron activity,
cellular metabolisms, protein folding and social

As software systems become larger and more networks, and those created by people, for example,
complex, in order to understand, manage and evolve electricity supply networks, the web and the internet.
these systems, we need better ways of characterizing Even though they represent totally different types of
and controlling their macroscopic properties. We systems, they share many common properties such as
suggest complex network theory may be useful for power-law degree distribution [1], small world
these purposes. In recent years, researchers have property [19] and high level of clustering [2][3]. The
shown that many complex systems from different similarity between different complex networks inspires
disciplines can be investigated as complex networks the idea that network growth mechanisms represent
and most of them comply with a scale-free network some basic natural tendency to create order from
model. We explore the view that a software system can chaos.
be studied as a network with a number of components
(classes) connected by dependency (integration) The recent progress in complex network theory
relationships; we call this network the Component motivates us to study software systems as complex
Dependency Network (CDN). The CDNs of several networks. A software system can be treated as a
Java libraries and applications have been examined network of components connected by dependency
and all of them exhibit some scale-free characteristics. relationships [7]. The importance of relationship is
This result has some practical value including that it stressed by the Object-Attribute-Relation (OAR) model
allows us to identify important components (classes) [4], which shows that human memory and knowledge
and thereby assists software maintenance and are represented by connections of synapses between
reengineering. We have built a tool to study software neurons, rather than by the neurons themselves [5].
systems as complex networks. In the paper we also Similarly, for software systems, some high level
suggest ways of controlling and changing how systems functions are realized by the relationships of low level
evolve in order to improve theirunderstandability and components. In this paper, the term component
maintainability, indicates an abstract form of software or even

hardware entities as in the behavior tree approach [6].
1. Introduction A component can be a traditional component in

CORBA or a Java bean, a class in an object-oriented
system, a sub-system of a software system and even a

As software intensive systems become larger and hardware device. Similarly, the relationship between
more complex there is a need to better understand the two components is also abstracted as a dependency
macroscopic properties of these systems if we are to relationship. We call this network a component
make better-informed decisions about reengineering, dependency network (CDN). In this paper, we have
maintaining and evolving such systems. Because of studied the degree distributions of the CDNs of several
scale effects traditional ways of viewing and Java libraries and applications and found that all of
characterizing large systems do not appear to be them show evidence of scale-free characteristics. That
adequate for our needs. There is therefore a need to means that all the degree distributions follow a power-
explore techniques from other disciplines that have had law distribution. A similar power-law distribution is
to deal with systems of large-scale complexity. also observed in applications written in C++ and
Complex network theory [2][19] is therefore an Smalltalk [9].
obvious candidate discipline for us to explore.

In recent years, researchers have investigated This power-law distribution of CDNs provides
complex systems from different domains as complex some evidence to support our initial conjecture that the

Proc. 6th IEEE Int. Conf. on Cognitive Informatics (ICCI'07)
D. Zhang, Y. Wang, and W. Kinsner (Eds.)
1-4244-1327-3/07/$25.OO ©2007 IEEE

106

evolution of software systems is like that of other kinds
of complex systems. Not only does this result inspire
some philosophical consideration of software systems,
but it also has practical value.

In this paper, based on CDNs, we propose a A
method, which applies a webmining technique [20], to
identify important classes (components) for large
software systems. This analysis is static. Compared to
a dynamic approach [8] based on the runtime method
call, the proposed approach is more suitable for
investigating libraries or systems where an overall
dynamic analysis is impossible.

The organization of the paper is as follow. In Figure 1. Lattice with degree 4
section 2, we briefly introduce complex networks and
describe some properties they exhibit. In section 3, we A small world network has a short diameter1 and
present some evidence to support the claim that high clustering coefficien?. A simple method to
software systems adhere to complex network principles generate a small world network is through a dynamic
and show scale-free network properties. In section 4, random 'rewiring' procedure on a lattice. For example
we introduce the proposed method to identify in Figure 2, three new connections have been added in
important classes in a software system. Finally, some the original lattice. The new network has a smaller
discussions are provided in section 5 and a brief diameter and keeps a high clustering coefficient. This
summary is presented in the last section. kind of network was originally studied in human social

networks [19].
2. Complex networks

For many years, networks have been treated as
either random networks or as highly structured lattices.
The random network theory of Erdos and Renyi has
dominated scientific thinking about networks since its
introduction in 1959 [2]. In random networks, edges
linking vertices are assumed to be randomly placed and
the number of edges attached to each vertex (the
degree) has been shown to follow a normal distribution
i.e. tends to be narrowly distributed about some
average. A random network is characterised by short
average path length. For a lattice, each vertex has the
same degree and the network exhibits long path length.
For example, in the 1-dimensional lattice depicted in
Figure 1, each vertex is associated with exactly 4 Figure 2 Lattice with rewiring
edges.

The scale-free network model was introduced in
However, these two traditional models cannot be 1990s [2]. The most important feature of a scale-free

used to explain many real large complex networks such network is the power-law degree distribution (see
as human social networks. Therefore, two new network
models have been proposed; the first one is small
world networks [18] and the second is scale-free
networks [3].

1 The diameter of a network is defined as the longest
distance between two nodes in the network.
2 The clustering coefficient is defined as: in a network,
for each node i, suppose there are ki other nodes
connected to it and there are n, links between those ki
nodes, then the coefficient for node i is Ci =2 ni l ki (ki -
1) . The clustering coefficient ofthe whole network is
the average of all nodes' clustering coefficient.

107

Figure 33), on contra to the normal distribution of a network [12], research collaboration networks, social
random network. The direct effect of a power-law networks and the World Wide Web [3]. The fact that
distribution is that there are a few nodes, called hubs, so many different kinds of system show strikingly
with a much larger number of connections compared similar topological properties has spawned huge
with the average; it seems that there is no upper limit interest across many disciplines and has caused
of the possible links a hub may have as the size of the researchers to postulate the existence of some basic
network increased, and that is the reason why the organisational principle. A breakthrough in the study
property is called scale-free. A scale-free network of complex networks may result in good progress in
usually exhibits following properties [2]: the research of many different fields. In this paper, we

suggest that the scale-free network property also exists
1. Power-law degree distribution: the degree in software systems. This implies that the research

distribution has a long decreasing tail, which results relating to complex networks in other
follows the power-law. disciplines can also be useful in software engineering.

2. Hubs: A few nodes have a much larger number
of links than most other nodes. In the next section, we will present some test

3. Small world: The average distance between results and show that some software systems exhibit
nodes in a scale free network is very small scale-free properties.
compared to the network's size.

4. Clustering: The clustering coefficient of some 3. Evidence
scale-free networks is found to be much larger
than that of a random network with the same A software system can be treated as a network of
number of nodes and links. components connected with dependency relationships.

5. Efriciency of Spread: In a scale-free network, Here, the concept of a component is a high level
via the hubs, information can spread through a functional abstraction. For different types of software
network much more efficiently than through a system, the implementation of components and the
random network [16]. mechanisms for connecting components are different.

6. High error tolerance: A scale-free network can
tolerate a much higher error rate than a random In Java and other object oriented systems, we treat
network, if the errors happen in randomly a public class or a public interface as a component. In
selected nodes or links. this section, we have tested the component dependency

7. Vulnerable to well organized attacks: Scale- network (CDN) of several Java libraries and
free networks are highly tolerant to random applications. All of them show scale-free properties.
errors, but may have weak points: the hubs. Combined with other work on C++ and Smalltalk [9],

these results support our initial conjecture.

3.1. A Tool to retrieve the CDN of software
systems written in Java

For a Java system, the classes are arranged in a
hierarchy of packages. At source code level, a Java
package is a directory in the file system, and each
public class of the package has a corresponding Java
file in that directory. Some packages may have sub-

.0 100 packages that are represented by sub-directories. In the
Figure 3. Power-law distribution component dependency network (CDN) of a software

system written in Java, each public class (or a public
interface) is a node. Suppose C, and C2 are two classes

The significance of the scale-free network model is of a Java system. If in the source code of C, C, is
due to the factthatmany real world complex networks explicitly referred to, we say class C1 is directly
are discovered to comply with this model. Those dependent on C2. We represent this relationship by a
networks include cellular metabolisms [11], chemical directed link from node C1 to node C2 in the CDN.
reaction networks, the internet, the protein regulatory Some links are bi-directional, which means the two

_______________________________ linked classes are dependent on each other.
We have developed a tool to explore the

y oc X x is the number of connections, y is the topological structure of a Java package's CDN (include
number of nodes, and y is the distribution exponent sub-packages). The tool can be freely downloaded

108

from the web [24]. After selecting a target Java average distance and the maximum distance between
package, this tool can perform the following tasks: nodes. Finally the power-law distribution exponent is

shown as ry", rtou and r7,t which represent the
1. Scan and parse all the Java source code under the numbers of incoming links, outgoing links and total

given directory and the sub-directories to create links respectively.
the nodes and the dependency links.

2. Calculate common statistical properties of the
CDN. -

3. Visualize the CDN.
4. Draw histograms of the degree distribution and

infer the parameters of the power-law
distribution.

5. Display the rank of class.
6. Display the dependency tree for any selected

Java class.

3.2. Test results

We have tested eight different Java applications
and libraries. Five of them are from Sun's Java release Figure 4. The CDN of Java package java.awt
j2sdkl.4.1_2, one is from an open source project
apache ant [25], and the other two are from small Java
projects written by one of the authors of this paper. The
CDN of Java package javaawt and apache ant are
shown in Figure 4 and Figure 5. The positions of nodes
in the CDNs are calculated using a force-directed
algorithm [26].

The statistical results of the tested Java packages
are listed in Table 1. In this table, n is the number of
nodes, I is the total number of links, Id is the total
number of bi-directional links, k is the average
degree, std is the standard deviation of the degree
distribution, p is the probability of having a link Figure 5. The CDN of apache ant
between two arbitrary nodes if on a random network,
C is the clustering coefficient, d and d. are the

Table 1 Statistical results of the eight tested Java packages

Package |n i/ld k std p C d d- rin rout rt",
1 java.awt 345 1721/151 4.99 12.72 0.03 0.63 2.99 7 1.58 1.11 1.42
2 java 1172 9453/374 8.7 31.45 0.01 0.57 2.58 6 1.23 1.46 1.43
3 javax 909 4683/124 5.15 15.89 0.01 0.61 4.03 13 1.09 1.21 1.74
4 com 642 2535/132 3.95 13.43 0.01 0.61 2.83 7 1.34 1.14 1.22
5 org 1083 7286/172 6.73 31.01 0.012 0.61 2.48 6 1.19 1.25 1.34
6 ant 628 2788/79 4.44 21.70 0.014 0.65 2.73 8 1.19 1.00 1.93
7 netp 79 126/8 1.59 3,71 0.051 0.69 3.01 8 1.09 1.08 1.87
8 classnet 36 61/6 1.70 3.59 0.10 0.73 2.90 6 1.47 1.70 4.304

4For all the rest ofthe testing data, the value ofthe power law parameter r is between 1 and 2, the reason for this
extra large value is probably caused by the size ofthe test sample is too small. There are only 36 nodes in the CDN
ofclassnet package.

109

From Table 1, it can be seen that the standard
deviation of the degree distribution is about three times
the size of the average degree. This is significantly
different from a normally distributed random network
model (in a normal distribution, the standard deviation
is equal to the mean). The clustering coefficient is
about 20 times larger than p, whereas in a random
network, the clustering coefficient is approximately >
equal to p [1]. Therefore these CDNs are clearly not
random networks.

For the eight Java CDNs tested, the degree
distributions for incoming links, outgoing links and
total links have been examined. All 24 distributions
show characters of a power-law distribution. Some of
the distributions are shown in Figure 6 - Figure 8 both Figure 7. Degree distribution of the total links
in linear and logarithmic scales. The x-axis represents of apache ant.
the number of input (output or total) links on a node
and the y-axis represents the number of nodes. The
curved line shows the function of the power-law
distribution y = Ax x- , where A and y are constants
for a given CDN.

Figure 6 and Figure 7 show strong evidence of
power-law distribution. In Figure 8, even though the
distribution is not smooth due to the small size of the
sample, a long decreasing tail can be clearly observed.
This is characteristic of a power-law distribution and
indicates a trend towards the scale-free property.

From our testing result, we argue that the CDN forFrostJava syteSmgrs, ti depenent ogf the functionality of =-
the systems, are scale-free networks. Figure 8. Degree distribution of outgoing links

of Java package netp.

3.3. Other evidence

The power-law distribution has also been found in
software systems written in C++ and Smalltalk. In
Chidamber's paper [9], the authors introduce a metric

l__ called coupling between object classes (CBO) to
measure 00 systems. The concept is similar to the

.s number of dependent components in this paper. In that
paper, two histograms of CBO distribution, which
come from a C++ system and a Smalltalk system, have
been presented, and both of them show power-law
distribution features. But that paper does not treat the
dependency or coupling relationship as a network and

~ E _ _=_ kil lkd_I|_doesnot claim the power-law distribution can be a
w E _=@ ~~general form for the dependence network for different
Figure 6 Degree distribution of incoming links types of software systems.
of package java.awt.

In this section, we have shown some evidence to
support the conjecture that for most software systems,

110

the CDN is a scale-free network. From this conjecture, A dynamic approach based on runtime method call
several interesting questions are raised. has been proposed to identify important classes for 00

systems [8]. The main idea of this approach is to
1. What is the fundamental reason for a CDN to be execute some scenarios of the targeted system on a

scale-free? special platform so that all the runtime method calls
2. Is a scale-free network the optimal topological can be recorded, and then analysed to identify some

structure for a CDN? If it is not, what is the important classes.
optimal structure?

3. What are the practical benefits of knowing that There are three limitations of the dynamic
the topological structure of a CDN is scale-free? approach. The first limitation is that this method is not

suitable for analysing software libraries. The second
The first two questions, which are related to the limitation is that, for some large complex systems, it is

origin and the advantages of scale-free networks, have not easy to cover all the major functions of the system
already drawn many discussions in other disciplines through only a few scenarios. Finally, for some
[2][13][15]. Some of the discussions are applicable to software systems, there may be no such special
software engineering. In Section 5 of this paper, we platform on which all the runtime method calls of a
will also provide some discussions. However, a full running system can be recorded. To address these
answer of these two questions will be a fundamental limitations, a static approach that identifies important
contribution not only to software systems but.-also to components (classes) through the analysis of a CDN,
complex systems in general and it is out of the scope of which can be retrieved from the source code, can be a
this paper. good supplement.

To answer the third question, understanding the A scale-free network has only a small numbers of
properties of a scale-free network may help to answer highly-connected nodes; we propose that those nodes
some interesting questions. For example, why do are more likely to be important components (classes).
software systems work properly most of the time with
known and unknown defects, but sometimes a very A CDN is a directional network, so it can be useful
small defect may cause the whole system to crash? We to separate the incoming connections from the
believe that properties 6 and 7 of a scale-free network outgoing connections. Apart from the count of
presented in section two may give some answer. A connection numbers, a webmining technique [20] has
scale-free network is high error tolerance for random been applied to obtain a more sophisticated measure.
errors but vulnerable to well organized attacks. For
more practical benefit, we propose that the scale-free The idea of the webmining technique is not only to
property of a CDN may help people to identify count the number of connections, but also to evaluate
important components and it may reduce software the quality of the connections. In a network, each node
maintenance and re-engineering costs. The details are i has two associated values: the weight of hub (denoted
presented in the next section. by h(i)) and the weight of authority (denoted by a(i))

and they satisfy the following equations:
4. Practical usage

h(i) = , a(j), if a link exists from node i to node j.
In the previous section, some evidence has been

provided to support the conjecture that a CDN of a (
software system is a scale-free network. In this section,
we propose that this knowledge may help people to
identify some important components (classes) for Therefore, for nodes with high weight of hub, not
legacy software systems. only they have many outgoing links, but also those

links are linked to nodes with high weight of authority.
Reverse engineering and software maintenance are Similarly, for nodes with high weight of authority, they

two important activities in the field of software should have many incoming links coming from nodes
engineering. In order to facilitate and support these of high weight of hub.
activities, researchers study the properties of code in an
attempt to better understand the software systems Based on the number of incoming and outgoing
represented by the code. Some aspects of the research links and the weight of hub and authority, the top 10
include identification of key classes [8], classification "important" classes from package java have been
of subsystems [14][17], and location of features [10]. calculated and listed in Table 2.

111

Table 2. The top ten classes in package java based on different criteria

Incoming Links Weight of authority Outgoing Links Weight of hub
1 String (628) String (0.517) Toolkit (121) Component(0.1 14)
2 Object (401) Object (0.409) Component (105) ObjectStreamClass(0. 105)
3 IOException (261) JOException (0.274) ObjectStreamClass(60) Toolkit(0.096)
4 IllegalArgumentException(24 1) IllegalArgumentException(0.263) Window(60) Window(0.095)
5 System (163) System (0.196) Container(60) ObjectlnputStream(0.094)
6 Exception (131) ClassNotFoundException(O. 174) ObjectlnputStream(52) Container(0.091)
7 Serializable (124) Serializable (0.149) KeyboardFocusManager(45) Font(0.090)
8 NuliPointerException (119) Class (0.146) Font(44) ClassLoader(0.088)
9 ClassNotFoundexception(I 15) Integer (0.144) MetaData(43) Security(0.087)
10 Class (1 13) ObjectlnputStream (0.132) ClassLoader(42) Beans(0.083)

From Table 2, it can be seen that the list of classes to 510 (Table 3), which is in the middle of the whole
with highest numbers of income links is similar to the list as there are more than 1000 public classes and
list of classes with highest weight of authority. A interfaces in package java, it is clear that the classes in
similar relationship can be seen between the classes the top 10 list are much more frequently used and
with highest numbers of outgoing links and those with therefore more important.
highest weight of hub. Generally, there are two
different types of important classes. The first type is of In this section, a static approach has been proposed
simple but frequently reused class, and for this type of to identify important components (classes) in a
important classes, they usually have high number of software system. This approach is based on the
incoming links and high weight of authority. Examples assumption that for a software system, the CDN is
are "String" and "Object". The second type is of usually a scale-free network and the degree distribution
control or high level classes; these kinds of classes are follows a power-law distribution. This feature implies
very complex, provide many functions and require the that a small number of components have a higher
support of many other classes. They usually have a number of connections and therefore having a high
high number of outgoing links and high weight of hub. weight of authority or high weight of hub. This
Examples are "Component" and "Window". approach is also based on the assumption that

important components do usually have high weight ofTable 3 Classes in package java with the weight of auhrtorigwehtfhb.Teistsumin
authorityrankin from 501 to 510authority or high weight- of hub. The first assumption

has been supported by testing results shown in the
Weight of authority previous section, and the second assumption has been

501 FlatteningPathlterator(0.003) validated by a test on package java in this section.
502 ScrollPane(0.003) 0 The static approach for identifying important
503 ServerSocketChannel(0.003) components in software systems is only one example

505 BeanContextServicesListener(.003) to demonstrate the practical usage of the complex
506 GlyphVector(e.003) network theory in software engineering. We believe
507 yNameenerator(0.003) that there could be far more fundamental contributions
508 UnresolvedPermissionCollection(a.003) to software engineering if we dig deeper into the
509 AppletStub(0.003) complex network theory.
510 PaintContext(0.003) 5. Discussion

Because there is no universal standard for the
importance of classes in package java, it may be 5.1. The origin of scale-free networks
difficult to claim that all the classes listed in Table 2
are important. However, those with knowledge about Why are many complex networks scale-free, what
the Java language will agree that at least half of the is the underlying mathematical model and how can we
classes in the top 10 weight of authority are common explain it?
used classes such as "String", "Object",
"IOException", "System" and "Integer". Comparing Barabasi's [2] explains this phenomenon by using a
the list of the top 10 weight of authority with that of dynamic preference model. A brief explanation of this
classes with the weight of authority ranking from 501 model is as follows. A complex network is evolved

112

from a primary network with a single node or a few The subtle relationship between the complexity of a
nodes. When a new node is added into the network, it CDN and the progressive and anti-regressive activities
must create at least one link to connect the new node to implies the possibility of using the CDN's complexity
the existing nodes. If the probability of connecting the as an indicator or guideline for the software's
new node to a particular node is the same among the manageability or the efficiency of the anti-regressive
existing nodes, then gradually the early nodes will have activities.
more links than the later nodes. However, this model
cannot explain why a few nodes end up with many 5.3. Is a scale-free network the best form of a
more links than the others, so a modified version has CDN?
been introduced. In the new version, the probability of
creating a link between the new node and an existing Even though the CDNs of all the tested software
node depends on the number of links on the existing systems tend to be scale-free, is a scale-free network
node. The more links an existing node has, the higher the best form for a CDN?
the probability that it will connect to the new node.

As we know, anti-regressive activities can reduce
relationsipsensoftwares scturenof th the complexity of a CDN. Based on our previous study,relationships between software components iS tet l clsrcueo otaesCNcnbthe to ological structure of software's CDN can beinteresting because this structure may affect either the Og

behaviour of anmindividalcomponntorofheindependent of its functional requirements and can be
behaviourwhofe 9anTindividunalcomipon fentoree system normalized into a tree [7]. Therefore, theoretically, the

anti-regressive activities can, under certain conditions,explanation has some relevance for software systems.
Whena sstemgrauall inreass i siz, i is make the system's dependency network into a simple

Whsslen hasstempgradually incr s inusizeith is form such as a tree. Even though we may not be able to
possible that programmers tend to suse thest find an example of a tree-formed CDN in existing large
familiarponents andhis tenenyiesu systems, in principle it is possible to reach a tree

component beomnghusrstructure using practically any anti-regressive activity.
Another way to achieve a tree structure is to build a

5.2. Progressive activities and anti-regressive system from scratch. We can start with one component;
activities whenever a new component is introduced, we connect

it to only one of the existing components. If new
It is well known that there are two different types of connections have to be added in the existing CDN, we

activities in a software development cycle: the have to remove the same number of existing
progressive activities and the anti-regressive activities connections. (It is possible to use a tool to identify the
[21][22]. Progressive activities directly contribute to most efficient connections and remove extra
the implementation of software's functionalities but connections). If this procedure is strictly followed, the
also increase the software's complexity or entropy. structure of the CDN will be a tree.
When a certain level of complexity is reached, the
system may be difficult to maintain. Besides a tree-formed CDN, a layered CDN is

another simple form of architecture style. The layered
Anti-regressive activities are defined as those architecture is not a new concept [23]. However, in our

activities that do not directly increase the functions of a design, the structure is slightly different; we limit that a
software product but improve its manageability so the component depend on only components of one level
software itself has the potential to grow in the future. lower. There will be no direct dependency
These kinds of activities include updating of system relationships within one level or cross two levels.
documentation, rewriting of modules and complexity Figure 9 is an example of a layered CDN.
control.

To build a system of a layered CDN, we can
From the architectural point of view, the initially create all the base level components, and then

progressive activities usually increase the complexity based on those base level components, we create the
of a dependency network by adding new nodes and second level components and then the third level
new links in the CDN. However, anti-regressive components etc, and finally the system component. Of
activities such as re-constructing the architecture or re- course, we can also use the top-down approach or even
writing some modules may result in removing some mix the top-down and bottom-up approaches together.
links and nodes in the CDN and eventually reducing The main idea is during the whole process, the layered
the complexity of the system. architecture style has to be kept. A tool may be

required to monitor the evolution of the CDN and

113

make sure the architecture style can be maintained properties. Based on this result and independent results
during the system's lifecycle. from other research, we conjecture that the component

dependency networks for most software systems may
(System component be scale-free. Based on this conjecture, we have

proposed a static method to identify important
components from a system's component dependency

0 (3) Thu,d Ienei components network. Also, we suggest ways of controlling and
changing how systems evolve in order to improve their
understandability and maintainability.

0 j O o Second lmnel components

(I) Cli)Cl) (O O3) (3) (.... ...(Ease leel componentss

Figure 9. A software system of a layered CDN -

One advantage of a layered CDN is that a layered
CDN will result fewer levels in the component
dependency trees. For a system without the layer style
restriction, the component dependency tree can be very
deep such as the tree in Figure 10. "Button" is only a
primary component in package "java.awt", but the
depth of the component dependency tree is about 40.
However, for a system with layered CDN, the
maximum level of the component dependency trees is
the number of layers of the system that can be smaller
than 10 or even 5. Therefore, if one component has Figure 10. The component dependency tree of
been changed, the ripple effects will be limited within class "Button" in package "java.awt"
a much smaller range. This property will reduce the
cost of the software maintenance. Parallel studies between different disciplines

frequently inspire new ideas. The similarity between
From the discussion above, we know that the topological structure of a CDN and other types of

theoretically, we can build software systems with a complex networks implies that the laws, which work
simpler structure than that implied by a scale-free behind the evolution of software systems, could be the
network. If complexity is the major concern, we may same as those working behind the evolution of other
have a better structure of a CDN. complex systems such as human society and biological

systems. Continuous studies may reveal more
commonalities among the structure and evolution of

5.4. Different ways to define the connections those different complex systems and therefore provide
new approaches to study software systems.

In this paper, we define a connection between two
components (classes in Java) as explicitly referring the 7. Acknowledge
other class's name in the source code of one class. This
kind of definition is static, syntactic and structural. It is The authors would like to acknowledge the
possible to extend the definition of a connection to Australian Research Council (ARC) Centre for
different measures, for example from static to dynamic, Complex Systems for its support to this work.
from syntactic to semantic, and from structural to
functional. This is an area for future research. 8. References

6. Summary [1] R. Albert and A.-L. Barabasi, "Statistical mechanics of
complex networks", Reviews ofModern Physics, vol.

In this paper, the topological structures of CDNs of 74, pp. 47-97, 2002.
eight Java packages have been studied. The interesting
discovery is that all of them clearly show scale-free [2] A.-L. Barabasi, "Linked", Perseus Publishing, 2002.

114

[3] A.-L. Barabasi and E. Bonabeau, "Scale-Free [16] Romualdo Pastor-Satorras and Alessandro Vespignani,
Networks", Scientific American, May 2003. "Epidemic Spreading in Scale-Free Networks", Physical

Review Letters, 86(14), pp. 3200-3203, 2001.
[4] Wang, Y, "The OAR model for knowledge

representation", the 19t IEEE Canadian Conference on [17] Vassilios Tzerpos and R.C. Holt, "ACDC: An
Electrical and Computer Engineering, pp 1696-1699, Algorithm for Comprehension-Driven Clustering",
2006 Proceedings of the Seventh Working Conference on

Reverse Engineering, IEEE Computer Society, 2000.
[5] Wang, Y., "The Theoretical Framework of Cognitive

Informatics", The International Journal of Cognitive [18] D.J. Watts and S.H. Strogatz, "Collective dynamics of
Informatics and Natural Intelligence, 1(1) pp. 1-27, Jan, small-world networks", Nature, 393, pp. 400-442, 1998.
2007

[19] Duncan J. Watts, "Six Degrees: The Science of a
[6] Geoff R. Dromey, "From Requirements to Design: Connected Age", William Heinemann, 2003.

Formalising the Key Steps", (Invited Keynote Address),
IEEE International Conference on Software [20] Jon M. Kleinberg, "Authoritative Sources in a
Engineering and Formal Methods, SEFM'2003, pp. 2- Hyperlinked Environment', Journal of the ACM, 46(5)
11, Brisbane, September, 2003. 604-632, 1999.

[7] Lian Wen, Geoff R. Dromey, "Architecture [21] Lehman, M.M., "FEAST/2 Final Report- Grant
Normalization for Component-based Systems", Number GR/M44101", 2001
Electronic Notes in Theoretical Computer Science,
vol. 160, pp. 335-348, 2006. [22] Lehman, M.M., "Programs, Cities, Students, Limits to

Growth?", Inaugural Lecture, 1974
[8] Andy Zaidman, Toon Calders, Serge Demeyer, Jan

Paredaens, "Applying Webmining Techniques to [23] Stafford, J. A., Wolf, A. L., "Software Architecture"
Execution Traces to Support the Program Component-Based Software Engineering, putting the
Comprehension Process", Proceedings of the Ninth pieces together, Chapter 20, 2001
European Conference on Software Maintenance and
Reengineering, pp. 134-142, 2005.

[24] Classnet, the tool to explore the CDN of a Java system,

[9] Shyam R. Chidamber, Chris F. Kemerer, "A Metrics http:/www.sgi.gu.edu.au/gse/tools/ciassnet.htm], 2007
Suite for Object Oriented Design", IEEE Transactions
on Software Engineering, 20(6): 476-493, 6, 1994. [25] Apache Ant, la g, 2007

[10] Thomas Eisenbarth, Rainer Koschke and Daniel Simon, [26] Cruz, I. F., Tamassia, R., 1998, "Graph Drawing
"Locating Features in Source Code", IEEE Tutorial", http://w2w.cs.brown.edu/people/rt/papers/gd-
Transactions on Software Engineering (29/3), IEEE tutorial/gd-constra f
Computer Society, March 2003.

[11] H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai and A.-L.
Barabasi, "The large-scale organization of metabolic
networks", Nature, 407, pp. 651, 2000.

[12] H. Jeong, S.P. Mason and A.-L. Barabasi, "Lethality
and centrality in protein networks", Nature, 41 1, pp. 41,
2001.

[13] Beom Jun Kim, Ala Trusina, Petter Minnhagen and Kim
Sneppen, "Self Organized Scale-Free Networks from
Merging and Regeneration", The European Physical
Journal B, http://arxiv.orglabs/n1in10403006, 2005.

[14] Arun Lakhotia, "A Unified Framework for Expressing
Software Subsystem Classification Techniques",
Journal ofSystems and Software (36), 1997.

[15] Kwangho Park and Ying-Cheng Lai, "Self-organized
scale-free networks", Physical Review (E 72), 026131,
2005.

115

