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Abstract 
We propose to model recurring events as multi- 

point events by  extending Vilain and Kautz’s point al- 
gebra [7]. We then propose an exact algorithm based 
on van Beek’s exact algorithm) forfinding feasi 6 le re- 
lations for multi-point event networks. The complexity 
of our method is compared with previously known re- 
sults both for recurring and non-recurring events. We 
identify the special cases for which our multi-point 
based algorithm can find exact solution. Finally, we 
summarise our paper with brief discussion on ongoing 
and future research. 

1 Introduction 
In this paper, we consider the events that are se- 

quences of time points as multa-point events by extend- 
ing Vilain and Kautz’s point algebra. Each multi-point 
event could be a finite sequence of recurring instanta- 
neous actions, or a finite set of the beginning or ending 
of interval events that occur repeatedly. It is straight- 
forward to transform a multi-point event network into 
corresponding point algebra network. We can then ap- 
ply the existing PA algorithms to the reasoning tasks 
in questions. Intuitively, we believe that reasoning 
with multi-point event networks should have better 
performance than the traditional PA network because 
computation on implicit relations of the same multi- 
point event could be omitted. 

Even though, the non-convex interval model [3] 
can represent and reason about the recurring interval 
events, obtaining an exact solution for interval-based 
problem is a hard problem which requires exponen- 
tial time algorithms [l, 31. However, if the numbers 
of subintervals are known and we restrict the relations 
between subintervals to pointizable relations (SIA) [6], 
by translating to multi-point event networks, our al- 
gorithm computes the exact solutions for the original 
non-convex interval networks in polynomial time. 

*A full version of this paper will appear in Proceedings of 
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2 Multi-Point Events and Their Rela- 
tions 

A multi-point event (MPE) is a collection of points, 
when each point represents the related subevents. A 
MPE is in normal form if all points are totally ordered, 
or the relation between the ith point to the i + l t h  
point of the MPE is ‘<’. 

Given two MPEs: I of size n and J of size m, 
R f I ,  J )  is the multi-point relation (MPR) between 
MPE I and J .  An element R(Ij ,  J j )  is a disjunction of 
point relation defined in point algebra [7] representing 
the relationship between the ith point of I and the 
j t h  point of J .  For computational purpose, R(I ,  J )  
is represented by using a A,,, matrix relation, when 
the rows of matrix represent the points of I and the 
columns represent the points of J .  

Solving reasoning tasks for multi-point events in 
our framework is based on constraint satisfaction tech- 
niques. A binary constraint network of k MPEs, each 
contains n point subevents, consists of le nodes where 
each node represents an individual MPE. The domain 
of each node is a set of real numbers each representing 
a point subevent: Di = {aI,a?, ..., a,  : aj < aj+l}.  
The labels on the arcs are matrix relations represent- 
ing constraints between two nodes. An instantiation 
of a node is a k-tuple ( ~ 1 ~ x 2 ,  ..,, xk) when zj E Dj. 
The minimal label or the matrix of feasible rela- 
tions between two MPEs is the matrix in which each 
element is consisting of all and only the feasible rela- 
tions. A scenario is a set of atomic relations between 
pairs of MPEs. Each atomic relation corresponds to a 
matrix label for each arc. 

3 Reasoning with MPE Networks 
The path-consistency checking for MPE network 

is done in two levels: between two MPEs and three 
MPEs. The canonical form is defined to ensure path- 
consistency between three points being in two different 
MPEs. The path-consistency between three MPEs ob- 
tains from the compositzon operations over two matrix 
relations (defined in Section 3.2). 
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3.1 Canonical Form 
A matrix relation A,,, is said to be in the canon- 

ical form if the path-consistency conditions 51 among 
their neighbours as following are satisfied t more de- 
tail of the algorithm for converting a matrix into the 
canonical form is in [3]): 

1. Ai,J-i E A,,jo > ( V l  5 i 5 n, 1 < j 5 m )  

2. C > OAi,, ( V I  5 i < n, 1 5 j 5 m) 

3. A;,j+l E A;,jo < (Vl 5 i 5 n, 1 5 j < m) 

4. A ; - I , ~  5 < oA;,j (V1 < i 5 n, 1 5 j 5 m) 

These conditions could be used to approximate the 
path-consistency of the MPE network. In our algo- 
rithm for finding feasible relations, we first transform 
the given matrices into canonical form. This is to re- 
duce the elements in the matrices and also maintain 
the path-consistency between two MPEs. 

Lemma 1 Given a MPE network with IC MPEs (k 2 
l), each contains n points (n 2 2). The MPE network 
has a corresponding PA network. 

Theorem 2 Suppose a MPE network has two nodes 
I and J. Let A be the matrix relation between I and 
J. I f  A is in canonical form, then the corresponding 
PA network is path-consistent. 

3.2 Matrix Relations Operations 
The operations on two matrix relations, which are 

necessary in solving reasoning tasks, are defined by 
adopting the operations on constraint matrices from 
41. Table 1 defines the result of matrix operations i $, @,*, 0, and’) on two MPRs in terms of basic op- 

erations in point algebra. The symbols +, X ,  -, 0, 
and correspond to union, intersection, complement, 
composition and inverse operators defined in PA, re- 
spectively. 

Complement 

ComDosition 
Inverse 

C = A iff Ci,j = -Ai,i 

C = A 0 B iff 

” 
C = A iffci i = -Aji 

Table 1: The Multi-Point Event Operations 

3.3 The Algorithm 
The algorithm to solve the minimal labels problem 

for MPE network is based on van Beek’s exact algo- 
rithm for PA network [6]. He has shown that the path- 
consistency algorithm alone is not sufficient for PA 
network by pointing out a counter-example consisting 

of four vertices called a forbadden subgraph. We define 
the forbidden subgraph for MPE network in terms of 
points in MPEs as follow: 

Definition 3 (A forbidden subgraph) Gwen 
a MPE subgraph of any four nodes: V ,  W ,  S ,  and 
T .  Let V be (Vi < ... < V, , W be < .. < Wn), 
S be (SI < ... < So), and d b e  (Ti < ... < Tp), where 
m, n, o and p are the numbers of points in V, W,  5’ 
and T respectauely. The subgraph as called a forbid- 
den MPE subgraph, af there exast v ,  w, s, and t ,  whach 
are any valid indices of V ,  W ,  S ,  and T ,  such that 
the followang condataons are satasjied: 

R(V,,WW) = ‘#; 
R(V,,S,) = ‘2 
R(W,,S,) = ‘2’ 
R(V,,Tt) = ‘<’ 
R(WW,Tt) = ‘7’ - 

R(S,,Tt) = ‘5’ 

The infeasible relation in the forbidden MPE subgraph 
is R(S,,Tt), which is ‘5’. This relation causes incon- 
sistency among those four nodes. However, if we don’t 
allow ‘=’ between S, and T,, the subgraph becomes 
4-consistent [a]. 

If S is identical to T ,  the relation between S, and 
must be ‘<’ because all MPEs are in normal form 

(either ‘<’ or ‘>’ allowed between points in MPE). 
Thus, we don’t need to take this case into considera- 
tion. Similarly, we can show that other pairs of MPE 
nodes in the forbidden subgraph cannot be identical. 
Therefore, the set of four MPE nodes considered as a 
forbidden subgraph are mutually different. 

The following algorithm using the canonical form 
matrices and the matrix operations to solve the 
minimal label problem in polynomial time. We 
found that we do not need to check the path- 
consistency again after performing the procedure 
FIND-SUBGRAPHS-MPE since the network is still 
path-consistent. 

Algorithm FEASIBLE-MPE 
Input: A MPE network represented as a matrix C 
where entry CI J is the label on the arc from nodes 
I to J. Each CIJ is a matrix relation R[I ,  J], where 
an entry of R[I ,  J ]  is an internal relation between 
points in MPEs I and J 
Output: The set of feasible relations for C I J ,  
I ,  J = 1,2,  .., k 
begin 

end 

Procedure PATH-CONSISTENCYXPE 
begin 

For each matrix relation R[I ,  J ]  do 

PATH-CONSISTENCY-MPE 
FIND-SUBGRAPHS-MPE 

Canonical-Conv (R[I, J1 ) 
Q := { ( I ,  I(, J )  I 1 1  I-< j’s k ,  

1 2  IS 5 k, K # I ,  J} 
While Q is not emDtv do 

selek and de1eie“a path ( I ,  I(, J )  from Q 
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Temp := R[I, J ]  63 (R[I, I<] 0 R[K, 51) 
If (Temp # R[I, J ] )  then 

Canonical-Conv(Temp) 
R[I, J ]  := Temp 
R[J, I] := TLmp (inverse of Temp) 
Q := Q U RELATEDPATHS(I, J )  

end 

Procedure RELATED-PATHS/I. J ) 
Return {(I, J ,  IC), ( K ,  I ,  J )  ( 1 ’ d K  6 k ,  

I< # I, I< # J }  

Procedure FIND-SUB GRA PHS-MPE 
begin 

For each matrix relation such that 
R[V, W ] ,  

Initialize P1, P2 ,  P I  Q1, Q2, Q to empty set 
For each MPE K (1 5 K 5 k ,  IC # V, W )  do 

= ‘#I  (1 5 V < W 5 k )  
and (1 5 U, w 5 n)  do 

P1 = P1 U adj-MPEs(>, Vu, IC) 
P 2  = P2 U ad j -MPEs(2 ,  W,, K )  
Q1 = Q1 U adj-MPEs <, Vu, IC) 
Q2 = Q2 U adj-MPEs i <, W,, K )  

For each Tt E Q do 

P = P l n P 2 ,  
For each S, E P do 

Q = Q n n Q 2  

If S # T then 
R[S ,T] , , ,  := ‘ < I  

R[T,S]t,, := ( > I  

end 

Our algorithm for computing feasible relations con- 
sists of two main tasks: checking path-consistency 
between three MPEs throughout the network (pro- 
cedure PATH-CONSISTENCY-MPE), and eliminat- 
ing the infeasible relations from the forbidden 
subgraphs (procedure FIND-SUBGRAPHS-MPE). 
We maintain the consistency between two MPEs 
by calling procedure Canonical-Conv (detailed in 
[3]). This procedure transforms the matrix rela- 
tions into canonical form before inserting to the 
database. Function ad j -MPEs(L ,  V,, IC) in proce- 
dure FIND-SUBGRAPHS-MPE returns the set of el- 
ements I < k l  in which R(Vu, I<k)  = ‘>’ by checking the 
relations between V, and I - ,  , (1 5 i 5 n) .  Here are 
some technical results: 

Lemma 4 Changzng the label R(Ss , Tt) of the forbad- 
den subgraph defined an Definztaon 3 wall not lead to 
path znconszstency 

Theorem 5 The closure of a MPE network, calcu- 
lated by the algorzthm FEASIBLE-MPE, corresponds 
to a path conszstent PA network 

Theorem 6 The algorathm FEASIBLE-MPE cor- 
rectly finds the manzmal labels for all znternal relatzons 
an the MPE network. 

Theorem 7 The algorathm FEASIBLE-MPE, for k 
MPE nodes an the constraant network and each node 
contaans at most n poants, has a tame complexaty of 
O(max(n5k3 ,  m n 2 k 2 ) ) ,  where there are m f-relataons. 

4 Conclusion 
The main contribution of this framework is an ex- 

tension of point-based representation to reason with 
the recurring events that are considered as collec- 
tions of point subevents. The algorithm we pro- 
posed correctly finds all feasible relations in the 
MPE network. The complexity of this algorithm 
is O ( m a z ( n 5 k 3 , m n 2 k 2 ) ) ,  where k is the number of 
MPEs with maximum n points and m is the number 
of ‘f’ internal relations in the network. The com- 
plexity for finding the same solutions for non-recurring 
PA network with the same data (nk point events) is 
O(,max(n3k3, mn’k’)), where m is also the number of 
# relations in the network [6]. 

For non-convex interval network, the minimal la- 
bels of the network can be approximately achieved in 
O(n5k3) complexity algorithm, or 0 n3k3) when con- 
sidering only the affected relations [3 \ . However, if we 
restrict the internal relations between subintervals to 
be pointizable interval relations (SIA) [6] and trans- 
form into MPE network, our algorithm yields the ex- 
act solutions. The complexity of our algorithm is pro- 
portional to the number of ‘#’ edges, the worst case 
would seldom occur in the real world domain. 

Currently, we are working on improving Complexity 
of the algorithm we presented in this paper by avoid- 
ing the redundant computation of the unconstrained 
relations, and on constructing the algorithm for find- 
ing a consistent scenario for the MPE network. We are 
implementing our algorithms and comparing the per- 
formance to other non-multi-point event approaches. 
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