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Abstract A retrocausal interpretation of quantum mechanics is examined
and 1s applied to the problem of measuring an optical qubit before the qubit
is actually created. Although the predictions of the retrocausal interpreta-
tion are the same as for the conventional causal picture, it provides a new
perspective which should give a useful way of understanding some quantum
mechanical processes.
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1 INTRODUCTION

Time asymmetry in nature is readily apparent. The arrow of time is manifest
in our ability to remember the past but not the future and in the fact that
we feel we have some control over future events but not over past events. The
latter phenomenon is usually referred to as the principle of causality. Other
expressions of causality include the impossibility, in any inertial reference
frame, of one observer sending a controllable message that can be received
by another observer at an earlier time, that 1s, the impossibility for informa-
tion to be sent from one observer to another faster than light. In common
with some other authors [1], we shall refer to this expression as the weak prin-
ciple of causality. A stronger statement than this is that a cause must always
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precede its effects, even where this is not necessary for preservation of the
weak principle. This statement is essentially what Cramer [1] refers to as the
strong principle of causality. A detailed discussion of weak and strong causal-
ity has been given by Cramer [1] in terms of what he defines as macroscopic
causes and effects. A macroscopic cause i1s defined as one that can be initi-
ated by an observer and a macroscopic effect is one that allows an observer
to receive information. In these terms the weak principle can be restated as
the requirement for a macroscopic cause always to precede its macroscopic
effects in any reference frame. This clearly restricts observer-observer com-
munication. The strong principle relates to all causes and effects, not just
macroscopic ones. Inasmuch as experimental testing involves observers hav-
ing information about a physical system at different times, only the weak
principle can be verified experimentally.

An excellent illustration of the difference between the weak and strong
principles of causality can be given in terms of the difference between conven-
tional classical electromagnetic theory and the Wheeler-Feynman absorber
theory of radiation [1-3]. The conventional theory, like most physical theories,
is formulated in terms of the strong principle, which leads to the retention
of only the retarded potential solution of Maxwells equations. In this theory,
it 1s the retarded action of an accelerated charge on itself that causes the
charge to lose energy while radiating. In absorber theory, on the other hand,
when the retarded radiation from an oscillating charge is absorbed at a later
time, it is the advanced radiation from the induced motion of the particles
of the absorber at this later time that gives rise to the radiative reaction
force, which in turn causes the removal of the appropriate amount of energy
from the emitter at the earlier time of oscillation. Although absorber theory
contravenes the strong principle of causality, in a universe with perfect ab-
sorbing properties it does not violate the weak principle and predicts precisely
the same experimentally verifiable results as the conventional, fully retarded,
theory of electrodynamics. Thus, just as conventional electrodynamic theory
does not allow a controllable message to be sent into the past, neither does
absorber theory with the appropriate boundary conditions, even though the
latter theory is retrocausal in the sense of contravening the strong principle
of causality.

Another theory that can be expressed in terms of both a fully causal pic-
ture and a picture that violates the strong principle of causality but not the
weak principle is quantum mechanics, which is of relevance to this paper.
Adopting a picture that abandons strict adherence to strong causality makes
some problems much easier to solve. An example of this is the retrodiction
problem in quantum communication in which Bob, by performing a measure-
ment on a quantum system, has to retrodict the state in which Alice prepared
the system before transmitting it to him. While this problem can be solved
in the conventional picture, it is much simpler to use a retrodictive picture
involving a state propagating backwards in time [4-9]. Here the state of a
system between the preparation and measurement events is determined by
the later measurement event rather than the earlier preparation event. The
concept of backward evolving quantum states is also helpful for studying and
predicting other interesting quantum phenomena that are not obviously ap-



parent when the conventional point of view is used (see, for example, Ref.
[10,11] and the references therein).

The quantum picture that is retrocausal in the sense of violating the
strong but not the weak principle of causality can be extended beyond the
use of a state evolving backwards in time for retrodictive purposes. In this
paper we use a retrocausal quantum picture to examine the possibility of
preparing a qubit state evolving forwards in time in the normal manner,
then sending this state into the past where it appears as an identical forward
evolving qubit state that can be measured in the normal manner or used for
other purposes. We see that this can only be done on a probabilistic basis that
does not violate weak causality but it is still useful for the main application
described in this paper, that of measuring a quantum optical qubit state
before it is prepared. Also, if the qubit sent into the past is used as the input
for a quantum computer or a quantum simulator, we obtain an interesting and
reasonably simple retrocausal interpretation of a recent proposal to achieve
instantaneous quantum computing based on the conventional causal picture
suggested by Brukner et al. [12].

We should emphasise from the outset that the retrocausal quantum pic-
ture used in this paper is not a new theory of quantum mechanics: it 1s simply
a different interpretation that leads to the same experimental results. Phys-
ical processes that are described in the retrocausal picture will also have an
interpretation in the conventional picture, which may be quite different. The
physical procedure for sending a qubit back into the past that results from
the use of the retrocausal picture in Sect. 3 is just that which would be de-
scribed as the teleportation protocol without correction in the conventional
picture. It 1s thus not a new protocol as such. Retrocausal analysis, however,
does provide a different interpretation that can give new intuition for solving
various problems and for understanding some quantum processes.

2 RETROCAUSAL QUANTUM PICTURE

In the archetypal quantum mechanical experiment, a system is prepared,
allowed to evolve and then measured at a later time. Recently [13,14] we
have shown that the arrow of time, in the form of weak causality, is inserted
into quantum mechanics by the asymmetry in choice of normalization con-
ditions for the non-negative definite operators p; and ﬁj associated with the
preparation and measurement events ¢ and j respectively. These normaliza-
tion conditions are that the trace of p; is unity and that the sum of ﬁj over
all possible measurement outcomes j is the unit operator. It i1s the second
of these conditions that prohibits information being sent backwards in time
[13,14]. These weak causality conditions identify p; as a density operator
and ﬁj as an element of a probability operator measure (POM) [15]. In the
conventional picture, the state represented by the density operator p; pre-
pared at time ¢, evolves to U(tm,tp)p}UT(tm,tp) at a later time t,, when it

is measured, where ﬁ(tm, t,) is the unitary forward-time evolution operator
calculated from the Schrodinger time-dependent equation. The probability



for a measurement outcome j given a preparation event ¢ 1s then given by

P(jli) = Te[U (tm, t)pi U (tm, 1) 115] (1)

where Tr is the trace. These predicted probabilities are verifiable experimen-
tally. In this picture, the state of the system between the preparation and
measurement times is determined, or caused, by the earlier preparation event
and 1s independent of the later measurement event. This 1s in line with the
strong principle of causality. The experimentally verifiable expression (1),
however, can also be written equivalently as

P(jli) = Te[oiU (ty, tm) ;U (ty, 1)) (2)

This can be deduced from the cyclic property of the trace or the invariance
of the trace under a unitary transformation and the fact that U(t,,t,) =

UT(tm,tp). We can interpret this as the measured state propagating back-
wards in time from the measurement event until it 1s projected onto the
prepared state at the preparation time. (Here we are referring to ﬁj as a
state. If we wish to reserve this term for a density operator, we can easily ob-
tain a density operator from ﬁj by dividing by its trace. This is unnecessary,

of course, 1f ﬁj is a pure state projector, which already has unit trace.) In this
picture the state of the system between the preparation and measurement
times is determined, or caused, by the later measurement event. We shall thus
refer to this picture as a retrocausal picture. The retrocausal picture is not
in accord with the strong principle of causality. Because of the equivalence of
expressions (1) and (2), this retrocausal picture predicts precisely the same
measurement probabilities from quantum mechanics as does the conventional
picture. Also, we note that, provided we retain the same normalization con-
ditions on p; and ﬁj as in the usual picture, only strong causality is violated;
weak causality is maintained and this retrocausal picture does not predict
that a controllable message can be sent into the past.

We can regard a quantum picture as being retrocausal, in the sense of
violating strong causality, if it involves some states evolving backwards in
time, even if it also involves some states evolving forwards in time. A trivial
example of this can be seen by rewriting (1) as

P(jli) = Te[U(t, 1) ps UM (t, ) U (8t LU (2, 1) (3)

where ¢, <t < t,,. A more complicated situation is described later.

3 RETROCAUSAL OPTICS

An interesting situation arises when the retro-propagating state from the
measurement is a two-mode entangled state. The projection of a single-mode
forward propagating state onto this state can result in a single-mode retro-
propagating state carrying some of the characteristics of this forward prop-
agating state. To be specific let us consider the optical case shown in Fig.
1. Ideal photodetectors Dg and D; are in output modes a and b of a 50/50



Fig. 1 Ideal photodetectors Do and D; are in output modes a and b of a beam
splitter. A field in a forward propagating state |A) is in input mode a. The retro-
propagating state in input mode b arising from the measurement event in which Dg
and D; register zero photocounts and one photocount respectively will bear some
characteristics of |A).

beam splitter. A forward propagating field in the input mode a 1s in state
|A)q at the beam splitter. In the fully causal picture we would consider there
also to be a forward propagating field in state |B)g, say, in the input mode
b. Then the probability that Dy and Dy will register zero photocounts and
one photocount respectively, that is register the measurement event (0,1), is
P(0,1) = lo(1] {0 Rul A)a| B)s |
= [s(B|F)s]? (4)
where |0) and |1) are the vacuum and one-photon number states, R, is the
forward-time unitary operator describing the action of the beam splitter [16]
and

1Py = a(AIRL[0)a|1)s. (5)

If we regard the input state |A),, the beam splitter and the two photodetec-
tors as constituting a single measuring device, then the POM element for this
device representing the outcome that Dy and D; register the measurement
event (0,1) is just |FYpp(F|. It can be easily checked that the sum of all such
elements over all possible photon number outcomes is the unit operator 1, for
mode b. From our discussion in Sect. 2 we can regard this as a state propa-
gating backwards in time in the retrocausal picture. An equivalent, but more
detailed description in terms of retro-propagating states emanating from the
detection events, is as follows. If Dy and D; register the measurement event
(0,1), the two-mode retro-propagating state in the output modes is [0)4]1)s.
This state evolves backwards in time to become, on the input side of the beam
splitter, the entangled state RL |0)4]1)s, at which stage the forward propagat-
ing state |A), is projected onto it to yield the retro-propagating (unnormal-
ized) state |F'), at time ¢,,, say, which continues to propagate backwards in
time away from the beam splitter as ﬁ(t,tm)|F>b where t < t,,. This state



carries back with it some characteristics of the forward propagating state
[A)g.

To be useful, we need to convert the state lj(t, tm)|F)s to a forward prop-
agating state at some earlier time ¢ < ¢,,. If this can be done, then we should
have the retrocausal situation of a forward propagating state with some char-
acteristics of |A), existing at a timet before |A), was even prepared. The way
of achieving this is just the time inverse of the above: we allow ﬁ(t, tm) | FYp to
be projected onto a forward propagating two-mode entangled state, resulting
in a forward propagating state in the other mode bearing some characteristics
of [A)s. Now ﬁ(t,tm)|F>b b<F|UT(t,tm) is also an element of a POM, as the
sum of all such elements over all photon numbers is 1. Thus this projection
can be regarded simply as a measurement made on mode b of the forward
propagating two-mode entangled state at time ¢.

We can combine the above two processes by using the apparatus shown
in Fig. 2. The action of U(t, tm) on |F)p is merely to change the phase so, for
simplicity, we can replace this unitary operator by the unit operator at the
lower beam splitter by making the distance between the beam splitters an in-
teger number of wavelengths. A single photon state and a vacuum state are in
the input modes of the lower 50/50 beam splitter. After passing through the
beam splitter, they become the entangled state R; |0Ys]1)c where the subscript
[ refers to the lower beam splitter. The forward propagating (unnormalized)
state |C1) in output mode ¢ of the lower beam splitter is then just, from (5)

b(FIR0)s1)e = 5(1]a(0lRuA)aR1|0)s|1)e. (6)

This state should bear characteristics of |A),, even though it is produced at
an earlier time than |A),. It is not difficult to show for 50/50 beam splitters
that [16]

REI0)a] 1)y = 27H2(10)a| )b — i1)al0)) (7)
Ri|0)s[1)e = 27H2(J0)s[1)e + i[1)6]0)c). (8)

By substituting of these expressions into (6) we find that the output state in
mode ¢ is given by

[C1)e o a{0[A)al0)c + a(1[A)al)e- (9)

Thus if the input state |A) has the simple two-component form ap|0) + a1 1),
the output state |C1) will have precisely the same form. In this case we have
transferred the state of the qubit in mode a to the field in mode ¢ at an
earlier time. It is clear that this retrocausality is a purely quantum effect.
Classically, no light that is input to the upper beam splitter can possibly
reach the lower beam splitter. It is the quantum state that is transferred,
not the light itself. For completeness, we note that if the expansion of input
state |A) in terms of photon number states |n) contains states with n > 1,
then from (9) these terms are not transferred. This forms the basis of the
quantum scissors device [17,18], which gives a means of physically truncating
the expansion. Here we are only interested in the retrocausal effect, not the
truncation effect, so we shall only be considering the two-component input
state |A) above.



Fig. 2 Device for sending a qubit state back in time. In the retrocausal picture,
if photodetectors Do and D, register zero photocounts and one photocount respec-
tively, the qubit state |A) of the input field of the upper beam splitter at time &,
is transferred to the output field of the lower beam splitter at the earlier time ¢,
that is, the state |C) is the same as |A).

The retrocausal effect described above clearly violates strong causality.
It is important to study it also in relation to weak causality. By using the
density operator for the state (8) and the POM element | F')y b<F|ic, where 1,
is the unit operator for mode ¢, 1t is not difficult to show that the probability
P(0,1) that Dy and D; will register zero and one photocount respectively is
just 1/4. Similarly the probability P(1,0) that Dy and D; will register one
and zero photocounts respectively is also 1/4. In this event the output state
|C2)e in mode ¢ is ag|0) — ay |1). The probability P(0,0) that no photocounts
are registered is |ag]|?/2, with the corresponding output state |C3). being just
|1}, and the probability P(2) that a total of two photocounts are recorded
is |ai|?/2, with the corresponding output state |Cs). being |0). Thus even
though we cannot be sure as to which detection event will occur there is an
even chance that it will be one of the events (0,1) and (0,1) and in either
case some characteristics of the state |A) will be carried by the output state.
Thus one might expect that the output state should carry some information
about |A). In the absence of any knowledge of the which detection event
takes place, however, the best description we can give the output state in
mode c 18 the statistical mixture

pe = P(0,1)|Cr)c (C1| + P(1,0)|Ca)c (Ch]
+P(0,0)[C5)e o(Cs] + P(2)|Ca)e (Cal- (10)



On substituting the values given above and using |ao|? + |a1]? = 1 we find
that terms involving ag and a; vanish, reducing the expression to simply

pe = (10)e (O] + [1)e o(1])/2 (11)

which contains no information about |A}). To obtain information about which
detection event occurs we must wait until after the event has taken place, so
information about | A) cannot be extracted from g, before then. Thus control-
lable information about |A) cannot be transmitted into the past, precluding
the sending of a controllable message into the past. Thus, although the above
retrocausal effect violates strong causality, it still preserves weak causality.

In this Section we have given an analysis in the retrocausal picture of the
experiment depicted in Fig. 2. As mentioned earlier, there will of course be
a corresponding analysis in terms of the conventional quantum picture. In
the conventional picture, the procedure discussed here for sending a qubit
into the past is, in fact, the teleportation protocol without correction, that
is, probabilistic teleportation with a probability of 1/4 of success. The two
interpretations are equally valid and equivalent. Here we are interested in
the retrocausal picture interpretation, rather than what would be seen in the
conventional picture as teleportation, as the retrocausal interpretation gives
a new intuition for addressing the problem in Sect. 4.

4 APPLICATION

Although we cannot use the above arrangement to send a controllable mes-
sage into the past, it is nevertheless remarkable that, in this picture, there is
one chance in four that a later measurement will register the measurement
event (0,1) and confirm that the output state in mode ¢ is ag|0) + a1]1) at
a time before the values a, and a; have even been chosen from an infinite
number of possibilities. Is there some application that can benefit from this?
Let us consider the following, admittedly artificial, simple scenario in order
to see how the above retrocausality can be used, at least in principle. For
clarity in this example, we shall exaggerate the time interval ¢, — ¢ to be
precisely 24 hours.

Alice is a student and, as an examination, she has to produce an exper-
imental photon-number distribution of an unknown quantum optical qubit
ap|0) + ay|1). Bob, her supervisor, is to supply a number of such identical
qubits for her to do the experiment. Bob is to supply her with one qubit
every minute. Each of her measurements, which will yield the result zero
photocounts or one photocount, takes 50 seconds and the result is then au-
tomatically sent to a university printer. It i1s considered that about 60 such
measurements are sufficient to obtain a reasonable histogram of the number
state distribution. The histogram must be submitted by bpm on Friday. It
takes the printer, for some reason, 23 hours to print out the results of the
measurements on paper and then another one hour for the printer paper
to emerge from the printer. Unfortunately Bob is away and cannot be back
until 10am on the Friday. What can be done in this situation? The answer
is suggested by our previous discussion: Bob uses the device in Fig. 2 to



send the qubits back 24 hours in time so that Alice starts receiving them
in her photodetector in mode ¢ at one per minute from 10am on Thursday.
The results start emerging from the printer about 50 seconds after 10am on
Friday at the rate of one per minute. However, Bob successfully sends the
correct qubit back only if his photodetectors Dy and D; register zero and
one photocount respectively. This happens approximately one quarter of the
time. To rectify this, Bob simply tells Alice on Friday immediately after each
attempt at sending back the correct qubit if he has been unsuccessful and
she deletes the corresponding result as it emerges from the printer. Alterna-
tively, of course, this correction process could be made automatic. Because
only about one-quarter of Bob’s attempts to send back the correct qubit will
be successful, he sends about 240 qubits back to give Alice the approximate
60 correct results she needs for her histogram. Without the correction pro-
cess, there would be a string of 240 zeros and ones emerging from the printer
in approximately equal numbers. With the correction there are about 60 ze-
ros and ones with the ratio of the number of zeros to the number of ones
being |ao)?/|a1|?.

There is some wasted effort in the above process, this waste being precisely
that needed to prevent Bob sending a controllable message back in time.
Some effort might be saved if Bob were to tell Alice also to save the printer
results when his photodetectors Dy and D; register one and zero photocounts
respectively, because then the qubit ag|0) — a;|1) would have been sent back,
which has the same photon number distribution. However, this would not
be in accord with the conditions of the examination in which the precise
qubit ag|0) + @1]1) must be used. However the process is clearly much more
efficient than Alice simply trying to guess the values of ¢y and a; from an
infinite range of possibilities, doing a vast number of experiments and then
discarding the incorrect ones after Bob’s return.

Because the retrocausal picture must predict the same physical outcomes
as the conventional fully causal picture, the conventional picture should lead
to the same histogram. In the fully causal picture the starting point is the
earlier time ¢. At this time the entangled state (8) is produced in modes b and
¢. The mode ¢ part enters Alice’s photodetector for the first measurement and
the mode b part evolves until time ¢,,,, when it enters the upper beam splitter.
We have a choice of when the collapse associated with Alice’s measurement
occurs: when a conscious observer such as Alice views the outcome or when
processing by a macroscopic or “classical” device takes place. We examine the
former choice first, which gives a situation reminiscent of Schrodingers cat.
In this case states |1). and |0). in mode ¢ eventually produce states |1), and
|0}, which represent states of the printer output paper in which a one or a
zero are shown respectively. At the time just after ¢,, as the entangled field
in modes a and b emerges from the upper beam splitter and the printer paper
is printed but not yet left the printer to be viewed by Alice, the total state
has evolved to

271 Ry A)a(10)s 1), + 1)510),)- (12)

On calculating this, we obtain a sum of terms including the term

i27110)al1)p(a0 0)p + ar[1),). (13)
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with all the other terms being orthogonal to this term. Thus if Bob’s detec-
tors Dy and D register zero and one photocount respectively, the state is
collapsed to ap|0), 4+ a1|1),. If Dy and Dy register other than zero and one
photocount respectively, the printer result is deleted. At one minute after
t the entangled state (8) is again produced, leading to the second printer
result one minute after the first, and so on. For each undeleted result the
printer paper will be in a superposition state of showing a zero and showing
a one. When Alice reads these undeleted results each will collapse either to a
zero with probability |ag|? or to a one with probability |a;|?, giving the same
histogram as predicted by the retrocausal picture.

In the other fully causal picture mentioned above, the first collapse is
assumed to take place at the earlier time, for example just after ¢ when the
field in mode ¢ encounters Alice’s photodetector. If this detector registers one
or zero photocounts the field in mode b collapses to |0) or |1),. We can thus
calculate the probabilities that Bob’s detectors Dy and D; register zero and
one photocount respectively conditioned on Alice’s detector registering one
photocount and on it registering a zero count. Using Bayes’ theorem we can
then calculate the probability that Alice’s detector registers one photocount
conditioned on Dy and D; registering zero and one photocount respectively
and also the corresponding conditional probability that Alice’s detector reg-
isters a zero count. Again the same histogram results.

5 INSTANTANEOUS QUANTUM COMPUTATION

In Ref. [19] we mentioned that it might be possible, by using an effective retro-
causal picture, to provide quantum input into a quantum computer allowing
processing to proceed before the required input qubit state is available. An
equivalent idea was proposed by Brukner et al. [12] in which the possibility
was suggested of using quantum teleportation to perform an entire quan-
tum computation before its quantum input is defined, giving a method for
probabilistic instantaneous quantum computing. Here we wish to compare
the retrocausal description process in this paper with the causal description
of Ref. [12]. We are referring to quantum computing in the broader sense
as present quantum computation algorithms use classical inputs and a more
appropriate term for the process might be quantum simulation.

We wish to emphasize that the retrocausal description in this paper does
not represent a new method for quantum computing, it refers only to the way
in which the input state is prepared and not to the quantum computation
itself. The computation, or simulation, process itself can be quite standard.
To be specific, let us assume that this process involves a series of transfor-
mations on n input qubits giving an output that can be a quantum output,
or a classical output obtained from the quantum output by a final measure-
ment. The processing time is assumed to be too long for a deadline to be
met if the n input qubits cannot be fed in until time %,,, the time at which
Alice is given these qubits. The procedure suggested in [12] to overcome this
difficulty and obtain the correct computed result with some non-zero prob-
ability of success is as follows. At a time t before t,,, chosen such that the
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computer processing will finish after ¢,, but within the deadline, Alice pre-
pares n qubits, for example spin-half particles, each of which is maximally
entangled with a partner spin. She then feeds these n qubits into the quan-
tum computer and keeps the n partner spins. At the time ¢,, the state of the
each entangled pair will have been transformed by an operator that just acts
on the qubits in the computer. At this time she is given the correct input
qubits. She then immediately performs a Bell-state measurement, that is, a
measurement performed in the Bell operator basis [20], on each pair compris-
ing a correct qubit and a spin that she has kept. This is just part of the usual
procedure used for quantum teleportation [21]. There is a probability of 1/4
that the outcome of the Bell-state measurement on a pair will be such as
to immediately project the associated qubit in the computer onto the state
that would have resulted if the correct qubit had been used as an input. Thus
there is a probability of (1/4)™ that the output from the quantum computer
will be correct. Although this may be quite small, it is nevertheless better
than what can be obtained by random guessing. Also, from the results of the
Bell-state measurements, Alice knows whether the output is correct or not
and can choose not to accept the wrong output.

In this description, the collapse occurs at the time of the Bell measure-
ment, in a similar way to the first fully causal description given in Sect. 4.
It is not difficult to give a retrocausal description instead. In the retrocausal
picture the state of the qubit retained by Alice at the earlier time ¢ is deter-
mined by the later Bell-state measurement at time ¢,,, causing its entangled
partner to be in a corresponding state as it enters the computer. There is no
collapse of the qubits in the computer after this time. The computer process-
ing proceeds normally and the output produced, quantum or classical, will
be that which would be obtained from qubits whose states correspond to the
results of the later Bell-state measurement. In the case where the quantum
computer processing is finished and, for example, the processing of the clas-
sical output has started before the Bell-state measurements take place, this
retrocausal description removes the need to consider collapses of Schrodinger
cat type superpositions.

6 CONCLUSION

In this paper we have used what can be described as a retrocausal analysis
of probabilistic teleportation of an optical qubit into the past to examine
two particular applications. The first is the case in which optical qubits are
created and sent back in time to be measured, with the measurement results
being processed before the qubits are created. By retaining only the results
for the qubits that are successfully sent back in time, accurate experimental
data can be obtained in a time that would be impossible if the measurements
were made only after the qubits had been created. The second application is
a retrocausal interpretation of the instantaneous quantum computing scheme
suggested by Brukner et al. [12], in which quantum teleportation is used to
perform a quantum computation before its quantum input qubits are defined.
In the causal picture this is achieved by projecting the output state onto the
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correct one with a certain exponentially small but non-vanishing probability.
In the retrocausal picture the input qubits are simply sent back in time.

Finally we again stress that the retrocausal picture, which violates the
strong principle of causality but not the weak principle, is not a different
theory of quantum mechanics from the usual fully causal picture, it is simply
a different interpretation. As the retrocausal picture does not violate the
weak principle of causality, it cannot be exploited to send a message back in
time and is experimentally indistinguishable from the usual picture. However,
just as the Schrodinger and Heisenberg pictures provide different perspectives
that are useful for treating different problems, the retrocausal picture may
also prove useful for some situations, usually where entanglement is involved.
Although it 1s simply a matter of preference as to which picture is used, once
the natural caution against violating strong causality can be overcome, the
retrocausal picture does have some conceptual advantages.
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