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Abstract

A-scans from ultrasonic testing of long shafts are com-
plex signals. The discrimination of different types of echoes
is of importance for non-destructive testing and equipment
maintenance. Research has focused on selecting features of
physical significance or exploring classifier like Artificial
Neural Networks and Support Vector Machines. This pa-
per confirms the observation that there seems to be uncor-
related errors among the variants explored in the past, and
therefore an ensemble of classifiers is to achieve better dis-
crimination accuracy. We explore the diverse possibilities
of heterogeneous and homogeneous ensembles, combina-
tion techniques, feature extraction methods and classifiers
types and determine guidelines for heterogeneous combina-
tions that result in superior performance.

1. Introduction

Applications of machine learning demand exploration of
feature extraction methods and classifier types in order to
obtain systems with reliable highest accuracy. The indus-
trial application discussed here is the classification of ultra-
sonic echoes in an A-scan. The application is particularly
challenging as A-scans are taken from the end of a long
large complex shaft. Although several pattern analysis and
machine learning techniques have been used with success
in analyzing A-scan data [11, 20], they are typically in the
context of very short signals. Those cases are usually much
simpler; in particular, the task reduces to detecting the exis-
tence of an echo (indicating a fault in the material). In long
shafts there are many kind of echoes, and in fact there are
echoes for where there is no fault. These mode-converted
echoes are the result of reflection and other artifacts of the
ultrasonic signal navigating and filling the shaft. They may
cause misjudgement of the position of real faults (cracks) of
shafts, thus to discriminate them from genuine echoes is im-
portant.

The relationship between ultrasonic signal characteris-
tics and flaw classes is not straightforward. We need to ex-
tract informative set of signal features which becomes the
basis of decision-making for classification. Two main is-
sues are to identify the better set of features and to iden-
tify the more suitable learning algorithm, in order to en-
hance the classification performance more accurately and
reliably. For ultrasonic shaft signal classification the most
competitive feature extraction approaches are Fast Fourier
Transform (FFT) and Discrete Wavelet Transform (DWT).
Artificial Neural Networks (ANN) and Support Vector Ma-
chines (SVM) are the top two approaches to build classifiers
in this field.

Previously we focused on finding the best single classi-
fier model (between ANN and SVM) and determining the
best selected feature extraction scheme (between FFT and
DWT). In this paper, we learn multiple models of the shaft
test data and combine their outputs for making a final deci-
sion for classification. The reason for this ensemble of clas-
sifiers is that FFT might reflect physical properties that are
different from those DWT conveys. We suspected that in-
cluding the FFT as another informant of the decision pro-
cess, even if the accuracy using DWT has shown to be su-
perior, should improve accuracy.

Constructing hybrid ensembles is not trivial. There have
been various approaches for creating multiple classifiers
(model generation) and for combining the outputs of mul-
tiple classifiers (model combination) [8, 23]. There are two
streams of model generation methods. Homogeneous gen-
eration creates multiple models trained by multiple data
sets using a single learning algorithm. Those multiple data
sets are generated either by different feature extraction
schemes [16] or by partitioning a data set into multiple
sets [3, 4]. The heterogeneous method creates multiple clas-
sifiers built using different learning paradigms [2]. There-
fore, in order to construct an effective multi-classifier sys-
tem, we need to decide a scheme for model generation and
also a combination method for decision making. Since we
design an ensemble of models using two different feature
sets (FFT and DWT), we will not apply such schemes as

Proceedings of the Fourth International Conference on Hybrid Intelligent Systems (HIS’'04)

0-7695-2291-2/04 $ 20.00 IEEE

YF]',F.

COMPUTER

SOCIETY



boosting or bagging [3, 9] where only one feature extrac-
tion scheme is used.

We report results of our investigation into which method
for model generation offers more improvement on the accu-
racy achieved by a single classifier. We generate heteroge-
neous and homogeneous models and combine the outputs
of those multi-classifiers by three widely-known combining
techniques; Bayesian Combination(BC), Distribution Sum-
mation (DS) and Likelihood Combination (LC). We also ex-
plore the effect of combining multiple models not only on
the overall classification performance but also on classify-
ing each class. The analysis and investigation results ob-
tained are the basis for the construction of an integrated
multi-classifier models using both feature schemes (FFT
and DWT) effectively.

Our presentation continues in Section 2 with a summary
of our previous studies for improving classification system
for shaft test data. It includes motivating observations for
attempting ensembles of classifiers. Section 3 describes our
empirical evaluation, including the description of how we
generated and combined multiple models and how we eval-
uated the classification performance of each ensemble. Sec-
tion 4 analyzes the experimental result from various com-
bination schemes and compares and discusses their perfor-
mance, followed by conclusions in Section 5.

2. Background and challenges
2.1. Background summary

The problem is to discriminate efficiently the different
types of reflectors among the large volumes of ultrasonic
shaft-test data and classify them into a) those that corre-
spond to design features of the shaft (DF), b) those that
correspond to flaws, cracks and other defects (CR) and
c¢) the multiple reflections and mode-converted echoes (MC)
of the two previous cases. Among these three causes of
echoes, type DF is considered easy to distinguish com-
pared to the other types. Also, in the field, the signal echoes
caused by CR can be confused by fainted echoes caused by
MC and vice versa. Consequences of misclassification are
catastrophic with enormous cost in downtime, consequen-
tial damage to associate equipment and potential injury to
personnel [6].

Modern signal processing techniques and artificial intel-
ligence tools eliminate inconsistent results present even in
classification by the same human expert. These approaches
are integrated as automatic ultrasonic signal classification
(AUSC) systems. An AUSC system, preprocesses ultra-
sonic flaw signals acquired in a form of digitized data and
extracts informative features using digital signal-processing
techniques. The main interest for the AUSC research com-
munity has been the extraction of effective sets of features

from which classification might be performed more effi-
ciently and accurately. While it is hard to determine which
set of features is best, it is important to at least identify those
that make the process reliable and effective in the field. It is
also important to relate some features to some understand-
ing of the phenomena (in terms of its physics). However,
the physics are complex, and the relationship between sig-
nal characteristics and flaw classes is not straightforward.

The FFT is a useful scheme for extracting frequency-
domain signal features [6, 14]. This seems natural when
dealing with ultrasound since the traditional representation
of these types of signals is by mathematical Fourier series
that identify physically meaningful features, like frequency
and phase. But recent studies on the ultrasonic flaw clas-
sification employ the Discrete Wavelet Transform (DWT)
as part of their feature extraction scheme. DWT provides
effective signal compression and time-frequency presenta-
tion [15, 19]. Many researchers have compared these two
feature extraction schemes (FFT and DWT), and most com-
parisons showed a superiority of DWT to FFT in discrim-
inating the type of flaw (or its non-existence) [17, 18, 21].
The first study analyzing feature extraction in more com-
plex ultrasonic signals from shafts [13] also established ex-
perimentally that DWT was a potentially stronger feature
extraction scheme for feeding ANNs. However, considering
the many difficulties inherent in the ANN learning paradigm
(such as generalization control, overfitting and parameter
tuning) we remained more conservative about DWT’s pre-
dominance. Recently, a new comparative experiment in-
volving SVM instead of ANN models [12] confirmed the
DWT as indeed the superior feature extraction scheme in
the classification of echoes from ultrasonic signals in long
shafts, because the statistical properties of SVM indicate ro-
bustness in its construction, especially when a limited num-
ber of training examples are available.

2.2. Open issues

We observed differences for specific classes of echoes
when reflecting upon the classification result of both
schemes (FFT and DWT) analyzed in [12]. A classi-
fier constructed using one scheme of feature extraction
showed more accuracy in classifying a certain type of echo
than in the case of using another scheme, but the roles are
reversed for other echoes. Thus, FFT, in spite of lower ac-
curacy for overall classification, could complement the
decisions based on DWT features.

Combining classifiers improves the accuracy achieved
by a single classifier when different classifiers implicitly
represent different useful aspects of the input data. Tech-
niques for combining multiple classifiers must solve two
issues: 1) how to generate multiple models and 2) how to
combine the prediction of the multiple models to produce
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an overall classification. Applying a single algorithm re-
peatedly to different versions of the training data, or ap-
plying different learning algorithms to the same data cre-
ates a set of learned models. There are two ways of ma-
nipulating different versions of the training data; either dif-
ferent subset of the training data or different set of input
features. The various techniques for combining the predic-
tions obtained from the multiple classifiers are largely cat-
egorized into voting (uniform or weighted), stacking meth-
ods and cascading methods.

The diversity of techniques for generating and com-
bining models raises the issue of which generation-
combination method to choose for constructing the most
effective and reliable multi-model systems for our applica-
tion domain. The theory suggests generating a set of models
that are diverse in the sense that they make errors in dif-
ferent ways. We wish to investigate the classification
performance by multi-models. Is better performance ob-
tained when participant are trained by FFT features or DWT
features? We also generate multiple models using differ-
ent learning algorithms (SVM and ANN), and compare
which combination paradigm is more suitable. We an-
alyze the type of errors on each combination models in
order to gain insight into appropriate combining strate-
gies.

3. Experiments

Fig. 1 shows the steps of the two-phase experiment.

1. We map shaft inspected data into feature domains us-
ing two feature extraction schemes (FFT and DWT)
and, using 5-folds cross-validation learning, we train
SVM models and ANN models. We record their per-
formance as single models.

2. We combine single models across two dimen-
sions: 1) combining the decisions of FFT model and
DWT model trained by a single learning paradigm and
2) combining the decisions of SVM model and ANN
model with same feature scheme. We apply 3 com-
bining methods for each combination. We compared
classification accuracy with the result using a sin-
gle model.

3.1. Generation of multiple classifiers

We acquired A-scan signals from eight shafts, rang-
ing between 100mm to 1300mm in length using with the
probe’s frequency set to 2 MHz. We extract the signal seg-
ments of interest from the whole ultrasonic A-scan signals.
In order to apply a consistent way of signal segmentation
which is necessary for suppressing time-variance problems
with DWT, we used a systematical echo capturing method

with zero-padding (SZ) [13]. Using this gating method, we
capture the 768 values of long time-domain vectors, and
downsampled them into 128 values for input into the FFT.
We concatenate the sequences of magnitude components
and phase components (FFT coefficients) into a 128 di-
mensional pattern vector for classification. In parallel, we
compressed the 768 values representing the DWT coeffi-
cients into 128 samples by discarding the last 128 coeffi-
cients (they are supposed not to contain much information
but mainly noise). We store the 128 long vector of DWT co-
efficients as the DWT feature set. For our experiment, we
applied Daubechies wavelets [7] for filtering.

Also, we consider 4 other different schemes for the selec-
tion of the signal’s region of interest; namely, Central Peak
positioning (CP), Main Energy capturing (ME) RAndom
positioning (RA) and Systematical echo capturing method
with the preservation of Original neighboring grass (SO).
The classifiers trained by DWT data using these four meth-
ods showed weaker performance compared to the DWT-
based classifier using SZ [13]. Despite their comparative
weakness, we included these weak classifiers as members
of multi-classifiers.

We used fully connected feed-forward neural networks
with 128 input nodes, two hidden layers with 64 nodes and
16 nodes and an output layer with 2 nodes for classify-
ing the shaft signals into cracks (CR) or mode-converted
echoes (MO). We trained using the back-propagation algo-
rithm in batch mode and the topological order as the update
mode of the networks. The learning rate was 0.2 and the
Mean Square Error limit was 0.01 for stopping the training
process. The epoch limit was 200,000 for those occasional
cases where training failed to converge. The input samples
were randomly divided up into 5 sets. In turn, we use 4 of
these to train the network, and the remaining set to validate
the network. This was repeated with all five possible combi-
nations and furthermore, the process was repeated 5 times
to get the diversity of the networks training ability by as-
signing 5 different initial weights to the network. As the re-
sult of this process, we produce 150 ANN models trained
by six different feature sets; one FFT feature set and five
DWT feature sets which were preprocessed using five dif-
ferent schemes (RA, CP, SO, SZ and ME).

For SVM classifiers, we employed RBF kernels be-
cause they provide nonlinear mapping, require compara-
tively small numbers of hyperparameters and offer less nu-
merical difficulties. RBF requires a penalty parameter C and
kernel parameter . We used a grid searching algorithm [10]
where pairs of C and y are tried and the one with the best 10-
fold-cross-validation accuracy is picked. The result of the
grid searching was the values 4, 16, 1, 2, 1 and 8 for C' cor-
responding to the six feature sets FFT, DWT-CP, DWT-ME,
DWT-RA, DWT-SO and DWT-SZ. The respective ~y val-
ues are 1/32, 1/32, 1/32, 1/8, 1/8 and 1/32. Again, we used
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Figure 1. Overall procedure of our experiment.

5 fold cross-validation test on six SVM models, which are
trained by six feature sets. Thus, we manipulated 30 indi-
vidual SVM classifiers.

3.2. Combination of multiple classifiers

The purpose of our experiment is to empirically investi-
gate what combination is most fruitful. Thus, we investigate
the impact on classification performance from combinations
of multiple classifiers trained by different feature schemes
or different learning paradigms. We explore three combin-
ing methods namely, Bayesian Combination(BC) [22, 24],
Distribution summation(DS) [5] and Likelihood Combina-
tion(LC) [1].

In a Bayesian combination method, weights are estab-
lished proportional to each individual classifier’s past per-
formance which are computed by its posterior probabil-
ity using Bayes’ theorem. In the Distribution summation
method, distributions with each individual model are pre-
sented as a vector which records how many training data are
correctly classified for each class. These vectors of multiple
models are combined using vectorial addition for making
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the combined decision. The likelihood combination method
is a weighted combination in which the Naive Bayes algo-
rithm is applied to learn weights for classifiers.

We combine the outputs of two individual models un-
der two streams; the first stream is to combine FFT mod-
els and DWT models trained by one same learning algo-
rithm (ANN or SVM). We produced one FFT (data set)
type classifier and five different DWT (data sets) type classi-
fiers. Thus, they are five FFT-DWT combinations. Learning
with SVM or with ANN from the feature-combination re-
sults in 10 ensembles. These are the first two rows in Fig. 2.
The second stream is to combine one SVM model with one
ANN model trained by one same feature set (FFT or DWT).
Thus, we get 6 ensembles (corresponding to the third row in
Fig. 2). All the combination are carried out by three differ-
ent combining methods (the 3 columns within each major
column in Fig. 2). The classification accuracy for each class
is also recorded separately from the overall accuracy.
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Figure 2. Comparison of the combined models performance. ¢(A, B) indicates a combined classifier
of two individual classifiers model A and model B. e(A) indicates the classification error rate of a

classifier model A.

4. Results and analysis

In order to investigate if the combined model performs
more accurately in classifying input data than a single
model does, we compared the decision error rate of the
combined model with the decision error rate of each indi-
vidual participant model. Fig. 2 displays the amount of im-
provement in the classification performance. This picture
shows bar-charts presenting the difference between the er-
ror rate of the combined model and the error rate of the
single model. Bar-charts where the combination is an im-
provement point downwards while if a single classifier re-
mains better, the bar-chart points upwards. We also com-
puted a value ¢, which indicates the fraction of correlated
errors” [1] and is also listed in Fig. 2. The value of ¢, is gen-
erally used to measure the degree to which the errors made
by models of the ensemble are correlated.

The following points are noteworthy.

e Combined models show better performance than sin-
gle model in terms of the classification accuracy for
the whole test data set across schemes for generating
or combining multi-classifiers.

e Combining two classifiers trained by different feature
sets become more advantageous when we use SVM as

a learning algorithm than using ANN (refer to top 2
rows of bar-charts in Fig. 2).

e Though the overall accuracy of combined models is
higher than the accuracy of single models across most
types of combination, their performance in classifying
each class data (MO and CR) is diverse. Especially,
most FFT&DWT ensembles trained by ANN perform
worse than single model in classifying CR data, whilst
corresponding combined models trained by SVM per-
form reliably on both class except for one combination
(the FFT&DWT-CP ensemble).

e Amongst the five types of DWT data combined with
FFT data, DWT-SZ shows most reliability in classify-
ing both classes regardless of learning paradigm. This
implies that different echo gating preprocessing for
extracting DWT features plays a role in making the
DWT feature-sets. We suspect there are some implicit
differences in DWT.

e The performance of the heterogeneously combined
classifiers is different depending on which feature sets
were used to train them.

e The value of ¢, is related with the amount of er-
ror reduction made by combining multi-classifiers. As
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shown in Fig. 2, the value of ¢. seems to be much rel-
evant to the overall error reduction rate. It seems not to
have much relevance with the error reduction for each
class data.

e The most suitable combination structure may depend
on the interest of some particular class. For exam-
ple, if accuracy for the CR class is the issue, then the
SVM with DWT (single classifier) is not surpassed by
the combination. Although the combination does bet-
ter overall the classes.

5. Conclusion

We have explored the combining of classifiers along the
dimension of feature extraction mechanism, along the di-
mension of combination method and along the dimension
of type of classifier.

This experimental result suggests guidelines for design-
ing an integrated multi-classifier system for shaft test data
by the way of selectively employing the combining struc-
ture used in this experiment. Namely, combination in gen-
eral improves the accuracy, and combining features has the
potential for improvement. However, the most productive
combination that offers the most improvement is usually a
combination of ANN and SVM from DWT as the building
feature.
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