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Abstract

Recently there has been considerable interest in the Fluctuation Theorem (FT). The

Evans-Searles FT shows how time reversible microscopic dynamics leads to irreversible

macroscopic behavior as the system size or observation time increases. We show that the

argument of this FT, the dissipation function, plays a central role in nonlinear response theory

and derive the Dissipation Theorem, giving exact relations for nonlinear response of classical

N-body systems that are more widely applicable than previous expressions. These expressions

should be verifiable experimentally. When linearized they reduce to the well known Green-

Kubo expressions for linear response.
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I. INTRODUCTION

Recently there has been considerable interest in a group of theorems known

collectively as the Fluctuation Theorem (FT). Various forms of this theorem have been

confirmed experimentally.1 The FT is remarkable in that it represents one of the few exact

results that apply to nonequilibrium systems far from equilibrium. It has been shown that in

the weak field limit the Evans-Searles FT can be used to prove the well known Green-Kubo

expressions for the linear response of thermostatted systems to an applied dissipative field.2

For technical reasons the connection between response theory and the FT for deterministic

systems, has been restricted to the linear regime close to equilibrium. Gavin Crooks3 has given

a description of the connection between various stochastic versions of the fluctuation theorem

and the so-called Kawasaki expression for the nonlinear response. However even in the

stochastic case this connection did not extend to the more useful Transient Time Correlation

Function (TTCF) formalism for the nonlinear response.4  In the present paper we give the first

proof that thermostatted nonlinear response theory (both Kawasaki and TTCF) can be derived

directly using the Evans-Searles Fluctuation function for classical systems satisfying time

reversible deterministic dynamics.  In fact the new derivation shows that the formal

expressions for the unnatural homogenously thermostatted nonlinear response that have been

derived in the past do in fact also formally apply much more generally, including to naturally

thermostatted systems as occur in real experimental systems.

In Section II we will present general equations of motion for the deterministic and

reversible nonequilibrium, thermostatted dynamics and discuss the use of thermostats.  We

also show how the N-particle distribution function and phase variables evolve under these

dynamics.  In Section III we present the Evans-Searles Transient FT (TFT) and discuss some

of its important implications. Section IV presents the main results of this paper: the
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Dissipation Theorem, and compares various representations of the nonequilibrium distribution

function. Section V summarises our findings.

II.  THERMOSTATTED, NONEQUILIBRIUM DYNAMICS

Consider a classical system of N interacting particles in a volume V.  The

microscopic state of the system is represented by a phase space vector of the coordinates and

momenta of all the particles, in phase space - {q1,q2,..qN,p1,..pN} ≡ (q,p) ≡ Γ where qi,pi

are the position and momentum of particle i.  Initially (at t = 0), the microstates of the system

are distributed according to a normalized probability distribution function f(Γ,0) .  While the

results in this paper are generally applicable, to demonstrate its application to realistic

systems, we separate the N particle system into a system of interest and a reservoir region

containing NW  particles.  We shall assume that the reservoir region contains many more

particles than the system of interest, NW >> (N − NW) , and we write the equations of motion

for the composite N-particle system, as,

 

qi =
p i
m +Ci (Γ)iFe

p i = Fi (q) +Di (Γ)iFe − Siα(Γ)p i

(1)

where Fe  is the dissipative external field that couples to the system via the phase functions

Ci (Γ)  and Di (Γ) , Fi (q) = −∂Φ(q) / ∂qi  is the interatomic force on particle i, and Φ(q)  is the

interparticle potential energy and the last term −Siα(Γ)p i  is a deterministic time reversible

thermostat used to add or remove heat from the particles in the reservoir region.5-7  We assume

that in the absence of the thermostatting terms the adiabatic equations of motion preserve the

phase space volume, 
 
(∂ ∂Γ)i Γ ad = 0 : a condition known as the adiabatic incompressibility of
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phase space, or AIΓ.5 The thermostat multiplier can be chosen in a number of ways, such as

using Gauss’ Principle of Least Constraint,5-7 to fix some thermodynamic constraint (e.g.

temperature or energy).  The thermostat employs a switch, Si , which controls how many and

which particles are thermostatted, Si = 0; 1< i < (N −Ntherm ) ,

Si = 1;(N −Ntherm +1) ≤ i ≤ N,Ntherm ≤ NW .  The equations of motion for the particles in the

system of interest are quite natural.  The reservoir region is assumed to not interact with the

dissipative field Ci ,Di = 0;(N − NW +1) ≤ i ≤ N and the equations of motion for the more

distant reservoir particles, NW < Ntherm ≤ i ≤ N , are supplemented with the unnatural

thermostat term.  It is worth pointing out that as described, equations (1) are time reversible

and heat can be either absorbed or given out by the thermostat.  This construction has been

applied in various studies (see, for example references 8-10.).  Of course, if Si = 1  for all i, we

obtain a homogeneously thermostatted system that has been studied in detail in the past.5

One should not confuse a real thermostat composed of a very large (in principle,

infinite) number of particles with the purely mathematical -albeit convenient- term α.  In

writing (1) it is assumed that the reservoir momenta p i  are peculiar (i.e.  measured relative to

the local streaming velocity of the fluid or wall).  When a Gaussian thermostat is used the

thermostat multiplier is chosen to fix the peculiar kinetic energy of the wall particles

Ktherm ≡ pi
2 / 2m

Si =1
∑ = (dCNtherm −1)kBTw / 2 , (2)

with Ntherm = Si∑ .  The quantity TW  defined by this relation is called the kinetic temperature

of the wall, and dC is the Cartesian dimension of the system.  It is assumed that
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NW,Ntherm >> (N −Ntherm ) > (N −NW) .  This means that the entire wall region can be assumed

to be arbitrarily close to equilibrium at the thermodynamic temperature TW .

One might object that our analysis is compromised by our use of these artificial (time

reversible) thermostats.  However the artificial thermostat region can be made arbitrarily

remote from the system of interest by ensuring that the particles with Si = 1  are far from the

system of interest.8,9,11  If this is the case, the system cannot ‘know’ the precise details of how

heat was removed at such a remote distance.  This means that the results obtained for the

system using our simple mathematical thermostat must be the same as the those we would

infer for the same system surrounded (at a distance) by a real physical thermostat (say with a

huge heat capacity).  This mathematical thermostat may be unrealistic, however in the final

analysis it is a very convenient but ultimately irrelevant device.9

As Tolman12 pointed out, in a purely Hamiltonian system, the neglect of ‘irrelevant’

degrees of freedom (as in thermostats or by neglecting solvent degrees of freedom in a

colloidal or Brownian system) will inevitably result in a non-conservation of phase space

volume for the remaining ‘relevant’ degrees of freedom. For a mathematical proof that when

the thermostatting region has a much larger number of degrees of freedom than the

unthermostatted system of interest, the Fluctuation Theorem is independent of the

mathematical details of how the thermostatting is accomplished.9 This proof is given for an

infinite family of so-called µ-thermostats.

The exact equation of motion for the N-particle distribution function is the time

reversible Liouville equation,5

 

∂f(Γ, t)
∂t

= −
∂
∂Γ

i[ Γf(Γ, t)] ≡ −iL(Γ)f(Γ, t) (3)
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where iL(Γ)  is the distribution function (or f-) Liouvillean and appears in the propagator for

the phase space distribution function ( f(Γ, t) = exp(−iL(Γ)t)f(Γ,0) ).  The Liouville equation

can also be written in Lagrangian form,13

 

df(Γ, t)
dt

= −f(Γ, t) d
dΓ

i Γ ≡ −Λ(Γ)f(Γ, t) . (4)

The presence of the thermostat is reflected in the phase space expansion factor,

 
Λ(Γ) ≡ ∂ ∂Γi Γ , which is, assuming AIΓ, to first order in Ntherm, Λ = −dCNthermα .  The

equation of motion for an arbitrary phase function B(Γ) , is5

 

B(Γ) = Γi
dB
dΓ

≡ iL(Γ)B(Γ) . (5)

where iL(Γ)  is the phase variable (or p-) Liouvillean and appears in the propagator for phase

variables (B(Γ(t)) = exp(iL(Γ)t)B(Γ(0)) ).  The difference between the f-Liouvillean and the

p-Liouvillean is, iL(Γ) − iL(Γ) = Λ(Γ) .  The time-reversibility condition implies that there

exists a time reversal mapping, MT  such that Γ =MT exp(iLt)MT exp(iLt)Γ , and this imposes

some conditions on Ci (Γ)  and Di (Γ)  in (1), that depend on MT .

III. THE TRANSIENT FLUCTUATION THEOREM

Derivation of the Evans-Searles TFT considers the response of a system that is

initially at equilibrium to application of a field.  The initial distribution can be written in a

quite arbitrary form,
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f(Γ,0) = exp[−F(Γ)]
dΓ∫ exp[−F(Γ)]

, (6)

where F(Γ)  is some arbitrary single valued real function for which f(Γ,0) = f(MTΓ,0) . The

Evans-Searles TFT13-16 states that provided the system satisfies the condition of ergodic

consistency,15 the dissipation function Ω(Γ) , defined as15,16:

 

dsΩ(Γ(s)
0

t

∫ ) ≡ ln f(Γ(0),0)
f(Γ(t),0)

⎛
⎝⎜

⎞
⎠⎟
− Λ(Γ(s))ds

0

t

∫

≡ Ωt t
 (7)

satisfies the following time reversal symmetry13-15:

p(Ωt = A)
p(Ωt = −A)

= exp[At] . (8)

The derivation of the TFT is straightforward and it has been given in the past (see for

example, reference 15) and therefore will not be repeated here.  The instantaneous dissipation

function can be determined by differentiation of (7) as

  

Ω(Γ) = − ∂
∂Γ

i Γ(Γ) −
Γ(Γ)

f (Γ,0)
i
∂
∂Γ

f (Γ,0)

= − ∂
∂Γ

i Γ(Γ) − Γ(Γ)i
∂
∂Γ

ln f (Γ,0)

(9)



8

and therefore 
  
Ω(Γ)f (Γ,0) = − ∂

∂Γ
i Γ(Γ)f (Γ,0)( ) ,  the divergence of 

  
Γ(Γ)f (Γ,0)  (i.e. the

dissipation function weighted by the initial distribution is the weighted divergence of the

phase space flow field).

It is very important to remember that the existence of the dissipation function Ω(Γ)

at a phase point Γ, requires that f(Γ,0) ≠ 0 . The existence of the integrated form of the

dissipation function requires that the dynamics is ergodically consistent (i.e.

∀Γ, t st f(Γ,0) ≠ 0, f(Γ(t),0) ≠ 0 ). There are systems that fail to satisfy this condition.  For

example, if we let the initial distribution be microcanonical and further assume that the

dynamics does not preserve the energy (there may be no thermostat or the thermostat may fix

the kinetic temperature or so), then ergodic consistency obviously breaks down.  The existence

of the dissipation function (7) only requires that the initial distribution is normalizable and that

ergodic consistency holds.  To prove the Evans-Searles Fluctuation Theorem requires an

additional condition: namely that the dynamics must be time reversal symmetric.

The TFT has generated much interest, as it shows how irreversibility emerges from

the deterministic, reversible equations of motion17, and is valid arbitrarily far from

equilibrium.  It provides a generalized form of the 2nd Law of Thermodynamics that can be

applied to small systems observed for short periods of time.  It also resolves the longstanding

Loschmidt Paradox.  The TFT has been verified experimentally.1

The form of the above equation applies to any valid ensemble/dynamics combination,

provided the distribution function is invariant with respect to time reversal.  However the

precise expression for Ωt  given in (7) is dependent on both the initial distribution and the

dynamics.  This result is extremely general.  It is valid arbitrarily far from equilibrium.  It

leads to a number of other simple but important corollaries such as the Second Law

Inequality,18
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Ωt Fe ,f (Γ ,0)
≥ 0, ∀t,Fe , f(Γ,0) (10)

and the NonEquilibrium Partition Identity,

exp −Ωt t Fe ,f (Γ ,0) = 1, ∀t,Fe , f(Γ,0) . (11)

The notation ... Fe ,f (Γ ,0)  implies that the ensemble average is take over the ensemble defined

by the initial distribution f(Γ,0)  (6), with any value (including zero) for the external field Fe

in the equations of motion.
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IV. THE DISSIPATION THEOREM

We now derive the Dissipation Theorem, which shows that, as well as being the subject of the

TFT, the dissipation function is also the central argument of both linear (i.e.  Green-Kubo

theory) and nonlinear response theory.

Firstly we note the Dyson Identity19 for two operators A, B

exp[(A + B)t] = exp[At]+ ds
0

t

∫ exp[As]Bexp[(A + B)(t − s)] . (12)

To prove this identity we note that at t = 0 it is clearly true and for t > 0, the left hand side and

the right hand side satisfy the same first order differential equation.  Substituting A = −iL(Γ) ,

and B = −Λ  we find that,

exp[−(iL)t] = exp[−(iL + Λ)t] = exp[−iLt]− ds
0

t

∫ exp[−iLs]Λexp[(−iL)(t − s)] . (13)

Recursive substitution and summing the resultant infinite series gives,

f(Γ, t) = exp[− ds
0

t

∫ Λ(−s)]exp[−iL(Γ)t]f(Γ,0)

= exp[− ds
0

t

∫ Λ(−s)]exp[−F(Γ(−t)) + F(Γ(0))]f(Γ,0)
. (14)

Comparing this with equation (7) we see that

f(Γ, t) = exp[− ds
0

− t

∫ Ω(Γ(s))]f(Γ,0) . (15)
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Thus the propagator for the N-particle distribution function exp[−iL(Γ)t] , has a very simple

relation to exponential time integral of the dissipation function.  As shown below, in the case

of isokinetic nonequilibrium dynamics, this equation reduces to equation (7.2.17) of reference

5.  In the case of adiabatic (i.e. unthermostatted) dynamics for an ensemble that is initially a

canonical ensemble, this result is equivalent to (7.2.8) of reference 5, which is the distribution

function derived by Yamada and Kawasaki20.  However (15) is much more general and, like

the TFT, can be applied to any initial ensemble and any time reversible, and possibly

thermostatted dynamics that satisfies AIΓ.

From equation (15) we can calculate nonequilibrium ensemble averages in the

Schrödinger representation

B(t) Fe ,f (Γ ,0) = B(0)exp[− ds
0

− t

∫ Ω(Γ(s))]
Fe ,f (Γ ,0)

, (16)

and by differentiating and integrating (14) with respect to time, we can write the averages in

the Heisenberg representation as

B(t) Fe ,f (Γ ,0) = ds
0

t

∫ Ω(0)B(s)] Fe ,f (Γ ,0) . (17)

Equations (15-17) are new results. On both sides of equations (15-17) the time evolution is

governed by the field dependent thermostatted equations of motion (1).  The derivation of (16)

and (17) from the definition of the dissipation function (7), is called the Dissipation Theorem.

This Theorem is extremely general, and allows the determination of the ensemble average of

an arbitrary phase variable under very general conditions.  Like the FT it is valid arbitrarily far

from equilibrium.  As in the derivation of the FT the only unphysical terms in the derivation
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are the thermostatting terms within the wall region.  However, because these thermostatting

particles can be moved arbitrarily far from the system of interest, the precise mathematical

details of the thermostat are unimportant.  Since the number of degrees of freedom in the

reservoir is assumed to be much larger than that of the system of interest, the reservoir can

always be assumed to be in thermodynamic equilibrium.  There is therefore no difficulty in

defining the thermodynamic temperature of the walls.  This is in marked contrast with the

system of interest, which may be very far from equilibrium where the thermodynamic

temperature cannot be defined.

For the special case of isokinetic dynamics where the kinetic energy Ktherm (Γ)  of the

thermostatted particles is fixed and if the initial distribution is isokinetic

f(Γ,0) ≡ fK (Γ,0) =
δ(2Ktherm − (dCNtherm −1)kBTW)exp[−βH0(Γ)]
dΓ∫ δ(2Ktherm − (dCNtherm −1)kBTW)exp[−βH0(Γ)]

, (18)

H0(Γ)  is the internal energy of the entire system, and β = 1 / (kBTW) , it is straightforward15,21to

show that the dissipation function is related to the generalized entropy production Σ(Γ) ,

 
Ω(Γ) ≡ Σ(Γ) = −βJ(Γ)ViFe . (19)

Here V is the volume of the system of interest and J(Γ)  is the dissipative flux in the system of

interest,

 

J(Γ)ViFe = − [p i
m

iDi − FiiCi ]iFe
i=1

N−NW

∑ (20)
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Although here we assumed a special dynamics where the kinetic energy of the thermostatted

particles is fixed, the form of (19) must be true for  other “thermostatted” dynamics (e.g.

Nose-Hoover or constant energy etc.).21  Furthermore, if the reservoir region does not directly

interact with the field, and Ntherm is large, and much larger than the number of degrees of

freedom in the system of interest,  the form of (19) is true in general (e.g. for thermostats

where higher order moments of the momenta are constrained, stochastic thermostats etc.)9.

The dissipative flux, volume and field are properties of the system of interest and the only

relevant property taken from the thermostatted region is its temperature.

Equation (17) can be written as the Transient Time Correlation function expression,5

for the thermostatted nonlinear response of the phase variable B to the dissipative field Fe .

 
B(t) Fe ,f (Γ ,0) = −βV ds

0

t

∫ J(0)B(s)] Fe ,fK (Γ ,0)iFe . (21)

In the weak field limit this reduces to the well known Green-Kubo expression5 for the linear

response

 
lim
Fe→0

B(t) Fe ,fK (Γ ,0) = −βV ds
0

t

∫ J(0)B(s)] Fe =0,fK (Γ ,0)iFe , (22)

where the right hand side is given by the integral of an equilibrium (ie Fe = 0 ) time correlation

function. Equation (19) is not new,15 and equations (21, 22) have been known for many years.

However, this interpretation referring to the separation of the properties of the system of

interest from those of the thermostatting region (i.e. the gedanken experiment) is new.
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It is interesting to compare a number of different relationships between the

distribution function, the dissipation function and the phase space expansion factor.  The first

such relation is equation (15) above.  We note that although the time argument in (15) is

negative, the dynamics must still be governed by the field dependent, thermostatted equations

of motion (1).  Rewriting (7) we have

f(Γ(t),0) = exp[− ds
0

t

∫ Ω(Γ(s))+ Λ(Γ(s))]f(Γ(0),0) . (23)

In a nonequilibrium steady state (SS), Ω(t) ss = − Λ(t) ss .  We also note that if the initial

ensemble is microcanonical (has a uniform density) and the dynamics is such that the total

energy (system of interest plus walls and thermostat) is constant, then Ω(t) = −Λ(t), ∀t .

Lastly we have the formal solution of the Liouville equation in its Lagrangian form (4),13

f(Γ(t), t) = exp[− ds
0

t

∫ Λ(Γ(s))]f(Γ(0),0) . (24)

Rather obviously the results of the Dissipation Theorem (17) can also be used to obtain a

Fluctuation Dissipation Theorem as described in reference 22 by considering the case where

the phase function B(Γ) = J(Γ) . Furthermore, following reference 22 we find that when the

equilibrium dissipative flux autocorrelation function is δ-correlated,

J(t1)J(t2 ) Fe =0 = J(t1)J(t2 )δ(t2 − t1) Fe =0 , and we obtain the fluctuation dissipation relation,

 

lim
Fe→0

J(t) Fe = −
1
3
βV J(0)iJ(0)] Fe =0 iFe .
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V. CONCLUSIONS In this paper we

have shown the central importance of the dissipation function to nonequilibrium statistical

mechanics.  It is the argument of both the FT and the Dissipation Theorem.  These Theorems

are both exact arbitrarily far from equilibrium.  The FT has been confirmed in laboratory

experiments1 and we see no reason why the Dissipation Theorem cannot be likewise tested in

the laboratory.

Originally the dissipation function was defined in order to characterize the ratio of

probabilities pr , of observing infinitesimal bundles of phase space trajectories originating (t =

0) in a volume dVΓ (0)  to the probability of observing at t=0, their time reversed antitrajectories

dV
Γ∗ (0) , where Γ*(0) ≡ ΜΤΓ(t) ,15

pr (dVΓ (0),0)
pr (dVΓ∗ (0)

,0)
= exp[ ds

0

t

∫ Ω(Γ(s))] . (25)

Combining (25) with (15) shows that the nonequilibrium N-particle distribution function at

time t, can be written in terms of the ratio of probabilities of observing

f(Γ(0), t) =
pr (dVΜΤΓ (− t )

,0)
pr (dVΓ (0),0)

f(Γ(0),0) . (26)

We find it remarkable that the measure of irreversibility given in (25) by the dissipation

function also features so centrally in the Dissipation Theorem.  Our work shows that this

measure of irreversibility is the prime function in determining how a nonequilibrium system

will respond to a nonequilibrium perturbation or dissipative field.
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We have given a derivation of the Dissipation Theorem (15-17) for an exceedingly

general set of time reversible equations of motion (1) and for an arbitrary initial distribution

f(Γ,0) , (6). If one substitutes Ω for B in equation (17) and then combines the resulting

equation with the Second Law Inequality (10), one can prove the following inequality for

integrals of transient correlations of the dissipation function,

ds
0

t

∫ Ω(0)Ω(s) Fe ,f (Γ ,0) ≥ 0, ∀ t, Fe , f(Γ,0).. (27)

So, not only does the dissipation autocorrelation function start with a positive value, but for all

normalizable initial distributions and for any well defined dynamics with an arbitrarily strong

external field (if any) any negative tails in the transient correlation function cannot be strong

enough for the integral (27) to ever become negative.

 The Dissipation Theorem can be used to calculate the ensemble average of an

arbitrary phase variable and for arbitrarily strong dissipative fields, Fe .  In deriving (19) we

considered a system that preserves the initial (equilibrium) distribution in the absence of an

external dissipative field.  Our formalism is sufficiently general to also describe the situation

where there is no external dissipative field Fe = 0  but where dissipation still occurs because

the initial distribution is not preserved by the dynamics. The new results given in equations

(15-17) apply to this more general circumstance (this includes systems subject to rapid

temperature or pressure quenches etc, but in which there is no applied mechanical dissipative

field).

We have argued that although the derivation employs unphysical thermostatting

terms, these are a convenient but ultimately irrelevant device.  For both the Dissipation and

FT, dissipation takes place only in the system of interest (as measured by the dissipation
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function) and on average, heat is lost to a surrounding reservoir region that is arbitrarily close

to thermodynamic equilibrium at a known temperature.

Recently there have been a number of papers that have claimed that in some glassy

systems, the fluctuation theorem and/or the fluctuation dissipation theorem “seems to fail”.23

We have a number of comments to make on this matter.  Firstly if a mathematical theorem has

been proved and the proof is correct (there are proofs of the theorems in question that are

undoubtedly correct) then no experiment can prove that the theorem is incorrect.  However,

any mathematical theorem involves a set of conditions.  It may well be that in certain

situations the conditions required for the theorem to apply may not hold.  In such a case the

mathematical relation expected from the application of the theorem to the system being

studied, may not be satisfied.

When people say that the Fluctuation Theorem or the Fluctuation Dissipation

Theorem fails for glasses, they usually mean the relations obtained by applying these systems

to a canonical distribution of states (ie the fluctuation relation equation (8) with equation (19)

as the dissipation function etc.) With respect to linear response theory and the fluctuation

dissipation theorem there are a number of necessary conditions for these theorems to apply.

For equation (19) to apply these conditions include24:

1 the initial state must preserved by  field-free dynamics (there cannot be any slow

relaxation);

2 the initial distribution should be Boltzmann distributed at least over some ergodic

subdomain of phase space;

3 if the phase space can be divided into distinct subdomains (as is natural in systems

where multiple phases exist, glassy systems and where allotropes exist), the subdomains

should be robust with respect to small changes in macroscopic conditions;

and, for linear response theory to apply
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4 the applied fields need to be sufficiently weak that the system responds linearly with

respect to field strength.

Recently we have shown that if one fixes the absolute magnitude of a constant

driving force and one then lowers the temperature and approaches the glass transition, the

reduced magnitude of the driving force (reduced in accord to the rapidly diverging response

time of the system) increases without bound.25  In this case the expected linear response

relation will fail because as the temperature is lowered at a fixed force value the system moves

into the nonlinear response regime. For a detailed discussion of the application of the

Transient Fluctuation Theorem to glassy systems see reference 24.

It has been proposed that in nonequilibrium systems the path integral of the entropy

production should be an extremum (see, for example, reference 26).  To leading order, close to

equilibrium the dissipation function is the entropy production of linear irreversible

thermodynamics, σ(t)V , lim
Fe→0

(Ω(t)− σ(t)V) = O(Fe
4 ) . Our work shows that in natural systems

that exchange heat with their surroundings, the maximum entropy production hypothesis, at

best, can only be an approximation.  In none of our expressions for the nonequilibrium N-

particle distribution function (see equations (15), (23), (24)), is the probability density

controlled solely by the path integral of the entropy production.
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