444

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 13, NO. 4, AUGUST 2005

Image Segmentation Based on Adaptive Cluster
Prototype Estimation

Alan Wee-Chung Liew, Member, IEEE, Hong Yan, Senior Member, IEEE, and N. F. Law, Member, IEEE

Abstract—An image segmentation algorithm based on adaptive
fuzzy c-means (FCM) clustering is presented in this paper. In
the conventional FCM clustering algorithm, cluster assignment is
based solely on the distribution of pixel attributes in the feature
space, and does not take into consideration the spatial distribution
of pixels in an image. By introducing a novel dissimilarity index
in the modified FCM objective function, the new adaptive fuzzy
clustering algorithm is capable of utilizing local contextual infor-
mation to impose local spatial continuity, thus exploiting the high
inter-pixel correlation inherent in most real-world images. The
incorporation of local spatial continuity allows the suppression
of noise and helps to resolve classification ambiguity. To account
for smooth intensity variation within each homogenous region in
an image, a multiplicative field is introduced to each of the fixed
FCM cluster prototype. The multiplicative field effectively makes
the fixed cluster prototype adaptive to slow smooth within-cluster
intensity variation, and allows homogenous regions with slow
smooth intensity variation to be segmented as a whole. Experi-
mental results with synthetic and real color images have shown
the effectiveness of the proposed algorithm.

Index Terms—Fuzzy clustering, image segmentation, prototype
adaptation, spatial continuity.

1. INTRODUCTION

MAGE segmentation is an important low-level prepro-

cessing step for many computer vision problems [1], [2].
Many algorithms for image segmentation using fuzzy tech-
niques have been proposed [3]-[6]. One popular technique
involves using the fuzzy c-means (FCM) algorithm [7], or
variants of it, to compute the membership values for different
classes before the final segmentation. The FCM algorithm as-
signs membership value to a data sample based on its proximity
to the cluster prototypes in the feature space. In the FCM-based
segmentation algorithm, feature vectors are assumed to be
independent of each other and independent of their spatial
coordinates.

However, real-world images usually have strong correlation
between neighboring pixels. Adjacent pixels in an object are
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generally not independent of each other. Thus, the incorpora-
tion of local spatial interaction between adjacent pixels in the
fuzzy clustering process can produce more meaningful classifi-
cation, as well as help to resolve classification ambiguities due
to overlap in intensity value between clusters or noise corrup-
tion. In addition, the intensity of objects or regions in an image
usually varies with image location, due to illumination and/or
object geometry. Such objects or regions cannot be adequately
represented by cluster prototypes of constant value.

A popular method to introduce local spatial context into pixel
classification is relaxation labeling [8]-[10]. However, relax-
ation labeling requires the initial labeling probabilities of each
pixel to be available. This requires a supervised classification
of labeled pixels to obtain the initial statistics and to construct
the compatibility coefficients between neighboring pixels for
the chosen neighborhood configuration [8], [9]. Then, the la-
beling probabilities of each pixel are updated iteratively based
on the compatibility coefficients. In [10], Hsiao proposed an un-
supervised relaxation labeling algorithm for image segmenta-
tion. The method is essentially a two-stage process, i.e., unsu-
pervised K-means clustering is used to estimate the initial la-
beling probabilities, followed by probabilistic relaxation to up-
date the labeling probabilities. The important point to note in
[8]-[10] is that the initial labeling on each pixel is based on
the pixel attributes only, without considering the spatial corre-
lation between neighboring pixels. This is also clearly brought
outin [10], which states that “The weakness of classifying pixels
based solely upon feature space distribution is that the formation
of clusters in the feature space does not take into consideration
the spatial distribution of points in image.” The spatial corre-
lation between neighboring pixels is only added later through
the process of relaxation labeling. Therefore, relaxation labeling
can be viewed as a postprocessing step that attempts to incorpo-
rate local spatial continuity into the final solution.

In contrast to postprocessing, there are several attempts to
incorporate local spatial continuity directly into the clustering-
based segmentation process. Tolias and Panas [11] proposed a
fuzzy clustering-based segmentation algorithm that takes into
account local spatial context and with spatially varying cluster
prototypes. The cluster prototypes at a particular location are
estimated from the pixels within a local window. The spatial
context between neighboring pixels is taken into account by an
ad-hoc modification of the membership values through the addi-
tion or subtraction of a small constant. In [12], [13], Liew et al.
proposed a spatial FCM algorithm that incorporates local spa-
tial context directly into the fuzzy objective functional formu-
lation. However, there is no adaptation of the cluster prototypes
to smooth intensity variation of homogenous regions.
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In this paper, we proposed an adaptive FCM segmentation
algorithm that: i) takes into account the high interpixel corre-
lation, and ii) allows spatial adaptation of the cluster prototype
to slow intensity variation in a homogenous region. For point
one, our method incorporates the local spatial correlation be-
tween neighboring pixels directly into the clustering algorithm.
In the estimation of the pixel’s cluster memberships, not only
the pixel’s attributes but also the spatial relationship between it
and its neighbors are taken into consideration. Although point
one has appeared in our previous work [12], we provide a deeper
analysis and interpretation of the idea in this paper. Some further
improvements have also been made in this work. For example,
the definition of the dissimilarity index given by (6) is now
more general than the original formulation in [12], and while
the steepness parameter o was selected by experimentation in
[12], it is determined here based on the image characteristic.
For point two, although the idea of adapting to smooth intensity
variation in an image has been adopted in [17], the goal there
is to account for global intensity nonuniformity occurring over
the entire image, which is a common artifact in MRI imaging
[19]. The homogenous regions are still assumed to be of uni-
form intensity, i.e., the cluster prototypes in [17] are assumed to
be constant. In this work, we are instead concerned with inten-
sity variation within each homogeneous region, i.e., within each
cluster. A further difference between this work and our work in
[17] is the introduction of an additional relabeling step in the
clustering algorithm due to the cluster prototypes adaptation.

This paper is divided into six sections. In Section II, we de-
scribe the image segmentation problem and point out the defi-
ciencies in the conventional clustering-based approach. In Sec-
tion III, we describe in detail how the local spatial continuity
constraint and prototype adaptation can be incorporated into the
FCM algorithm. Section IV describes some implementation is-
sues and gives a pseudo-code description of the algorithm. Ex-
perimental results are given in Section V. Finally, Section VI
draws some conclusions.

II. IMAGE SEGMENTATION BY Fuzzy CLUSTER ANALYSIS

The task of image segmentation can be stated as the parti-
tion of an image into a number of nonoverlapping regions, each
with distinct properties. Using this definition, an image A can
be modeled as the union of ¢ homogenous regions Ay,

A=Uj_ A (1)
where each homogenous region is specified by the rep-
resentative properties vi(z,y), e.g., intensity, and an ad-
ditive, zero mean random noise component ny(x,y), i.e.,
Ap(z,y) = ve(z,y) + nr(z,y), for (x,y) € region Aj. Each
homogenous region can consist of a single connected compo-
nent or a group of possibly disjoint connected components of
pixels with similar property.

Let S = {s(z)}, where z = (z,y), be the set of feature vec-
tors, i.e., intensity value or color value associated with an image
defined in the domain I. The conventional FCM algorithm [7]
is formulated as the minimization of the objective functional

Jrcn with respect to the membership values U and cluster pro-
totypes v,

Teem(U,0) =303 i di,

z€l k=1

(2)
subject to

ZUk7£ =1 Ve el
k=1

where the matrix U = {uy .} is a fuzzy c-partition of S,v =
{v1,v2,...,v.} is the set of fuzzy cluster prototypes, m €
(1, 00) is the fuzzy index, c is the total number of clusters, and
uy, gives the membership of pixel s(z) in the kth cluster cz.
Using the Euclidean norm, the distance metric d measures the
vector distance of a feature vector from a cluster prototype in
the feature space, i.e.,

3

The FCM objective function is minimized when high member-
ship values are assigned to pixels close to a cluster prototype,
and low membership values are assigned when they are far from
the prototype. After FCM clustering, each pixel will be associ-
ated with a membership value for each class. By assigning the
pixel to the class with the highest membership value, a segmen-
tation of the image can be obtained.

Although the membership allows a pixel to deviate from the
cluster prototype, the FCM segmentation algorithm implicitly
assumes that the cluster prototype of each class has a constant
value. For the image model (1), this implies that vg(z) = vy.
Obviously, this assumption would only be valid on a very re-
stricted set of images consisting of regions of constant intensi-
ties. Moreover, each pixel in the FCM algorithm is assumed to
be independent of every other pixels and spatial correlation be-
tween adjacent pixels is not considered.

di o = lls(z) — vl

III. PROPOSED METHODS

In view of the shortcomings of conventional FCM segmenta-
tion algorithm, we propose a modified FCM segmentation algo-
rithm that explicitly: i) Takes into account the local spatial cor-
relation between adjacent pixels, and ii) allows the cluster proto-
type to adapt to slow intensity variation in a homogenous region.
Objective one is achieved by replacing the distance metric of
(3) by a novel dissimilarity index as described in Section III-A.
For objective two, a multiplicative field is added to each cluster
prototype to model the intensity variation of each homogenous
region. A relabeling procedure is also incorporated to merge ad-
jacent regions that are homogenous. These are described in Sec-
tions III-B and III-C, respectively. Iterative updating of the vari-
ables to minimize the modified objective functional is given in
Section III-D.

A. Local Spatial Continuity

The idea of incorporating local spatial context in FCM is
to consider the influence of neighboring pixels on the pixel of
interest during classification. Let X, denote the chosen local
neighborhood configuration with respect to a center pixel p. If
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Fig. 1. Shape of the weighting factor A centered at ¢+ = 25, with o varied from
1,3t05.

the pixels in 8, and the center pixel p belong to the same class,
then p should be smoothed by the clustering results of its neigh-
boring pixels so that they all eventually have high and similar
membership values in one of the clusters. This is done as fol-
lows. Let dist(a,b) = /||la — b||? denote the Ly distance be-
tween vectors a and b. For every pixel s(z) in the image, we
compute the following L, distances:

O,
dy,

,8(y), s(y) €Ny 4)

dis
dist (8@), Uk) 5

|

|i~3

where X, is the neighborhood of s(z) and vy, is the prototype of
the kth cluster. The first distance metric Oy,y measures the dis-
similarity of the pixel s(z) and its neighbor s(y). The second
distance metric dy , measures the affinity of the center pixel
s(z) to the cluster prototype vy. Now, if the distance d, , is
small (i.e., s(z) and s(y) are similar), dj, , should be greatly
influenced by d, . Otherwise, dy, should be largely indepen-
dent of dj, ,,. Taking all pixels in X, into account, we define a
dissimilarity index Dy, which measures the dissimilarity be-
tween s(z) and the kth cluster prototype vy, as

[d .y T di, y( - )‘Lg)} (6)

1|

where |X, | is the cardinality of the neighborhood configuration,
and A(0z,y) = Az, 0 < Az v <L is the weighting factor
controlhng the degree of influence of the neighboring pixels
s(y) € N, on the center pixel s(z). One possible weighting
factor is given by

1
M) = T ™
where the parameters 1 and o specify the displacement of A
from zero, and the steepness of A, respectively. Fig. 1 shows
the shape of the weighting factor A centered at 0 = u(u =
25), when o is set to 1, 3, and 5. As o increases, the transition
becomes less steep.
The parameter ;4 can be viewed as the average “background
randomness” of the homogeneous region with respect to the
chosen neighborhood N, . Its role can be easily understood by

considering the asymptotic case when o goes to zero. When
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o — 0, A approaches a two-state function, i.e., its value ap-
proaches zero or one, depending on whether 0 < p or 9 > p.
When 0 <y, i.e., the dissimilarity between s(z) and s(y) is
below the random fluctuation of pixel value within a homoge-
nous region, the cluster affinity of the center pixel s(z) is almost
completely determined by the cluster affinity of its neighboring
pixel s(y) as A & 0. On the other hand, if > p, the dissim-
ilarity between s(x) and s(y) is significant such that the pixel

s(z) is unlikely to belong to the same homogenous region as that
of pixel 5(y). In such situation, A ~ 1 and the cluster affinity
of pixel s(z) is independent of that of pixel s(y). Based on the
above reasoning, and assuming that majority of N, in a typical
image fall on homogeneous regions, a reasonable estimate for
the parameter p is

W= Oav(z (3
1] IZGI
where
1
8av(@) = |Nz| ag,y )
T YER:

We note that it is also possible to make p adaptive to different
regions of the image when it is known that certain region is
noisier than other region. This can be done by computing (8)
over a local window rather than over the entire image.

The steepness parameter ¢ in (7) controls the degree of in-
fluence of the neighboring pixels on the center pixel. As can be
seen in Fig. 1, when o is large, a larger dissimilarity between
the center pixel and its neighbor is needed before the influence
of the neighboring pixels is turned off, i.e., large J is needed be-
fore A reaches 1. Clearly, o should be chosen carefully such that
the random fluctuation is smoothed out while important image
structures are preserved during clustering, i.e., we let A(J) =~ 1
when 0 between two pixels is due to genuine structures, such
as object boundaries or edges in the image. We estimate o as
follows. From the J,,(z) computed over the image data, we
take 0; to be equal to the 95 percentile of J,, (z). Then, we let

A(0¢) = 0.8 and solve for o using (7).

The dissimilarity index Dy, . effectively smoothes the cluster
assignment of s(x) by the cluster assignment of its neighboring
pixels adaptively. When s(z) is along a genuine edge, its value
will be very different from that of its neighbors, reflecting that
they do not belong to the same class. Hence, 0 will be large and
A — 1 for all its neighbors. In this case, Dy, =~ dk »» and
the neighboring influence is turned off. When N falls on a step
boundary, s(z) is only affected by those nelghborlng pixels in
the same class (i.e., neighboring pixels on the same step level as

s(z)). When s(z) is on a smooth region and is affected by all
its neighbors, the degree of influence of each neighbor s(y) on

s(z) is given by the weight A, which is a function of the dissim-
ilarity 0, , between s(x) and s(y). In this way, the novel dis-
similarity index Dy, , enables spatial interaction between neigh-
boring pixels to be adaptive to image content, which helps to
preserve the sharpness of the memberships for pixels along re-
gion boundaries or genuine edges.
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Fig. 2. Three scenarios where the Ng neighborhood window is located on a —45° region boundary (first row), on a line inclined at +45° (middle row), and in a
homogenous region (last row). The first column shows the pixel intensity within the window, where the center pixel is marked by a cross. The second column shows
the 0, for the eight neighborhood pixels. The third column shows the corresponding 1 — A, ,, value. The fourth and fifth columns show each of the summation
term in (10) that corresponds to each of the neighborhood pixel for the first and the second class, respectively. See text for explanation.

We illustrate the effects of the new dissimilarity index Dy
using an Ng neighborhood. The Dy, , for the Ng neighborhood
is given by

1 1
1 r.s T,S
DW£:§§: X:Pﬂ9¢b+ﬁwmwdl_Mhﬂ
(I1,12) # (0,0).

Fig. 2 shows three scenarios where the Ng neighborhood
window is located on a —45° region boundary (first row), on
a line inclined at +45° (middle row), and in a homogenous
region (last row). The image consists of two classes, with
centroids at 1 and 5, respectively. The center pixel (the pixel of
interest for membership computation) is marked by a cross and
belongs to the second class. The first column shows the pixel
intensity within the window. The second column shows the
0g,y» Which measures the dissimilarity of the center pixel s(x)
and its neighbors s(y). The value at the center of the window is
irrelevant (irrelevant location is marked by a crossed box in all
windows) and the values at the other locations are set to be the
corresponding 0, ,,. We see that pixels with similar intensity as
the center pixel have low 9, ,, and vice versa. Column three
shows the corresponding 1 — A, ,, value for the neighborhood
pixels. We see that neighborhood pixels that are not in the same
class as that of the center pixel have low values, indicating that
they have minimal influence in the computation of Dy, .. The
fourth and fifth columns show each of the summation term in
(10) that corresponds to each of the neighborhood pixels for the
first and the second class, respectively. Since the center pixel
belongs to class two, the entries in column four all have high
values, and the entries in column five all have low values. It is
interesting to note that even though the three lower left corner
neighborhood pixels of the first case (i.e., first row) belong
to class one, they do not give low value in the corresponding
entries in column four or high value in the corresponding

(10)

entries in column five. This is due to their contributions being
suppressed by the low 1 — A, values. The same is true of
the class 1 neighborhood pixels in case two. These examples
clearly illustrate the ability of the new dissimilarity index Dy,
to adapt to the local image content.

The spatial continuity constraint also has a noise suppression
capability due to the adaptive smoothing operation. Random
noise would either increase or decrease the distance of the center
pixel to cluster prototype and the distance of the neighboring
pixel to cluster prototypes randomly. When the weighted av-
erage of these distances is taken using (6), the effect of random
noise is smoothed out. Another observation is that the incorpora-
tion of local spatial continuity inherently takes into account the
local spatial ordering of the data. This is in contrast to the clas-
sical FCM clustering algorithm, where each pixel is treated as
an independent instance, without considering the local ordering
relationship between pixels.

B. Adaptive Cluster Prototype

In conventional FCM clustering, the prototype v; of each
cluster is assumed constant. For image segmentation, this im-
plies that an image is consisted of piecewise constant or planar
regions. This assumption is clearly inadequate for many real
world images. A homogenous region with nonconstant inten-
sity could be overly segmented into many smaller regions.

In order to allow better segmentation of nonplanar regions,
we make the cluster prototypes adaptive to slow intensity vari-
ation within a cluster via the addition of a multiplicative field.
Let 4y, , be the adaptive cluster prototype for the kth cluster at
spatial index z, then ¥y, = Wk oVi, Where wy , is the spa-
tially adaptive multiplicative field for the kth cluster and vy, is
the original k-th FCM cluster prototype. With this modification,
the original distance metric of (3) now becomes

i, =

(1)

lls(2) = wi gvel|*.
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We model the slow varying multiplicative field wy, , as a smooth
cubic B-spline surface. The normalized cubic B-spline basis
Ni 4 with knots A;, ..., A\jy4 is given by [14]

i,4(T) = (Aiga — A4
=0 H?;? (/\i+j - )‘i+l)
where
ok _J@=oF, ifz>c q
(@ =c)s {0, ifo < (13)

Specifically, we construct wy, , = wg(z,y) by using the tensor
products of 1D cubic B-spline bases, i.e.,

g h
wi(2,y) = Z Z i Ni 4 () M; 4(y) (14)

i=—3 j=—3
with the knot sequences {A_3,A_a,...,A\;} and
{ph—3,4—2,...,pin}. The superscript k on the spline

coefficients { afj} denotes that they are for the spline surface
of cluster k. The spline surface wy(z,y) is assumed to have
coincident boundary knots, i.e., for  dimension spanning [a,
b] and for y dimension spanning [c, d]

)\_3:)\_2:)\_1:)\0:(1

b= Ag1 = Ag2 = Ag3 = Agys
H—3 = H—2= -1 = Mo =C

d = [ih41 = fbht+2 = Pht3 = Hhta- (15)
With this choice, all B-spline bases vanish outside the
region [a,b] X [c,d]. Using the local support property
N;a(z) = 0,if © ¢ [N, Ait4], the tensor product B-splines
can be shown to be

Nia(w)M;a(y) >0,

, forallz,y € R
:07

forall w,y & [Ai, Aiva] X [11, pjta]-
(16)

By using the tensor product spline representation, the computa-
tion of the multiplicative field wy(x, y) becomes that of finding
the set of B-spline coefficients {«};}. Let the = and y dimen-
sions be divided into ¢, and ¢, intervals, respectively. Then, the
number of B-spline coefficients to be computed is (¢, + 3) X
(t, + 3). Since the multiplicative field is smooth and slowly
varying, the number of intervals needed is small. This implies
the number of unknown B-spline coefficients to be estimated is
also very small.

C. Image Region Relabeling

Adaptation of the cluster prototype to the region’s intensity
variation results in a better fit to the region’s profile, i.e., the
pixel-to-centroid distance of (11) would be reduced regardless
of whether a region is assigned to the correct class or not.
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(a)

Fig. 3. Simulated image with additive noise (three object classes, i.e., two
objects and one background). (a) Intensity plot of the image. (b) 3-D view of
the image showing intensity variation within each object class.

So, if a homogenous region was wrongly segmented into mul-
tiple regions due to variation in its intensity profile, adaptation
of the cluster prototype would not necessarily correct for the
over-segmentation. To overcome this problem, a region rela-
beling procedure is needed.

Given an image A segmented by the proposed adaptive FCM
algorithm, the reconstructed image A can be obtained from the
fuzzy partition matrix U, the bias field W and the cluster pro-
totypes v by A(z) = > 51 Wk, Wk £ Vk. Since prototype adap-
tation results in a better fit to the region’s profile, region bound-
aries due to over-segmentation but do not correspond to genuine
edges in A will not have a significant transition in the recon-
structed image A. By retaining only those regions having bound-
aries correspond to significant transitions in the reconstructed
image A, and merging adjacent regions that do not have bound-
aries with significant transitions, homogenous region within an
object can be segmented into one contiguous region.

To detect the significant transitions in the reconstructed
image, we first compute the gradient magnitude ¢ of A, ie.,

¢ = \/(dA/d.Z‘)2 + (dA/dy)?. The gradient magnitude is then
thresholded to remove insignificant gradient. The surviving
gradient magnitude can then be used to determine whether
the boundary pixels between two regions are significant or
not. When majorities of the boundary pixels in a region are
insignificant, the region is merged with the adjacent region
with which it shares most of its boundary. This is done by
relabeling its class label such that the two regions combine
into one region. When only part of the shared region boundary
is insignificant, the region is modified by only retaining the
class label within the area enclosed by the significant boundary
pieces joined together by straight lines. The class label of the
discarded region fragments is changed such that the fragments
merged to their adjacent regions, respectively.

The relabeling procedure is performed at each iteration after
cluster prototype adaptation is activated. To obtain the initial
class label, each pixel is assigned to the cluster with the largest
membership value. The relabeling process affects the member-
ship computation (and hence the final segmentation result) by
influencing the pixel-to-centroid distance of (11), i.e., adapta-
tion of the cluster prototype v by wy . in the distance metric
(11) is only performed if the current pixel s(z) is of label k.
Otherwise, wy, . is set to 1 (no adaptation).
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Fig. 4. Top row: Conventional FCM segmentation. 13.77% of the pixels are misclassified. Bottom row: ASFCM segmentation. Perfect segmentation is achieved.
The first column shows the segmentation results, second column shows the reconstructed images, and third column shows the residual images (top: MSE = 61.99,

bottom: MSE = 12.82), of the two algorithms, respectively.

D. lIterative Optimization

The objective function for the proposed adaptive FCM algo-
rithm is given by

neW:ZZUkTDkT‘i'ﬂankxy (17)
z€el k=1
with Dy, , defined by (6) and (11), subject to
Zuk,g =1 Veel (18)

k=1

where the regularizing term in (17) is given by

st {2582 w52

2 2
+ P wi(r,y) drdy. (19)
Oy?

The regularizing term of (19) minimizes the thin plate energy
of the spline surfaces wy(x, y) and ensures that the estimation
corresponds to a smoothing spline surface fitting [14]. The reg-
ularization parameter  controls the fidelity of the fit to the data
and the smoothness of the estimated field.

The necessary conditions for the minimization of .J;,cy Over
the memberships uy, .., cluster centroids vy, and B-spline co-
efficients afj are obtained by setting the respective first partial

(a) (b)

Fig. 5. (a) FCM segmentation with just the spatial continuity constraint but
without cluster prototype adaptation (classification error is 13.55%). (b) FCM
segmentation with cluster prototype adaptation but without the spatial continuity
constraint (classification error is 5.53%).

derivatives of Jyew to zero while keeping the other variables
constant. Consider the following Lagrange functional:

L(u) =

u) + Y b,

zel

(20)

new

C
1- E ”kz
k=1

where ¢ is the Lagrange multiplier. Differentiating I with re-
spect to uy ., setting the result to zero and using (18) yields

c Dk7£ 1/m—1
wa= |5 (5)

=1

-1
(21
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TABLE I
MEAN-SQUARE-ERROR (MSE) BETWEEN THE RECONSTRUCTED IMAGE AND THE ORIGINAL NOISE FREE IMAGE, AND THE PERCENTAGE CLASSIFICATION ERROR
(IN BRACKET) FOR DIFFERENT PARAMETER SETTINGS. IN COMPARISON, THE MSE AND THE PERCENTAGE CLASSIFICATION ERROR FOR THE FCM
ALGORITHM IS 61.99 AND 13.77%, RESPECTIVELY

B n 3 4 5 6 7
1 x10° 1832 (1.29%) | 14.59 (1.30%) | 14.10 (0.01%) | 14.86(0.14%) | 17.43 (1.30%)
1 x10* 18.31 (1.29%) | 14.59(1.30%) | 14.10 (0.00%) | 14.86(0.14%) | 17.41 (1.28%)
1x10° 1831 (1.27%) | 14.56 (1.28%) | 14.08 (0.00%) | 14.85(0.14%) | 17.44 (0.75%)
1x10° 18.23 (0.00%) | 12.84(0.00%) | 12.82(0.00%) | 12.79 (0.00%) | 17.16 (0.26%)
1x10 18.01 (0.02%) | 15.18(0.00%) | 16.90 (0.00%) | 17.54(0.00%) | 18.08 (0.01%)
1x10° 17.25(0.01%) | 18.79(0.01%) | 25.99 (0.08%) | 36.51(0.71%) | 36.42 (0.68%)

for all k, z. Differentiating .J,,., With respect to v and setting
the result to zero yields

Y wer Uip Ik (L)
= el e 22
Vg > s U, (@) (22)
where
1
gr(z) = [Aays(@)wi(z) + (1= Az y)s(y)wi(y)]
|N£| YEN,
(23)
1
he@) = 17 D Pegwi@) + (1= dapukl)] Y
£ yer,

forall k = 1toec.

In deriving the first derivative of .J,.,, With respect to the
B-spline coefficients {a -}, we ignore the spatial interactions
between neighboring plxels since the spline surface to be
estimated is already very smooth. To find an expression for
{a '}, Uk o, and vy, are held constant Then the modified Jew
is dlfferentlated with respect to apq By setting the result to
zero, the following set of linear equations are obtained:

g h
Z Z af:]Lk(pv(LLJ) - bk(pvq)
i=—3j=—3
+ Z Z i[wi(p, 4,4, 5)
i=—3j=-3
+2w2(p7q,i7j)+w3(p,q7i,j)] =0 (25)
forallp = —3,...,gand ¢ = —3,...h, where
Li(p,a,i,§) = vi > uf, Npa(x)My.a(y)Ni a(z) M; 4(y)
(zy)el
(26)
br(prq) = ok Y upys(z) Ny () My a(y) 27)
(z,y)erl
1(ps q,%, ) /Nz4 N, 4= dx/MJ4 (y) dy
(28)
w?(p»Q:imj): /NL/,4( p4 dw/Mj4 ( )dy
(29)
3(p, 4,7, ) /Nz4 Npa(z dx/MJ4 (y)dy
(30)

and the single and double prime in /N and M denote first and
second derivatives, respectively.

As the resultant system of equations is linear, the B-spline
coefficients {a .} can be solved efficiently using the direct least
squares error approach By using the ordering ¢ = (p + 3) X
(h+4)+(g+4andu = (i +3)x (h+4)+ (j +4),
we rearrange Li(p, q,1,7),wi(p,q,1,7),l = 1,2, 3, into square
matrices Ly and {€2;} with indexes ¢ and u. When g = h, i.e.,
the number of knots in the x and y dimensions are equal, Ly, is a
symmetric matrix with Lj, = LT In addition, the local support
property of (16) allows the summations in (26) to be done over
a small region in the image domain. The matrices {€2;} need to
be calculated only once. When the = and y dimensions of the
image are equal, symmetry can also be observed in {€2;}. The
B-spline values N; 4(z) can be evaluated in a numerically stable
way using the recurrence relation

T =N Xigl41 — T

N; =5 N i
i+1(z) it — Ai i) + Aiti+1 = Aig1 o)
| 1, ifx e [N, Aig1)
Nia(z) = {07 if o & [Ai, Nig1) .

while the first and second derivatives of N; 4(x) and M; 4(y)
can be computed using

Nit11(2)

7

N; (=) }
N, )=k : - - (2
z-,k+1( ) {)"H-k -\ /\i+k+1 - )‘i+1 G2

With Ly, and {;}, the set of (g + 4) x (h + 4) equations from
(27) can be expressed in matrix notation, A6 = by, where Ay
isthe (g+4) x (h+4) by (g+4) x (h+4) sparse matrix given
by Ly + ,B(Ql + 2Q9 + Q3), 0y, is the vector of B-spline coeffi-
cients {a -} arranged using the ordering u, and by, is the vector
obtained from (27) using the ordering ¢t. The B-spline coeffi-
cients {a -} are obtained as ., = V.STUTb_ using SVD [15],
where S"’ is a diagonal matrix with diagonal elements given
by the reciprocal of that in S, if it is greater than a small tol-
erance, or zero otherwise, and U and V' are column orthogonal
and square orthogonal matrices, respectively.

IV. PROPOSED ALGORITHM

The solution to the objective function (17) involves a local
optimization procedure. Hence, proper initialization of the pro-
posed algorithm is important for the convergence of the result to
the desired solution. Whenever the values of the object class are
approximately known, they should be used as the initial cluster
prototypes. When such knowledge is not available, the initial
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(a)

(a) Original image. (b) FCM segmentation. (¢) ASFCM segmentation with spatial continuity constraint and prototype adaptation.

Fig. 6.

prototypes could be estimated as regions of dense data in the fea-
ture space as follows. First, we compute the smooth histogram
for each dimension, and record the location of the prominent
peaks that are above a certain threshold. The intersections of
these locations specify the possible concentration of data in the
multidimension space. The data density within a local region
around these intersections is computed, and the c¢ intersections
with the highest data density are chosen as the c initial cluster
prototypes. The initial multiplicative field for each cluster is set
to be a constant field of unity value.

The choice of neighborhood configuration R, can be tailored
to the specific problem and the topology of the spatial inter-
action. The local neighborhood configuration we used is the
simple symmetrical eight-point neighborhood. Each neighbor
has equal contribution, i.e., equal weight, to the dissimilarity
measure in (6).

As with the conventional FCM algorithm, our algorithm
iterates to the final solution by updating the cluster prototypes,
membership values, and multiplicative fields alternatingly.
Thus, when the membership values and cluster prototypes are
changing rapidly during the first few iterations, the multiplica-
tive fields cannot be updated in a stable manner. We therefore
only activate the adaptation of the cluster prototypes when the
L, change in membership value has settled down sufficiently
(i.e., when || U — U*|| < 0.01). The procedures for carrying
out the adaptive cluster prototype FCM-based image segmen-
tation can now be stated as the following.

1) Adaptive Cluster Prototype FCM Segmentation Algo-
rithm:

1) Set the number of clusters c. Set m = 2. Choose
a value for the spline smoothness weighting coef-
ficient §. Set the number of splines knots in the x
and y dimensions. Set the maximum number of it-
erations ITMAX. Initialize the multiplicative fields
{wr(z)},k = 1,...,¢, to unity. Set the flag ADAPT
to false.

2) Obtain initial estimates of the cluster centroids vy as
outlined previously.

3) Compute A, using (7)—~9).

4)  Compute the initial membership for every pixel using
@2n.

5)  Compute the regularizing matrix 2 = 7 + 2Qs + Q3
using (28)—(30).

(b)

(c)

6) Repeat for £ = 1 to ITMAX or until maximum change
in membership value is less than a small threshold ¢.

i) When maximum change in membership value is less
than 0.01 and ADAPT is false, set ADAPT to true.

ii)  When ADAPT is true, update {wy(z)} by solving for
the B-spline coefficients {a};}.

iii)  Update the fuzzy cluster centroids using (22).

iv)  If ADAPT is true, perform region relabeling.

v)  Update the membership values using (21).

7)  Perform a final hard classification by assigning the
pixel to the cluster with the highest membership value.

V. IMAGE SEGMENTATION EXPERIMENTS

To illustrate the performance of the proposed algorithm, the
ASFCM algorithm is run on an artificial three-class image con-
sists of two objects in a nonuniform background, as shown in
Fig. 3. The image is corrupted with additive Gaussian noise.
For comparison, the same image is also segmented using the
conventional FCM algorithm. The parameter settings are: ¢ =
3,m = 2,n =25, =1 x 10°. Looking at the first column of
Fig. 4, it can be seen that the proposed ASFCM algorithm per-
forms superior to the FCM algorithm for this test image. The
three regions were resolved perfectly by the ASFCM algorithm,
whereas the FCM leads to erroneous segmentation. The second
column in Fig. 4 shows the reconstructed images obtained from
the FCM and ASFCM, respectively, where the reconstructed
image r is given by r(z) = Y.} _; UkaWk 2 Vk. The residual im-
ages, i.e., difference between the reconstructed image and the
noise free test image, are shown in the last column of Fig. 4. It
can be seen that the residual image of ASFCM is much more
uniform than that of FCM and most of the intensity variations
in the objects were successfully captured in the reconstructed
image.

In order to see the contribution of each of the two modifi-
cations, we perform segmentation using only the spatial conti-
nuity constraint or using only prototype adaptation. The results
are shown in Fig. 5. Both results show an improvement over
that of conventional FCM. The classification error is 13.77% for
FCM, 13.55% with spatial continuity only and 5.53% with pro-
totype adaptation only. We see that the spatial continuity con-
straint helps to smooth out noise, but by itself it is not capable
of handling intensity variations in the objects. On the other hand,
prototype adaptation was able to capture some of the intensity
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Fig. 7.
(d) Gustafson and Kessell’s fuzzy clustering algorithm [16].

(a)“Teapot” image. (b) FCM segmentation. (¢) ASFCM segmentation.

variations within the objects (i.e., the nonuniform background
and the square object were segmented correctly), but it still fails
to segment the sphere object correctly. Since the spatial conti-
nuity constraint has a spatial regularization effect on the mem-
bership assignment, it helps to facilitate prototype adaptation.
Thus, by using both spatial continuity constraint and prototype
adaptation, all objects can be segmented correctly (see Fig. 4).

We also investigate the sensitivity of the proposed algorithm
to different parameter settings by varying the regularization pa-
rameter § and the number of spline intervals n (we set the
number of spline intervals in both = and y directions to be
equal). The performance of the algorithm is measured in terms
of the mean squared reconstruction error between the recon-
structed image and the original noise free image, and the per-
centage classification error. The test image of Fig. 3 is used in
the experiment. The results in Table I indicated that good per-
formance can still be achieved even if (3 is varied over several
orders of magnitude. In addition, only a small number of spline
intervals are needed for the prototype adaptation. A final point to
note is that the proposed algorithm with the different parameter
combinations all performs significantly better than the original
FCM algorithm.

Fig. 6 shows the segmentation of a synthetic object where
each homogenous region has nonuniform intensity. The seg-
mentation using the FCM algorithm is shown in Fig. 6(b). We
see that due to intensity overlap between different regions, some
parts of the object are segmented incorrectly. In comparison,
the ASFCM algorithm produced a much better segmentation in
Fig. 6(c) due to adaptation of the prototypes. We also perform
segmentation on some color images. To correspond to percep-
tual color difference, the RGB color image is first transformed to
the CIELAB color space [18]. The clustering is then done in the
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Fig. 8.

Some color segmentation results using the proposed algorithm.

CIELAB space using the L, a, b components as features. Proto-
type adaptation is only done on the luminance component L, but
not on the chrominance components a and b since they are insen-
sitive to illumination variation. Fig. 7 shows the segmentation
of a color image “teapot” into five clusters. Fig. 7(a) is the orig-
inal “teapot” image. Fig. 7(b), (c), and (d) are the segmentation
results obtained from the conventional FCM, ASFCM, and the
FCM clustering algorithm of Gustafson and Kessell with a fuzzy
covariance matrix (gkFCM) [16], respectively. In gkFCM, the
pixel-to-centroid distance is weighted by the fuzzy covariance
matrix. The covariance-weighted distance allows the FCM algo-
rithm to handle elliptical clusters and therefore provides some
degree of adaptation to within cluster variation. However, such
adaptation is generally not adequate to model the smooth in-
tensity variation in a homogenous region. Moreover, there is no
constraint on the smoothness of the variation since inter-pixel
spatial correlations are ignored in the feature space. From Fig. 7,
we see that the ASFCM is able to produce better segmentation
than the other algorithms, as it has managed to segment the body
of the teapot as a whole. The gkFCM actually produce poorer
result than the conventional FCM algorithm, i.e., the segmenta-
tion is noisier. We think that this is due to the lack of smooth-
ness constraint on the within cluster adaptation offered by the
covariance-weighted distance. Fig. 8 presents additional color
segmentation results using the proposed algorithm.

Although it is possible to use the covariance-weighted norm
of [16] in place of the Euclidean norm in our algorithm, we
found that the extra computation incurred using the covariance-
weighted norm does not result in any noticeable difference in
the final clustering. The cluster prototype adaptation allows the
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prototype to closely trace the intensity profile of the homoge-
nous region, so that the deviation of the data from the prototype
becomes more spherically distributed than that without proto-
type adaptation. The local spatial continuity constraint is also
able to handle elliptical clusters to some extent [13].

VI. CONCLUSION

A fuzzy clustering-based segmentation algorithm is proposed
in this paper. The proposed algorithm is able to take into con-
sideration the high correlation between neighboring pixels, i.e.,
local spatial continuity, as well as being adaptive to smooth in-
tensity variation within homogenous regions. The local spatial
continuity is enforced through the use of a novel dissimilarity
index D; ;. 5, which measures the dissimilarity between a pixel
and a cluster prototype under the influence of its local neigh-
borhood. The dissimilarity index is adaptive to the image con-
tent within the neighborhood window. This implies that if the
window is in a nonhomogeneous region, the influence of the
neighboring pixels on the center pixel is suppressed. Otherwise,
the center pixel is smoothed by its neighboring pixels during the
computation of memberships and cluster prototypes. The cluster
prototypes are made adaptive spatially by the use of a multi-
plicative field for each cluster, where each field is constructed
using splines. With the ability to take into account the image’s
intensity variation within cluster and the inter-pixel spatial cor-
relation, the proposed ASFCM algorithm has been shown to
perform more meaningful image segmentation compared to the
conventional FCM and several FCM-based algorithms.
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