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Abstract—Cluster analysis of gene expression data from a cDNA
microarray is useful for identifying biologically relevant groups of
genes. However, finding the natural clusters in the data and esti-
mating the correct number of clusters are still two largely unsolved
problems. In this paper, we propose a new clustering framework
that is able to address both these problems. By using the one-pro-
totype-take-one-cluster (OPTOC) competitive learning paradigm,
the proposed algorithm can find natural clusters in the input data,
and the clustering solution is not sensitive to initialization. In order
to estimate the number of distinct clusters in the data, we propose
a cluster splitting and merging strategy. We have applied the new
algorithm to simulated gene expression data for which the correct
distribution of genes over clusters is known a priori. The results
show that the proposed algorithm can find natural clusters and
give the correct number of clusters. The algorithm has also been
tested on real gene expression changes during yeast cell cycle, for
which the fundamental patterns of gene expression and assignment
of genes to clusters are well understood from numerous previous
studies. Comparative studies with several clustering algorithms il-
lustrate the effectiveness of our method.

Index Terms—cDNA microarrays, cluster splitting and merging,
gene expression data analysis, overclustering, self-splitting and
merging competitive learning (SSMCL).

1. INTRODUCTION

DVANCES in the cDNA microarray technology have en-

abled biologists to monitor thousands of genes simultane-
ously and measure the whole-genome mRNA abundance in the
cellular process under various experimental conditions [1]-[3].
A large amount of gene expression profile data has become
available in several databases [4]. The challenge now is to make
sense of such massive data sets and this requires the develop-
ment of powerful data analysis tools.

A crucial step in the analysis of gene expression data is the
detection of gene groupings that manifest similar expression
patterns. Most current methods for gene expression data anal-
ysis rely on the use of clustering algorithms [5]-[8]. The funda-
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mental biological premise underlying these approaches is that
genes that display similar expression patterns are coregulated
and may share a common function. Although this assumption
may be overly simplistic and will not always be true, it has
proved to be useful for the exploration of gene expression data
[91-[21].

Although many different clustering algorithms have been
used for gene expression data analysis, they all suffer from
various shortcomings. For example, hierarchical clustering suf-
fers from robustness, uniqueness, and the inversion problems,
which complicate interpretation of the resulting hierarchy [22].
Algorithms based on optimization [12], [13] cannot guarantee
that the resulting solution corresponds to the global optimum.
K-means methods [5], [6] and self-organizing maps (SOM)
algorithms [7] produce clustering results that are strongly
dependent on initialization, and there is no guarantee that the
resulting clusters are natural clusters.

Recently, a new competitive learning paradigm, called the
one-prototype-take-one-cluster (OPTOC), has been proposed
[23]. In conventional competitive learning, if the number of
clusters is less than the natural clusters in the data, at least one
of the prototypes would win data from more than one cluster.
In contrast, OPTOC would win data from only one cluster,
while ignoring the data from other clusters. The OPTOC-based
learning strategy has the following two main advantages: 1) it
can find natural clusters, and 2) the final partition of the dataset
is not sensitive to initialization.

In this paper, we propose a new clustering framework based
on the OPTOC learning paradigm for clustering gene expres-
sion data. The new algorithm is able to identify natural clus-
ters in the dataset as well as provides a reliable estimate of the
number of distinct clusters in the dataset. This paper is organized
as follows. In Section II, we describe the structure of the new
clustering algorithm in relation to the general clustering task.
In Section III, we provide detailed description of the OPTOC
competitive learning paradigm. The overclustering and merging
strategy for estimating the number of distinct clusters are de-
scribed in Sections IV and V, respectively. Experimental results
and comparative studies on the clustering of simulated and real
gene expression data are provided in Section VI. Finally, Sec-
tion VII presents the conclusions.

II. A NEwW CLUSTERING FRAMEWORK

Cluster analysis has proved to be a useful tool in discovering
structures and patterns in gene expression data. In general, the
goal of cluster analysis is to group data with similar patterns
to form distinct clusters. Cluster analysis helps to reduce the
complexity of the gene expression data since genes with similar
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patterns are grouped together. It also aids in the discovery of
gene function because genes with similar gene expression pro-
files can serve as an indicator that they participate in the same
or related cellular process.

Given a dataset of N dimension, the goal is to identify groups
of data points that aggregate together in some manner in an
N -dimensional space. We call these groups “natural clusters.”
In the Euclidean space, these groups form dense clouds, delin-
eated by regions with sparse data points. Thus, an effective clus-
tering algorithm should be able to: a) identify the natural clus-
ters, and b) estimate the correct number of natural clusters that
exist in the dataset.

Most conventional clustering algorithms require the specifi-
cation of the correct number of clusters in the dataset [6]. More-
over, there is no guarantee that the clusters found correspond to
natural clusters in the dataset even if the correct number of clus-
ters is given. In many cases, the clusters obtained by a clustering
algorithm depend heavily on the formulation of the objective
function of the algorithm. In other words, the algorithm itself
imposes an artificial structure on the data. An example is the el-
lipsoidal structure imposed by the K-means algorithm. The im-
plications of not finding natural clusters are: i) a natural cluster
might be erroneously divided into two or more classes, or worst
still, ii) several natural clusters or part of them are erroneously
grouped into one class. Such behaviors obviously lead to wrong
inferences about the data.

In view of the above discussions, we propose a new clus-
tering framework called self-splitting and merging competitive
learning clustering (SSMCL). The new algorithm is able to iden-
tify the natural clusters through the adoption of a new competi-
tive learning paradigm called the one-prototype-take-one-clus-
ters (OPTOC) method introduced in [23]. The OPTOC learning
paradigm allows a cluster prototype to focus on just one natural
cluster, while minimizing the competitions from other natural
clusters. Since it is very difficult to estimate reliably the cor-
rect number of natural clusters in a complex high-dimensional
dataset, we adopted an overclustering and merging strategy to
estimate the number of distinct clusters in the dataset. The over-
clustering and merging strategy can be viewed as a top-down
(divisive clustering), followed by a bottom-up (agglomerative
clustering) process. In the top-down step, loose clusters (as mea-
sured by their variances) are successively split into two clusters
until a prespecific number of clusters (set to be larger than the
true number of clusters in the data) are obtained. The overclus-
tering minimizes the chance of missing some natural clusters in
the data. The merging step then attempts to merge similar clus-
ters together, until finally all remaining clusters are distinct from
each other.

III. THE OPTOC PARADIGM

In conventional clustering algorithms, if the number of pro-
totypes is less than that of the natural clusters in the dataset,
there must be at least one prototype that wins patterns from
more than two clusters, and this behavior is called one-proto-
type-take-multiple-clusters (OPTMC). Fig. 1(a) shows an ex-
ample of learning based on the OPTMC paradigm, where P1
actually wins all three clusters and finally settles at the center

Fig. 1. Two learning methods: OPTMC versus OPTOC. (a) One prototype
takes the center of three clusters (OPTMC). (b) One prototype takes one cluster
(OPTOC) and ignores the other two clusters.

of clusters S1, S2, and S3. The OPTMC behavior is not desir-
able in data clustering since we would expect each prototype to
characterize only one natural cluster.

In contrast, the OPTOC idea proposed in [23] allows one pro-
totype to characterize only one natural cluster in the dataset, re-
gardless of the number of clusters in the data. This is achieved by
constructing a dynamic neighborhood using an online learning
vector A;, called the asymptotic property vector (APV), for the
prototype P, such that patterns inside the neighborhood of P
contribute more to its learning than those outside. Let |Zy] de-
note the Euclidean distance from & to 7, and assume that f’;- is
the winning prototype for the input pattern X based on the min-
imum-distance criterion. The APV A4; is updated by

/f;r:LjL()?—&).@(ﬁi?L,)?). (1
ni}
where O is a function given by
L L it > |
© (7, 9,4) = {0, otherwise 2)

and ¢;, within the range 0 < §; < 1, is defined as

N 2
_ | P A 3)
|P,Ai| + | P.X|

and n ; is the winning counter which is initialized to zero and
is updated as follows:

The winning prototype P, is then updated by

N 2
e s o o= P, A*
Pi*zl’q;+(X—P7;) e o; where a; = <|_,—|Z|_,> .
s+

If the input patte_:‘rn_’)? is well outside the dynamic neighbor-
hood of P;, i.e., |P;X| > |P;A;|, it would have very little in-
ﬂuence on the learning of P since @i — 0. On the other hand,

hood of P,, both A and P would shift toward X according to
(1) and (5), and P would have a large learmng rate o; according
to (5). During learning, the neighborhood | P; 4; | will decrease
monotonically. When | P, A, is less than a tiny quantity e, P,
would eventually settle at the center of a natural cluster in the
input pattern space and the learning stops. Thus, with the help of
the APV, each prototype will locate only one natural cluster and
ignore other clusters. Fig. 1(b) shows an example of learning
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based on the OPTOC paradigm. In this figure, P1 finally settles
at the center of S3 and ignores the other two clusters S1 and S2.

IV. Tor-DOWN STEP: CLUSTER SELF-SPLITTING

When the number of clusters in the input space is more than
one, additional prototype needs to be generated to search for the
remaining clusters. In [23], a procedure is described for the de-
tection of additional natural clusters in the data as follows. Let
C_';- denote the center, i.e., arithmetic mean, of all the patterns
that P; wins according to the minimum-distance rule. The dis-
tortion |[-_’;C_"1| measures the discrepancy between the prototype
f’;- found by the OPTOC learning process and the actual cluster
structure in the dataset. For example, in Fig. 1(b), C_';- would be
located at the center of the three clusters S1, S2, and S3 (since
there is only one prototype, it wins all input patterns), while P
eventually settled at the center of S3. After the prototypes have
all settled down, a large |1_°;C_Z| indicates the presence of other
natural clusters in the data. A new prototype would be generated
from the prototype with the largest distortion when this distor-
tion exceeds a certain threshold . Ideally, if a suitable threshold
can be given, the cluster splitting process would terminate when
all natural clusters in the dataset are found, thus giving the op-
timum number of clusters. Unfortunately, due to the high dimen-
sion and the complex structure exhibited by the gene expression
data, the determination of a suitable threshold to find all natural
clusters is very difficult, if not impossible, in practice.

In order not to miss any natural cluster in the data, we pro-
posed to instead overcluster the dataset. In overclustering, a nat-
ural cluster might be split into more than one cluster. However,
no one cluster may contain data from several natural clusters,
since the OPTOC paradigm actually discourages a cluster from
winning data from more than one natural cluster. In overclus-
tering, the number of clusters is set to be larger than the true
number. Then after each OPTOC learning, the cluster with the
largest variance is split, until the required number of clusters is
reached. On the other hand, if the average variance of the nat-
ural clusters in the dataset is approximately known (i.e., by past
experience for certain type of data), then a variance threshold
smaller than the average variance can be set such that the cluster
with the largest variance exceeding this threshold is split, until
no further splitting is possible.

When cluster splitting occurs, the new prototype is initialized
at the position specified by a distant property vector (DPV) R;
associated with the mother prototype P, [23]. The idea is to
initialize the new prototype far away from its mother prototype
to avoid unnecessary competition between the two. Initially, the
DPV is set to be equal to the prototype to which it is associated
with. Then, each time a new pattern X is presented, the R; of
the winning prototype P, is updated as follows:

]ﬁfzﬁi+()?—§i)o®(é,)?,ﬁi>o Pi (6

where

(N
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Fig. 2. The joint pdf of two clusters. In the top row, the standard deviations
of the two clusters are 0y = 1 and 0, = 1. In the middle row, the standard
deviations of the two clusters are 07y = 1 and o> = 0.75. In the bottom row,
the standard deviations of the two clusters are 0; = 1 and 0> = 0.5. Columns
1 to 4 show the change in the joint pdf when the distance between the cluster
centers is varied with equal interval from (o1 + 02)/2 to 2* max(oy, 02).

and ng is the number of patterns associated with the proto-
type ]3Z

Note that unlike /fi, ﬁz always try to move away from I_’;
After a successful split, the property vectors (ffi, ﬁi) of every
prototype P, are reset and the OPTOC learning loop is restarted.

V. BorTOoM-UP STEP: CLUSTER MERGING

With overclustering, it is possible that a natural cluster in the
dataset would be split into two or more clusters. Thus, some
clusters would be visually similar and should be merged to-
gether. In this section, we propose a criterion for merging the
resulting clusters from the previous overclustering step. The aim
of the merging scheme is to produce the final clustering result
in which all clusters have distinct patterns. Together with the
OPTOC framework, the overclustering and merging framework
allow a systematic estimation of the correct number of natural
clusters in the dataset.

Our merging scheme is inspired by the observation that a nat-
ural cluster should be expected to have a unimodal distribution.
Let us assume that the clusters in a dataset have Gaussian dis-
tributions, and that the probability density function (pdf) of a
distinct cluster is unimodal. If two clusters were well separated,
their joint pdf would be bimodal. When two clusters are close
to each other to the extent that their joint pdf form a unimodal
structure, then it would be reasonable to merge these two clus-
ters into one. Let C_';- be the center (i.e., mean) of cluster 2 and o;
be its standard deviation. We propose that if two clusters satisfy
the following condition, they should be merged into one:

— — 1
HCZ—CJH < §(Ui+0'j). (8)

In fact, the above merging criterion is somewhat rigorous in
our clustering problem. It is reasonable to assume that the ratio
of the maximum and minimum standard deviation of two clus-
ters in our clustering application is twofold. In Fig. 2, we give
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Over-clustering:

Initialization:
Set number of cluster K = 1;

Set 131 = ﬁl at a random location in the input feature space;

Set ;11 at a random location far from 131 ;

Set the winning counters #; and 1y to zero;
1 1

Learning loop:
Set FINISH = False;
While FINISH = False

OPTOC Learning:
Repeat

1. Randomly read a pattern X from the dataset;
2. Find the winner PI where |Pl?c |= min, \Pﬂﬂ, I=1,...,k .Label X with i

3. Update the Asymptotic Property Vector ;1!. using (1);
4. Update the Distant Property Vector Ei using (6);

5. Update the Prototype 13, using (5);

Until max, | P4, |<é& or number if OPTOC iteration exceeds 10.

Split Stage:

If K < maximum number of clusters
1. Find cluster with largest variance, say j;

2. Increment K;
3.8t Py =R;;
Reset Stage:
4.Fori=1:K

Set ﬁi = 13i;

Set ;li at a random location far from F’, ;

Set the winning counters # i and 7y to zero
i i

End For
Else
Set FINISH = True;
End If
End While

Cluster Merging:

Repeat

Find cluster 7 and cluster j that minimize || C; — C; I|-0.5% (o, + 0 ;) (see ®));

If [|C,~C,|I€£0.5%(0, +0))

Merge cluster i and cluster j;

Decrease the number of clusters K by 1;

End If
Until no more clusters can be merged.

Fig. 3. Pseudocode for the proposed SSMCL algorithm.

an illustration of the joint pdf of two clusters. In the top row, the
standard deviations of the two clusters are 07 = 1 and 05 = 1.
In the middle row, the standard deviations of the two clusters
are o1 = 1 and o = 0.75. In the bottom row, the standard de-
viations of two clusters are o1 = 1 and o9 = 0.5. Columns 1 to
4 show the joint pdf when the distance between the centers of
the two clusters is varied with equal step from (o + 02)/2 to
2* max(o1, 09). Itis apparent that the three joint pdfs in column
1 all appear to be unimodal when the standard deviation ratio
changes from 0;: 090 = 1:1,to 1 : 0.75, and finally 1 : 0.5.

In fact, two clusters having a joint pdf like those in columns
2 and 3 of Fig. 2 also seem to be merged into one cluster. When
two clusters are merged into one, the mean and standard de-
viation of the merged cluster is calculated. Then, the merging

process is repeated, until no more clusters can be merged to-
gether. The pseudocode for the proposed SSMCL algorithm is
shown in Fig. 3.

VI. RESULTS AND DISCUSSIONS

In this section, we verify the performance of the proposed
SSMCL algorithm using both simulated and real expression
data. We first use simulated gene expression profiles, where the
correct solution was known a priori, to validate the effective-
ness of our algorithm in finding natural clusters and the correct
number of clusters. Then we validate the algorithm by clustering
the yeast cell cycle data set provided by Cho ef al. [24] and ex-
amine the biological relevance of the clustering results.
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Fig. 4.

1785 randomly generated temporal patterns of gene expression grouped in 20 clusters. Each cluster is represented by the average profile pattern in the

cluster (dot line). Solid lines indicate the one standard deviation level of each expression about the mean. C'm /n denotes cluster number 1 containing n individual
profiles. The standard deviation of each dimension in each cluster is equal to 0.15.

A. Clustering Validation: Simulated Gene Expression Data

We randomly generated 20 seed patterns of gene expressions
with 15 time points each. Then each pattern was transformed
into a cluster by generating many profiles from the pattern. Each
cluster contains 30 to 165 profiles, with the total number of pro-
files in the dataset equal to 1785. Fig. 4 shows the number of
profiles in each cluster. For each cluster, the data along each
time point k£ were set to have a standard deviation of ¢. In our
data, we set all oy, to be equal to 0.15, where the value 0.15 re-
flects the typical variation along each time point observed in the
published expression profiling experiments in [20].

It is well known that many partition-based clustering algo-
rithms are sensitive to initialization, even if the exact number of
clusters is known. Poor initialization often results in incorrect
partitions, where a natural cluster in the dataset is divided into
several clusters, or a cluster in the final clustering result can con-
tain data from several natural clusters. We want to verify that the
OPTOC clustering framework can find all the natural clusters
in the simulated dataset, independent of initialization. For sim-
plicity, we set the number of iterations of the OPTOC learning
to 10, which are generally enough for |P;/Tl| to converge suffi-
ciently in our applications. Alternatively, since the typical vari-
ation along each time point is o, = 0.15 for expression profile
data and the pooled variance is given by

M
ML
k=1

areasonable value touseise = 0.1/ M, where M is the number
of time point in the profile. The splitting is stopped when 20
clusters have been generated. Fig. 5 shows the clustering results.

1/2

:O'kVM

We found that the proposed OPTOC-based algorithm was suc-
cessful in finding all the natural clusters. Moreover, almost all
genes were placed into the correct groups, with the exception
that one profile in cluster #7 is wrongly grouped into cluster
#18, three profiles in cluster #9 are wrongly grouped into cluster
#14 and cluster #18, and two profiles in cluster #13 are wrongly
grouped into cluster #20.

In the next experiment, we find out whether our overclus-
tering and merging strategy can merge similar clusters and stop
at the exact number of clusters automatically, when the exact
number of clusters in the data is not known. We set the number
of clusters to 28. Fig. 6 shows the resulting 28 clusters before the
merging process. After 28 clusters are obtained, cluster merging
is performed using the criterion (8). The cluster merging process
stopped automatically when exactly 20 clusters were found and
the results are shown in Fig. 7. A careful examination of the
results showed that only four genes are wrongly clustered: two
profiles from cluster #18 are wrongly placed into cluster #1, one
profile from cluster #18 is wrongly placed into cluster #20, and
one profile from cluster #18 is wrongly placed into cluster #3.
Interestingly, the number of misclassified genes is actually less
than that in direct clustering of the data into 20 clusters. Further
experiments on other randomly generated gene expression pro-
file data also indicated that our algorithm is robust with respect
to finding natural clusters and estimating the correct number of
clusters.

We also compared our clustering results with the results ob-
tained by using the k-means algorithm. Fig. 8 shows the best
clustering results (in terms of the lowest within-class sum-of-
square error) by running k-mean 15 times using different ini-
tialization. Three and two expression profiles in cluster #18 are
wrongly grouped into cluster #1 and cluster #13, respectively.
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Fig. 6. The clustering results by setting the number of clusters to 28.

Cluster #19 is the combination of cluster #4 and cluster #6 in
Fig. 4, while cluster # 17 in Fig. 4 is divided into two clusters,
i.e., cluster #7 and cluster #12.

B. Biological Validation: Yeast Cell Cycle

The yeast cell cycle data set has established itself as a stan-
dard for the assessment of newly developed clustering algo-

rithm. This data set contains 6601 genes, with 17 time points for
each gene taken at 10-min intervals covering nearly two yeast
cell cycles (160 min). This data set is very attractive because a
large number of genes contained in it are biologically character-
ized and have been assigned to different phase of the cell cycle.

The raw expression profiles are downloaded from http://ge-
nomics.stanford.edu. First, we eliminate those genes whose ex-
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Fig. 8. The best clustering results obtained by running the k-means clustering algorithm 15 times with different initialization. The corresponding clusters between
the input (in Fig. 4) and output are #1 ~ #5, #2 ~ #2, #3 ~ #3, #4U #6 ~ #19, #5 ~ #1, #7 ~ #15, #8 ~ #11, #9 ~ #16, #10 ~ #13, #11 ~ #9, #12 ~ #17, #13
~ #8, #14 ~ #6, #15 ~ #14, #16~ #20, #17 ~ #7 U #12, #18 ~ #10, #19 ~ #18, and #20 ~ #4.

pression levels are relatively low and do not show significant expression profiles is at least equal to or greater than 2.5. A total
changes during the entire time course by a variation filter with  of 1368 gene expression profiles passed the variation filter and
the following criteria: a) the value of expression profile atall 17  were normalized to be between 0 and 1.

time points is equal to or greater than 100 (raw data units); b) The number of OPTOC iterations is set to 10 and the max-
the ratio of the maximum and the minimum of each time-course imum number of clusters is set to 30. Fig. 9 shows the resulting
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Fig. 9. The clustering results for the yeast cell cycle data. The number of clusters is set to 30.

1

o0s
1]

-,

B
e et ra g e i

1 1
.
*
0s e os g
o Teseab ettt u‘&—/{ E;‘:‘o_‘!
-

J A S 0 15 . 1 g 10 £ 1
" M of),_ref et o)
t¥irass Tt =
ot csm 2270 o[ o
4 S hi] 15 . 1 5. 10 .‘S 1
> e e
s {Q':';‘- DS‘W us‘
o¥cC E o 1033 1]
1 S 10 15 1 ) 10 5 1
7 P ————
* *4 ey r'ThE
- Ll L
s - * r Ds‘W os
1 S £ o 1t 1]
4 2 0 12 1 2 0 £ 1 o 0 15 1 S h[1l 12
1-0.. e ‘_,'\":‘";W f‘l'\ «.«w“ J-r"";";\_';,.' 1
os NI ns&\-,a/krN LAt B o
0t CI7536 E O C1802 0 C1ad — o CAAT
1 SM‘;‘EI 15 1 ) 10 B 1 10 15 S 10 15
. -*
* b ‘m
" /‘\ SRALH Ot L o gy
o 2105 E ol_c23
S5 i0 15 5 10 B

Fig. 10. The final clustering results for the yeast cell cycle data after cluster merging. 22 distinct clusters are obtained.

30 clusters before merging. The process of cluster merging
stopped finally at 22 clusters. Fig. 10 shows the merging results.
From Fig. 10, we observe that the resulting 22 merged clusters
have no apparent visual similarity.

We also checked the resulting 22 clusters to determine
whether it could automatically expose known patterns
without using prior knowledge. For this purpose, we used
gene expression data from the previous study of Cho et al.
[24], where 416 genes have been interpreted biologically and
110 genes passed our filter. Those gene expression profiles
include five fundamental patterns that correspond to five cell
cycles phases: early G1, late G1, S, G2, and M phase. In

Fig. 11, we show the five clusters that contain most of the
genes belonging to these five different patterns. It is obvious
that these five clusters correspond to the five cell cycle
phases.

For a comparative study, we compared our results with the
results obtained by the simulated annealing (SA) based clus-
tering algorithm proposed by Alexander and Rainer [20] and
the k-means algorithm. For the SA algorithm, the 1306 genes
that passed a variation filter similar to ours were grouped into
20 clusters in which many patterns in the SA clustering output
are consistent with ours. For example, clusters #1, #2, #3, #4,
#O, #7, #8, #11, #12, #13, #15, #16, #17, #18, #19, and #20 ob-
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Fig. 12. The best clustering results obtained by running the K -means algorithm 20 times with different initialization for grouping yeast cell cycle expression

profile data into 22 clusters. Clusters #3, #12, and #19 are similar visually.

tained by SA in [20, Fig. 5] correspond to clusters #1, #14, #8,
#17, #9, #18, #3, #2, #10, #15, #11, #19, #6, #4, #12, and #5
obtained by our algorithm in Fig. 10, respectively. For clusters
showing different patterns between the SA clustering method
and our method, it is worth mentioning that cluster #9 in [20]
has very large variance, and is therefore unlikely to be a natural

cluster. For the K -means algorithm, we set the number of clus-
ters to 22 and ran the algorithm with different initialization for
20 times. Fig. 12 shows the best clustering results in terms of
the lowest within-class sum-of-square error. It is obvious that
clusters #3, #12, and #19 are very similar in appearance and are
not distinct clusters.
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VII. CONCLUSION

Cluster analysis is an important tool in gene expression data
analysis. An effective clustering algorithm should be able to
identify the natural clusters, and to estimate the correct number
of clusters in a dataset. In this paper, we have described a
new clustering algorithm that can meet those requirements.
The ability to find natural clusters in a dataset is based on the
OPTOC competitive learning paradigm. The OPTOC paradigm
allows one prototype to characterize only one natural cluster in
the dataset, regardless of the number of clusters in the data. The
OPTOC behavior of a cluster prototype is achieved through the
use of a dynamic neighborhood, which causes the prototype to
eventually settle at the center of a natural cluster, while ignoring
competitions from other clusters. In order to correctly estimate
the number of natural clusters in a dataset, we have proposed
an overclustering and merging strategy. The overclustering
step minimizes the chance of missing any natural clusters in
the data, while the merging step ensures that the final clusters
are all visually distinct from each other. We have verified the
effectiveness of the modified schemes and merging criterion
by clustering simulated gene expressions data and real gene
expressions profile data for which the biological relevance
of the results is known. The results show that the proposed
clustering algorithm is an effective tool for gene expression
data analysis.
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