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Abstract

A recently presented solution method for the bidomain model [1], which involves the

application of direct current for studying electrical potential in a slab of cardiac tissue, is

extended here to allow the use of an applied alternating current. The advantage of using

AC current, in a four-electrode method for determining cardiac conductivities, is that

instead of using ‘close’ and ‘wide’ electrode spacings to make potential measurements,

increasing the frequency of the AC current redirects a fraction of the current from the

extracellular space into the intracellular space.

The model is based on the work of Le Guyader et al. [2], but is able to include the

effects of the fibre rotation between the epicardium and the endocardium on the potentials.

Also, rather than using a full numerical technique, the solution method uses Fourier series

and a simple one dimensional finite difference scheme, which has the advantage of allowing

the potentials to be calculated only at points, such as the measuring electrodes, where

they are required.

The new alternating current model, which includes intracellular capacitance, is used

with a particular four-electrode configuration, to show that the potential measured is

affected by changes in fibre rotation. This is significant because it indicates that it is

necessary to include fibre rotation in models, which are to be used in conjunction with

measuring arrays that are more complex than those involving simply surface probes or a

single vertical probe.

Keywords: Bidomain Model, Frequency, Anisotropy, Fibre Rotation, Simulation, Conductiv-

ity Values, Point Electrodes.
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1 Introduction

Accurate determination of the various cardiac structural parameters, such as tissue conductiv-

ities, is essential for realistic modelling of cardiac electrical conductivity [3, 4, 5, 6, 7]. A few

values have been published in the literature [8, 9, 10], but these differ from one another quite

considerably, when analysed mathematically [11, 6].

Over time it has become accepted [12] that cardiac tissue can be represented at a macro-

scopic level as an anisotropic bidomain [13, 14, 15], requiring (at least) four conductivities,

relating to different current flow in the intracellular and extracellular domains as well as along

and across the cardiac fibres (longitudinally and transversely, respectively). This increases to

six conductivities if it is not assumed that the current flow in the two transverse directions is

the same.

Most electrode configurations proposed (or used) [16, 17, 18, 19, 20, 21, 1] to measure the

cardiac parameters, are based on the four-electrode technique [16, 22]. This involves applying

direct current at the outermost pair of four linear equally spaced electrodes and measuring

potential at the inner pair. These electrodes can be laid on the cardiac surface or inserted

vertically into the tissue. In order to recover the cardiac parameters from the potential mea-

surements, it is suggested [16, 19] that it is necessary, in the DC case, to make measurements at

two different electrode spacings, ‘close’ (less than the space constant) and ‘wide’ (considerably

greater than the space constant). This is because increasing the electrode spacing redirects

some of the current from the extracellular space into the intracellular space.

Le Guyader et al. [20] suggested an alternative approach, which involved redirecting the

current in a different fashion, by increasing the frequency of an applied AC current, while

keeping the electrode spacing constant at around the value of the space constant. This approach

was based on the work of previous investigators such as Gielen et al. [23, 24], who found that
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electrical conductivities were frequency dependent. Le Guyader et al. [20, 21, 2] used an

8-electrode surface probe, consisting of two orthogonal probes, each containing four equally

spaced electrodes, in conjunction with two different anisotropic bidomain models, which they

solved using Fast Fourier transforms and a full numerical approach. The first model [20, 21],

which combines a specific membrane capacitance in parallel with the membrane resistance, was

found to produce a mismatch with experimental results along the transverse axis at higher

frequencies. This led to a second model [2], which replaced the usual intracellular conductivity

by a new frequency dependent conductivity, by combining the intracellular resistivity in series

with a gap junction impedance, which is made up of a parallel combination of the gap junction

resistivity and a gap junction capacitance.

The two new models, which are presented here, are extensions of the newly presented direct

current model of the present authors [1] and are based on the work of Le Guyader et al. [2], but

differ from it in that they also include the effects of the fibre rotation between the epicardium

and the endocardium. In addition, they are solved by a completely different technique, involving

Fourier Series and a simple one dimensional finite difference scheme. This approach allows the

potential to be calculated only at points where it is required, rather than across the full three

dimensional domain.

The second (intracellular capacitance) model is then used to consider the effect, for a par-

ticular frequency, that fibre rotation has on voltages measured on an analogue of the usual

surface four-electrode probe.

2 Alternating Current Model

This paper considers a block of cardiac tissue, finite in the x and y directions, with a length

of 2L in each direction and extending from a plane at z = 0, which represents the epicardium,
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to a plane at z = 1, which represents the endocardium. The endocardium is assumed to be in

contact with a volume of blood which extends to infinity in the positive z direction.

2.1 Governing Equations

Following the approach of Le Guyader et al. [2], but extending their work by including the

effects of cardiac fibre rotation, this paper considers an alternating current approach to the

bidomain model [13], which is used to account for the effects in both the intracellular and

extracellular regions of the cardiac tissue. The cell membrane separating these two regions

is represented electrically by a specific membrane capacitance C in parallel with a specific

membrane resistance R, and taken together these constitute a specific membrane impedance

which is dependent upon the frequency, ω. This is considered here as Y (ω) = 1/R + jωC,

j =
√
−1, which is the transfer function of the specific membrane admittance.

The governing equations for the complex intracellular potential, φi, and the complex ex-

tracellular potential, φe, at the point r = (x, y, z), for an external sinusoidal current source

per unit volume, Is = I0 sin ωtδ(r − r0) of amplitude I0 and frequency ω injected at the point

r0 = (x0, y0, z0), are given by the following pair of coupled partial differential equations [2]:

∇ · [Mi∇φi(ω, r)] = βY (ω) [φi(ω, r) − φe(ω, r)] (1)

∇ · [Me∇φe(ω, r)] = −βY (ω) [φi(ω, r) − φe(ω, r)] − I0δ(r − r0) (2)

where β is the surface to volume ratio of the cells. This form of equation (2) is based on the

‘quasi-static’ formulation [25]. The intra- and extracellular conductivity tensors, Mi and Me,

defined below, reflect the anisotropy of the cardiac tissue. The amplitude, I0, of the applied

current should be subthreshold to avoid depolarising the cardiac tissue or it should be applied

during the ST segment (the refractory period for the cells).

In addition, the electric potential in the blood, φb, is governed by Laplace’s equation, since
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the blood is a source-free region, and so

∇2φb = 0 (3)

2.2 Conductivity Tensor

Cardiac tissue anisotropy comes both from the effect of the fibrous nature of the tissue, which

allows current to flow more easily along the fibres (longitudinally) than across them (trans-

versely), as well as the fact that the sheets of fibres rotate relative to one another as they move

from the epicardium to the endocardium.

The model assumes that the fibres on the epicardium are aligned with the positive x-axis and

that the conductivities in the two transverse directions are the same. Hence, four conductivity

values, gil, git, gel and get, are required to allow for differing conductivities in the two regions

(l=longitudinal, t=transverse, i=intracellular, e=extracellular). Note, it has been assumed

that the tissue behaviour is linear, allowing the use of fixed conductivities which is a common

assumption at lower frequencies. In addition, to describe the fibre rotation, it will be assumed

that the fibres rotate anticlockwise from the epicardium to the endocardium, that the rotation

varies linearly with depth [26] and that the fibre layers are parallel to the epicardium [27].

The preferred current path and fibre rotation are allowed for in the conductivity tensors Mi

and Me which appear in governing equations (1) and (2). Based on the above discussion the

tensors will be of the following form [5]:

Mq(z) =

















(gql − gqt)c
2 + gqt (gql − gqt)cs 0

(gql − gqt)cs (gql − gqt)s
2 + gqt 0

0 0 gqt

















(4)

where q = i or e (for intracellular and extracellular), c = cos αz s = sin αz and α is the total

fibre rotation angle through the tissue. For the left ventricle, rotations in fibre direction have
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been reported in the range 103 ± 21◦ [28] up to 180◦ [29]. It should be noted that when fibre

rotation is ignored, that is when α ≡ 0, the conductivity tensors become for q=i or e,

Mq(z) =

















gql 0 0

0 gqt 0

0 0 gqt

















(5)

and governing equations (1) and (2) reduce to the simplified bidomain equations [2]:

gil

∂2φi

∂x2
+ git

∂2φi

∂y2
+ git

∂2φi

∂z2
=

β

R
(φi − φe) (6)

gel

∂2φe

∂x2
+ get

∂2φe

∂y2
+ get

∂2φe

∂z2
= −β

R
(φi − φe) − Is (7)

2.3 Boundary Conditions

The following set of boundary conditions is used with governing equations (1), (2) and (3)

to solve the model. The potentials are expressed in their real and imaginary components as

φi = φr
i + jφj

i , φe = φr
e + jφj

e and φb = φr
b + jφj

b. Firstly, it is assumed that the epicardium is

insulated, which gives for p=r(real) and p=j(imaginary),

∂φp
i

∂z
=

∂φp
e

∂z
= 0 at z = 0 (8)

Secondly, there is continuity of extracellular potential and current at the interface between the

tissue and the blood; that is,

φp
e = φp

b at z = 1, and (9)

gb

∂φp
b

∂z
= get

∂φp
e

∂z
at z = 1 (10)

where gb is the electrical conductivity in the blood, taken to be 6.7 mS/cm here. These boundary

conditions are a consequence of the quasi-static assumption [30] which ignores any capacitive

current that might flow from the tissue to the blood. Thirdly, the intracellular space is insulated

7



by the extracellular space [31], which gives

∂φp
i

∂z
= 0 at z = 1 (11)

Also, since the blood mass is assumed infinite in the positive z-direction, φp

b → 0 as z → ∞.

Finally, the x and y boundaries of the domain are insulated, so the derivatives of φp
i , φp

e and φp

b

in the x and y directions at these boundaries are zero.

2.4 Solution Method

Le Guyader et al. [2] used a numerical method based on the Fast Fourier Transform technique,

to find the potential distribution for a given frequency, using the simplified bidomain equations

(6) and (7).

Here, a Fourier Series approach, followed by a simple one-dimensional finite difference

method, is employed to solve the more general bidomain equations (1), (2) and (3), which

include cardiac fibre rotation, subject to boundary conditions (8)-(11). This approach has the

advantage that the potential is calculated only at points where it is required.

Equations (1) and (2) can be written explicitly as:

M11
i

∂2φr
i

∂x2
+ 2M12

i

∂2φr
i

∂x∂y
+ M22

i

∂2φr
i

∂y2
+ M33

i

∂2φr
i

∂z2
=

β

R
(φr

i − φr
e) − βωC

(

φj
i − φj

e

)

(12)

M11
i

∂2φj
i

∂x2
+ 2M12

i

∂2φj
i

∂x∂y
+ M22

i

∂2φj
i

∂y2
+ M33

i

∂2φj
i

∂z2
= βωC (φr

i − φr
e) +

β

R

(

φj
i − φj

e

)

(13)

M11
e

∂2φr
e

∂x2
+ 2M12

e

∂2φr
e

∂x∂y
+ M22

e

∂2φr
e

∂y2
+ M33

e

∂2φr
e

∂z2
= −β

R
(φr

i − φr
e) + βωC

(

φj
i − φj

e

)

− Ir (14)

M11
e

∂2φj
e

∂x2
+ 2M12

e

∂2φj
e

∂x∂y
+ M22

e

∂2φj
e

∂y2
+ M33

e

∂2φj
e

∂z2
= −βωC (φr

i − φr
e) −

β

R

(

φj
i − φj

e

)

− Ij (15)

where Is = Ir + jIj and Mab
q (a, b = 1,2,3) represents the elements of the conductivity tensor

matrices Mq(q = i, e). Recall that M11
q , M12

q and M22
q are functions of z, via the fibre rotation,

but M33
q are constant.
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2.4.1 Exploiting the Periodicity of the Geometry

The first step is to exploit the periodic nature of the potential functions, in both the x and y

directions, by expanding each of the functions φi and φe in terms of a Fourier series:

φp
q(ω, r) =

∞
∑

n=0

∞
∑

m=0

[Cpq
nm(z) cos mπy cos nπx + Dpq

nm(z) sin mπy cos nπx

+Epq
nm(z) cos mπy sin nπx + F pq

nm(z) sin mπy sin nπx]

= Cpq
00(z) +

∞
∑

m=1

[Cpq
0m(z) cos mπy + Dpq

0m(z) sin mπy]

+

∞
∑

n=1

[Cpq
n0(z) cos nπx + Epq

n0(z) sin nπx]

+

∞
∑

n=1

∞
∑

m=1

[Cpq
nm(z) cos mπy cos nπx + Dpq

nm(z) sin mπy cos nπx+

+ Epq
nm(z) cos mπy sin nπx + F pq

nm(z) sin mπy sin nπx]

(16)

for p=r(real) or j(imaginary) and q=i(intracellular) or q=e(extracellular).

The aim now is to find the coefficient functions Cpq
00 , Cpq

0m, Dpq
0m, Cpq

n0, Epq
n0, Cpq

nm, Dpq
nm, Epq

nm

and F pq
nm, for n, m = 1,2, . . .. First substitute φr

i , φj
i , φr

e and φj
e from equation (16) into equation

(12) and equate the coefficients of the cosmπy cos nπx, sin mπy cos nπx, cos mπy sin nπx and

sin mπy sin nπx terms. This gives four second order ordinary differential equations for each

n, m combination. Similar substitutions into equations (13), (14) and (15) lead to 12 more

differential equations. For each n and m, these 16 differential equations can be divided into

two sets of eight equations each in eight unknowns, where the first set involves the Cpq
nm and

F pq
nm coefficients and the second set involves the Dpq

nm and Epq
nm coefficients.

The C,F system is given by:

M33
q

d2Cpq
nm

dz2
−

[

n2π2M11
q + m2π2M22

q +
β

R

]

Cpq
nm +

β

R
Cpq∗

nm + 2nmπ2M12
q F pq

nm

± βωC
(

Cp∗i
nm − Cp∗e

nm

)

+ δeqI
p
0PnRmδ(z − z0) = 0

(17)
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M33
q

d2F pq
nm

dz2
−

[

n2π2M11
q + m2π2M22

q +
β

R

]

F pq
nm +

β

R
F pq∗

nm + 2nmπ2M12
q Cpq

nm

± βωC
(

F p∗i
nm − F p∗e

nm

)

+ δeqI
p
0QnSmδ(z − z0) = 0

(18)

where Pn, Qn, Rm and Sm are defined below,

δeq =



















1 q=e

0 q=i,

(19)

p=r,j ⇔ p∗=j,r and q=i,e ⇔ q∗=e,i and the sign in front of the βωC term is positive for

equations (17) and (18) when pq=ri or je and negative when pq=re or ji.

The D,E system of 8 equations is very similar to the above system and can be obtained by

replacing: C by D, F by E, PnRm by PnSm, QnSm by QnRm and the plus sign in front of the

2nmπ2 term by a minus sign.

In the above analysis, the real and imaginary current terms Ir and Ij in equations (14)

and (15) are dealt with in a similar fashion to the potential terms. For example, by writing

Ir = Ir
0δ(r − r0) = Ir

0δ(x − x0)δ(y − y0)δ(z − z0) and then expanding each of δ(x − x0) and

δ(y − y0) in a Fourier series:

δ(x − x0) =
∞

∑

n=0

(Pn cos nπx + Qn sin nπx) = P0 +
∞

∑

n=1

(Pn cos nπx + Qn sin nπx) (20)

and evaluating the coefficients using the fact that

∫ 1

−1

δ(x − x0) cos n′πx dx = cos n′πx0. (21)

and
∫ 1

−1

δ(x − x0) sin n′πx dx = sin n′πx0. (22)

This gives P0=
1
2
, Pn = cos nπx0 and Qn = sin nπx0. Similarly, writing

δ(y − y0) = R0 +
∞

∑

m=1

(Rm cos mπy + Sm sin mπy) (23)

gives R0=
1
2
, Rm = cos mπy0 and Sm = sin mπy0.
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The potential in the blood, φb, is also expanded in a Fourier series. However, in this case,

since the medium is isotropic, symmetry allows it to be expanded in the shorter form

φp

b =

∞
∑

n=1

∞
∑

m=1

Φp

b(m, n, z) cos nπx cos mπy (24)

Substituting for φb into Laplace’s equation (3) and noting that φb → 0 as z → ∞, leads to a

solution of the form

φp

b =
∞

∑

n=1

Ωp
n0e

−nπz cos nπx +
∞

∑

m=1

Ωp
0me−mπz cos mπy +

∞
∑

n=1

∞
∑

m=1

Ωp
nme−π(n2+m2)

1
2 z cos nπx cos nπy

(25)

for constants Ωp
nm. Note that when n = m = 0, φp

b = 0.

2.4.2 Application of the Boundary Conditions

When the boundary conditions at the epicardium in equation (8) are applied to equation (16),

it is found that for q=i, e and p=r, j:

dCpq
nm(z)

dz

∣

∣

∣

∣

∣

z=0

=
dDpq

nm(z)

dz

∣

∣

∣

∣

∣

z=0

=
dEpq

nm(z)

dz

∣

∣

∣

∣

∣

z=0

=
dF pq

nm(z)

dz

∣

∣

∣

∣

∣

z=0

= 0 (26)

In a similar fashion, boundary condition (11) at the endocardium leads to the following condi-

tions, on the intracellular coefficients only:

dCpi
nm(z)

dz

∣

∣

∣

∣

∣

z=1

=
dDpi

nm(z)

dz

∣

∣

∣

∣

∣

z=1

=
dEpi

nm(z)

dz

∣

∣

∣

∣

∣

z=1

=
dF pi

nm(z)

dz

∣

∣

∣

∣

∣

z=1

= 0 (27)

Applying boundary conditions (9) and (10) implies that the extracellular coefficients for D, E

and F and their derivatives are equal to 0 at the endocardium. The derivative condition is

ignored as it is redundant, which leaves

Dre
nm(1) = Dje

nm(1) = Ere
nm(1) = Eje

nm(1) = F re
nm(1) = F je

nm(1) = 0 (28)

However, when equations (9) and (10) are applied to the Cpe
nm coefficients, the result is different

because expansion (24) for φb includes cos nπx cos mπy terms only and these match the Cpe
nm
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coefficients in the φe expansion (16). The relevant boundary conditions are, for p=r, j:

dCpe
nm(z)

dz

∣

∣

∣

∣

∣

z=1

=
gb

get

[

−π(n2 + m2)
1

2

]

Cpe
nm(1) and Cpe

nm(1) = Ωp
nme−π(n2+m2)

1
2 (29)

It should be noted that boundary conditions (26)-(29) apply for all n, m ≥ 1 and are also

correct, where appropriate, for n or m equal to 0; that is, for Cpq
0m and Dpq

0m for n = 0 and for

Cpq
n0 and Epq

n0 for m = 0 (see equation (16)). The equivalent conditions for n = m = 0, where

φb=0, are :

Cpe
00(1) = 0 and

dCpe
00(z)

dz

∣

∣

∣

∣

∣

z=1

= 0 (30)

2.4.3 Finite Difference Scheme

Next, a one-dimensional finite difference scheme is applied to the eight ordinary differential

equations which result from the initial governing equations. A non-uniform grid is used so that

it is possible to cluster points near the current source. The interval between 0 and 1 in the

z-direction is divided into N sub-intervals of differing lengths ∆zk = zk − zk−1 at z0=0, z1, · · · ,

zN=1. For a function f(z) defined on this grid, fk = f(zk), applying Taylor series expansions

gives the following approximations for k = 0, . . . , N :

d2f

dz2

∣

∣

∣

∣

∣

z=zk

≈ 2(∆zk+1f
k−1 − (∆zk + ∆zk+1)f

k + ∆zkf
k+1)

∆zk∆zk+1(∆zk + ∆zk+1)
(31)

and

df

dz

∣

∣

∣

∣

∣

z=zk

≈ fk+1 − fk−1

∆zk + ∆zk+1
(32)

For the case where n, m ≥ 1, these approximations are applied to the two sets of eight

equations, the C,F system given by equations (17) and (18) and the D,E system described

below those equations, as well as to boundary conditions (26)-(29). This gives, for each n and

m, sets of eight banded diagonal systems of linear algebraic equations of size 8N+6 for the

C,F system and 8N+4 for the D,E system, with a bandwidth of 17 in each case. The systems
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are different sizes because for n, m ≥ 1, Xpe
nm(1)=0 for X=D, E and F , but not for C, as can

be seen in equations (28) and (29). This eliminates the equations for k=N for Dre
nm, Dje

nm,

Ere
nm and Eje

nm in the D,E system, but in the C,F system only the F re
nm and F je

nm equations are

eliminated.

The current term of equations (17) and (18) when q=e, which involves the Dirac delta

function δ(z − zk), is evaluated in the right-hand side vector in the algebraic system as, for

example in equation (17),
−I

p
0
PnRm

∆zk
when k 6= 0. However, when k=0, this is doubled because

the current is being applied on the epicardium and the solution of the equations is based on the

assumption that the medium is infinite in extent, whereas in that case it is semi-infinite [16].

In order to apply the above work in a realistic fashion and compare theoretical results with

experimentally measured data, it is necessary to have both a current source and a sink. To allow

for this, the model is solved with an extra current term of the same magnitude but opposite

in sign, which is applied at a different point from r0. This simply introduces an extra term in

governing equation (2) and hence in the algebraic system. The extra term was ignored in the

work above to simplify the analysis.

For each value of n and m the banded systems of algebraic equations are solved using stan-

dard techniques [32] to give values, for a given frequency, for the coefficients Cpq
nm(z), Dpq

nm(z),

Epq
nm(z) and F pq

nm(z) at the required points z. Finally, summing the series in (16) for sufficiently

many points NPTSx and NPTSy, for n and m respectively, yields the potential. Unless oth-

erwise stated, the model was solved with NPTSx=NPTSy=N=200, where N is the number of

points in the z-direction.

It was also found that it was necessary to include an accelerator term in the series summation

to counteract the Gibbs effect [33]. Lanczos smoothing [33], which multiples each term in the

series summed over n, by the factor
sin( πn

NPTSx
)

πn
NPTSx

, was applied; here, since there are two series to

be summed, each term in the series was multiplied by a product of this factor and a similar
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one in m before the summation was performed.

2.5 Validation of the Alternating Current Model

2.5.1 Direct Current Case

As mentioned in Section 2.4.1, the direct current model, presented previously [1], is simply a

special case of the alternating current model presented here. If a direct current is applied, ω=0,

Y = 1/R, Is = I0δ(r − r0), φi(0, r) = φi(r), φe(0, r) = φe(r) and the four equations (12)-(15)

reduce to two equations in φi and φe. This leads to two systems of four equations to be solved

for Cq
nm, Dq

nm, Eq
nm and F q

nm, q=i or e. Solutions for these systems were checked in previous

work [1], for various cases, including against the four-electrode surface model of Plonsey and

Barr [16] and the vertical electrode case of Barr and Plonsey [19].

2.5.2 The Alternating Current Model of Le Guyader et al.

Le Guyader et al. [2] extended the four electrode technique of Plonsey and Barr [16] to a probe

consisting of two orthogonal rows of four electrodes [20], which was placed on the epicardium

along the longitudinal and transverse axes. The inter-electrode spacing was chosen to be of the

order of the myocardial space constant, so that when AC current of differing frequencies was

injected, the current flow was re-directed from the extracellular domain at low frequencies to

both the intra- and extracellular domains at high frequencies.

As discussed in Section 1, Le Guyader et al. [2] use a numerical method, based on the Fast

Fourier Transform technique, to solve for differing frequencies, for the (complex) potential at

all points in the domain. They presented graphs, of both the modulus and the phase of the

voltage to current ratio, at the measuring electrodes, for frequencies varying from 10 to 10000

Hz. The parameters used were [2]: gil=1.741 mS/cm gel=3.906 mS/cm, git=0.1934 mS/cm and
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get=1.970 mS/cm, R=9100 Ω cm2, β=2000 cm−1 and C=1 µF/cm2, while the probe had an

inter-electrode distance d of 328 µm in the longitudinal direction and 343 µm in the transverse

direction.

Plots, using the model presented here, with fibre rotation set to zero, to calculate the

modulus and phase of the voltage to current ratio, in both the longitudinal and transverse

directions, are shown in Figure 1(a) and (b) respectively, along with estimates of those produced

by Le Guyader et al. taken from their 2001 paper [2]. The model presented here produces results

that are very similar to those of Le Guyader et al.; in particular, both the longitudinal and

transverse graphs for phase show excellent agreement. The ‘modulus’ graphs appear to be very

similar qualitatively, but the results are translated upward by a small amount.

Similar graphs were also produced, but are not presented here, using the parameters given

in Le Guyader et al.’s 1995 paper [21] and compared with the graphs shown there. Again the

agreement between the two models is very good. It is not, however, possible to quantify the

difference between the values, because the potentials shown here have only been estimated from

the plots in the paper of Le Guyader et al..

3 Intracellular Capacitance Model

Le Guyader et al. [21] found that there was a mismatch between the results from their al-

ternating current model, described in Section 2, and experimental measurements, along the

transverse axis at higher frequencies. This led to their proposal [2] of an extension to the

alternating current model, which would take account of the effects of intracellular junction

capacitance and resistance. This new intracellular capacitance model involves replacing the

intracellular conductivity by a new frequency dependent conductivity. There is no change to

the extracellular conductivities because physiologically they are purely conductive [2].
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3.1 Frequency Dependent Intracellular Conductivities

Following Le Guyader et al. [2], the new model here will be described using the concept of

impedance instead of conductivity. The new intracellular longitudinal impedance times unit

length, Zit, is given by

Zit = Rc + Zgap (33)

where Rc is the intracellular cytoplasmic resistivity and Zgap is the junction impedance times

unit length. Now Zgap consists of the gap junction resistivity, Rgap, in parallel with the junction

capacitance per unit length, Cgap, giving

Zgap =
Rgap

1 + jωCgapRgap

(34)

So the new longitudinal and transverse frequency dependent and complex bidomain conduc-

tivities are gil(ω) = ξi/Zil and git(ω) = ξi/Zit, respectively, where ξi is the intracellular volume

fraction. Similarly, the bidomain gap junction conductivity is ggap = ξi/Rgap, the bidomain in-

tracellular cytoplasmic conductivity is gc = ξi/Rc and the bidomain equivalent of the junction

capacitance per unit length is cgap = Cgapξi.

The situation in the transverse direction is somewhat different because, as postulated by

Clerc [8], the current passes through a higher spatial density of junctions than in the longitu-

dinal direction. Defining Ng as the junction density ratio (longitudinal/transverse), then the

intracellular transverse impedance times unit length, Zit, is given by

Zit = Rc + NgZgap (35)

This leads to expressions for the transverse gap junction conductivity, ggapt, and the transverse

gap junction capacitance, cgapt, where ggapt = ggap/Ng and cgapt = cgap/Ng. Writing the new

complex frequency dependent intracellular conductivities in real and imaginary parts as gil(ω) =
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gr
il(ω) + jgj

il(ω) and git(ω) = gr
it(ω) + jgj

it(ω) gives

gr
il(ω) =

gc

[

Ngggapt(Ngggapt + gc) + ω2N2
g c2

gapt

]

(Ngggapt + gc)2 + ω2N2
g c2

gapt

(36)

gj

il(ω) =
Ngωg2

ccgapt

(Ngggapt + gc)2 + ω2N2
g c2

gapt

(37)

gr
it(ω) =

gc

[

ggapt(ggapt + gc) + ω2c2
gapt

]

(ggapt + gc)2 + ω2c2
gapt

(38)

gj
it(ω) =

ωg2
ccgapt

(ggapt + gc)2 + ω2c2
gapt

(39)

3.2 Governing Equations and Conductivity Tensor

The new intracellular capacitance model is very similar to the alternating current model of

Section 2, except for the more complicated equations involved due to the introduction of the

complex frequency dependent intracellular conductivities. The same block of tissue is considered

and the extracellular potential equation (2) and the equation governing potential in the blood

(3) are unchanged. However, the conductivity tensor Mi from equation (4), which can be

written in real and complex parts as Mi(z, ω) = Mr
i (z, ω) + jMj

i (z, ω) now contains complex

elements, viz. M11p
i = (gp

il−gp
it)c

2+gp
it, M12p

i = (gp
il−gp

it)cs, M22p
i = (gp

il−gp
it)s

2+gp
it, M33p

i = gp
it,

where p=r or j, which alters the expansion of governing equation (1) for intracellular potential.

The same set of boundary conditions (8)-(11) as presented in Section 2.3 is applied to the

intracellular capacitance model.

3.3 Solution Method

The Fourier Series method, followed by a one-dimensional finite difference scheme, as detailed in

Section 2.4, is again used here. Since the extracellular conductivities are unchanged, equations

(14) and (15) remain the same. However, writing the new complex intracellular conductivity

tensor, Mi, in real and imaginary parts leads to two new equations which replace equations
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(12) and (13):

M11r
i

∂2φr
i

∂x2
− M11j

i

∂2φj
i

∂x2
+ 2M12r

i

∂2φr
i

∂x∂y
− 2M12j

i

∂2φj
i

∂x∂y
+ M22r

i

∂2φr
i

∂y2
− M22j

i

∂2φj
i

∂y2
+

M33r
i

∂2φr
i

∂z2
− M33j

i

∂2φj
i

∂z2
=

β

R
(φr

i − φr
e) − βωC

(

φj
i − φj

e

)

(40)

M11r
i

∂2φj
i

∂x2
+ M11j

i

∂2φr
i

∂x2
+ 2M12r

i

∂2φj
i

∂x∂y
+ 2M12j

i

∂2φr
i

∂x∂y
+ M22r

i

∂2φj
i

∂y2
+ M22j

i

∂2φr
i

∂y2
+

M33r
i

∂2φj
i

∂z2
+ M33j

i

∂2φr
i

∂z2
=

β

R

(

φj
i − φj

e

)

+ βωC (φr
i − φr

e)

(41)

Expanding the potentials, as per Section 2.4.1, using the Fourier Series given in equation (16),

leads to two sets of eight second order ordinary differential equations for each n, m combination.

The C,F system will be considered first. As for the alternating current model, the four equations

for the extracellular coefficients Cre
nm, Cje

nm, F re
nm and F je

nm, are given in equations (17) and (18)

with q=e only. The two equations for the coefficients Cri
nm and Cji

nm are as follows:

d2Cri
nm

dz2
− αCri

nm + γCji
nm + σCre

nm + δCje
nm + θF ri

nm + ρF ji
nm = 0 (42)

d2Cji
nm

dz2
− αCji

nm − γCri
nm + σCje

nm − δCre
nm + θF ji

nm − ρF ri
nm = 0 (43)

where α = [n2π2(M11j
i gj

it + M11r
i gr

it) + m2π2(M22j
i gj

it + M22r
i gr

it) + βωCgj
it + β/Rgr

it]/|git|2,

γ = [n2π2(M11j
i gr

it − M11r
i gj

it) + m2π2(M22j
i gr

it − M22r
i gj

it) + βωCgr
it − β/Rgj

it]/|git|2,

σ = [β/Rgr
it + βωCgj

it]/|git|2, δ = [β/Rgj
it − βωCgr

it]/|git|2, θ = 2nmπ2(M12r
i gr

it + M12j
i gj

it)/|git|2

and ρ = 2nmπ2(M12r
i gj

it − M12j
i gr

it)/|git|2. The current terms and potential in the blood are

dealt with in the same fashion as in Section 2.4.2 and the boundary conditions are applied as

per Section 2.4.3. When the same finite difference scheme is applied to the two sets of eight

equations, described above, this results, again, in two sets of eight banded diagonal systems,

which are the same sizes and bandwidths as before. These systems are solved using the methods

previously described in Section 2.4.3.
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3.4 Validation of the Intracellular Capacitance Model

Le Guyader et al. [2] used a numerical intracellular capacitance model, based on the Fast Fourier

Transform technique, to solve for the modulus and phase of the voltage to current ratio at the

measuring electrodes of the eight electrode probe described in Section 2.5.2. They then went

on to fit simulated data from their intracellular capacitance model, both with the alternating

current model and the intracellular capacitance model, using a minimisation procedure. They

showed that the new intracellular capacitance model fitted the data reasonably well, whereas

the alternating current model did not.

Using the parameters R=9100 Ω cm2, β=2000 cm−1, C=1 µF/cm2, Ng=8, cgapt=13 nF/cm,

gb=6.7 mS/cm, ggapt=0.572 mS/cm, gc=2.811 mS/cm, gel=3.906 mS/cm and get=1.970 mS/cm

[2], plots of modulus and phase of the voltage to current ratio at the measuring electrodes are

produced for the present model and compared with values for the same quantities, estimated

from the 2001 paper of Le Guyader et al.. The longitudinal and transverse phase plots, given

in Figure 2(b), show excellent agreement, while the modulus plots, given in Figure 2(a), are

very similar qualitatively, although the values of the present model are translated slightly from

those of Le Guyader [2].

3.5 The Effect of Fibre Rotation on Potentials Measured

It has previously been found by the present authors [1, 34] that, in the case of the direct current

model (which is a special case of the present model), the inclusion of fibre rotation affects the

potentials measured on particular electrode configurations, but not on others. The affected

configurations involve electrodes on more than one probe, which is inserted into the cardiac

tissue. Here, the ‘four-probe’ [34] configuration, shown in Figure 3, will be considered. This

configuration is effectively just the usual surface four-electrode probe, oriented longitudinally,
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but inserted at a depth d below the surface. Here d will be taken to be 0.4 cm and the

inter-electrode distance will be 250 µm.

Plots of the modulus and phase of the voltage to current ratio versus fibre rotation angle, for

a number of different values of the frequency of the applied AC current, are shown in Figures

4(a) and (b) respectively. It can be seen that, for a particular frequency, the voltage measured

between the two inner electrodes of Figure 3 decreases with increasing fibre rotation angle, with

a drop of about 30% in the modulus of the ratio. The phase values are also affected, but in

a different fashion depending on the frequency. For frequencies less than 6000 Hz, the phase

decreases as fibre rotation increases, but for higher frequencies, phase increases as fibre rotation

increases.

Similar work for the surface four-electrode probes of Le Guyader et al. [2] and an analogous

single vertical four-electrode probe with an electrode spacing of 250 µm [34], gives results that

are consistent with the direct current results [34]; that is, for these two cases at any given

frequency, changes in fibre rotation have no effect on the modulus or frequency of the phase to

current ratio.

4 Discussion

This paper has extended the newly presented solution method for the bidomain model [1]

for cardiac tissue, which includes the effects of fibre rotation, from one where direct current

is applied in the extracellular space to one involving an alternating current. Direct current

models are generally [16, 19] used with ‘closely-spaced’ and ‘widely-spaced’ electrodes in any

method which seeks to recover the extracellular and intracellular conductivities, because when

‘closely-spaced’ electrodes (less than the space constant) are used, almost all the current is

flowing in the extracellular space [16, 1], whereas increasing the electrode spacing re-directs
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some of the current into the extracellular space.

An alternative approach to this was proposed by Le Guyader et al. [20, 21, 2], who suggested

keeping the inter-electrode distance (chosen to be of the order of the space constant) constant

and re-directing the current by increasing the frequency of the applied AC current. Le Guyader

et al. analysed their results by means of a bidomain model that did not include fibre rotation,

which was solved using a full numerical technique involving Fast Fourier Transforms. They

also found [21] that this alternating current model did not match experimental results along

the transverse axis at higher frequencies. This led to their proposal [2] of an extension to this

model, which could allow for the effects of intracellular junction capacitance and resistance.

Following these approaches, the direct current model of the present authors [1], was extended

first to an ‘alternating current’ model in Section 2 and then to an ‘intracellular’ capacitance

model in Section 3. Both of these models are able to include the effects of fibre rotation on

the potentials calculated and both have the advantage over full numerical models that, because

they are solved by Fourier series followed by a simple one dimensional finite difference scheme,

the potentials need only be calculated at points, such as the measuring electrodes, where they

are required.

Data for the modulus and phase of the ratio of voltage to current, measured on the probe

of Le Guyader et al. [21, 2], is produced using the two new models and is compared with data

from the Le Guyader et al. versions of the models. It is found that the phase graphs show

excellent agreement and the modulus graphs agree qualitatively, but are translated slightly.

This may be due to the fact that the models are based on slightly different assumptions: the

models of Le Guyader et al. [2] are assumed to be insulated in the z-direction, whereas the

models presented here assume that the tissue in the z-direction is in contact with a volume of

blood which extends to infinity in that direction.

It is also demonstrated that, for the particular four-electrode configuration (see Figure 3)
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used here, the potentials measured are affected by the fibre rotation of the cardiac tissue. This

can be seen in Figures 4(a) and (b), which are plots, for a number of different frequencies of

the applied AC current, of the modulus and phase of the voltage to current ratio, respectively,

across a range of fibre rotation angles from 0◦ to 180◦. In particular, the modulus values drop

by up to 30% across this range. This is consistent with plots presented [34] previously, by the

present authors, for a number of different four-electrode configurations where a direct current

is applied. In the direct current case, the voltage measured is affected by the value of the

fibre rotation for all multi-probe electrode configurations considered [34]. These results are

significant because they indicate the importance of the inclusion of fibre rotation in bidomain

models of cardiac tissue, especially in the case where multi-probe electrode configurations are

employed either to model cardiac behaviour or to determine cardiac structural parameters, such

as electrical conductivities.

Limitations of the Model

The model developed here is based, in part, on the quasi-static formulation where, typically,

the upper limit on frequency under this assumption is 1 kHz [25]. The fact that frequencies up

to 10 kHz have been used is simply in keeping with previous studies [2]. Other assumptions

are that fixed conductivities can be used and that any capacitive current from the tissue to

the blood can be ignored. These assumptions can be removed and are worthy of more detailed

study. The true test of this model would be the inverse problem of determining conductivities

as suggested by [2]. It may well be that injecting currents up to 1 kHz during the ST segment

is sufficient to derive the required conductivities. This is an area of ongoing research.
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5 Conclusions

It has been shown here that it is possible to extend a previously presented [1] solution method

for the bidomain model for potential in cardiac tissue, where a direct extracellular current is

applied, to a more complicated model, involving an applied extracellular AC current, and still

include the effects of fibre rotation between the epicardium and the endocardium in the model.

The importance of the inclusion of fibre rotation in bidomain models for cardiac tissue is

highlighted here in Figures 4(a) and (b), for an electrode configuration that involves more than

one probe. These plots show that both the modulus and phase of the voltage to current ratio are

affected by the value of the fibre rotation, with the modulus values decreasing as fibre rotation

increases. This is significant since, if the measurement arrays that are used to determine cardiac

parameters contain more than one electrode on a probe, then fibre rotation must be taken into

account in the model used.

An extension to this work could involve using this model, in conjunction with a multi-

electrode array, to simulate potentials, and to attempt to recover various cardiac structural

parameters from these, in a similar fashion to Le Guyader et al. [2], except that noise could be

added to the potential measurements and fibre rotation would be included in the model.
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Captions

Figure 1: (a) Modulus and (b) phase of the voltage to current ratio versus frequency, for the

alternating current model presented here and that of Le Guyader et al. [2].

Figure 2: (a) Modulus and (b) phase of the voltage to current ratio versus frequency, for the

alternating current with intracellular capacitance model presented here and that of Le Guyader

et al. [2].

Figure 3: Schematic diagram for the four probe configuration. Diagram is not to scale.

Figure 4: (a) Modulus and (b) phase of the voltage to current ratio versus fibre rotation,

for the alternating current with intracellular capacitance model, for various frequencies of the

applied AC current.
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