
278 
 

1

  
Abstract — As wireless LAN (WLAN) deployments increase, 

so does the challenge to provide these networks with adequate 
security. Business organizations, educational institutions and 
government co-operations are becoming more and more 
concerned about their e-security. The need for reliable and 
robust security mechanisms for WLANs is increasing. The latest 
WLAN security protocol IEEE 802.11i guarantees robust 
security with improved authentication, authorization and key 
distribution mechanisms. However, though the newest security 
protocol assures dependable communication sessions, the 
credibility of the three connection phases; security policy 
selection, authentication and key distribution needs further 
investigation. The loosely coupled state machines of the 
participating components can pave the way to security breaches. 
In this study we have investigated the integrity of these three 
phases. The analysis is carried out in two stages. Initially, the 
three phases are modeled using Genetic Software Engineering 
(GSE) methodology and then formally verified with Symbolic 
Analysis Laboratory (SAL) tools. We established several Linear 
Temporal Logic (LTL) formulas to model check our models. We 
have also examined and analyzed possible security threats due to 
various issues arising from software implementations and 
intruder behaviors.  
 

Index Terms — Wireless LAN Security, Formal Methods, 
Model Checking, Behavior Trees, IEEE 802.11i, Genetic 
Software Engineering (GSE). 
 

I. INTRODUCTION 

WLANs have gained vast popularity over the last couple of 
years due to its ease of use. Unlike the wired network the 
wireless networks provides connection from any where 
without the need for a direct physical connection. This 
flexibility attracts many mobile users to opt for wireless 
connectivity. In contrast, this very nature of the wireless 
communication has also enabled easy means of breaking into 
organizational networks through a range of gaps in wireless 
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connectivity.  
 
The first wireless security solution for 802.11 based 

networks, the Wireless Equivalency Protocol (WEP), received 
a great deal of coverage due to various technical failures in the 
protocol [1]. Standard bodies and industry organizations are 
spending enormous amount of time and money in developing 
and deploying next-generation solutions that address growing 
wireless network security problems. The IEEE 802.11i 
standard [2] provides much-improved authentication, 
authorization, and encryption capabilities. The Wi-Fi 
Protected Access (WPA) standard [3], a subset of the 802.11i, 
created by the Wi-Fi Alliance, addresses the weaknesses of 
802.11 data privacy by incorporating Temporal Key Integrity 
Protocol (TKIP), a much stronger implementation of the RC4 
encryption algorithm, plus a sophisticated keying system that 
ties together the data privacy and authentication functions. 
IEEE 802.1X [4] was introduced to specifically address the 
authentication functions in the network environment. The 
IEEE 802.1X standard enhances the security capabilities of 
the IEEE 802.11i standard with its powerful authentication, 
authorization and key management functions.   

 
The strong security mechanisms introduced by the standard 

bodies and other organizations must be correctly interpreted 
and comprehend by Software Engineers for proper 
implementation. A naïve implementation of security protocols 
can lead to the similar security breaches as in the case of 
technical flaws. As such, the primary aim of this study is to 
build a complete and consistent software model for the IEEE 
802.11i security protocol. This is achieved by first identifying 
the requirements of the security protocol and then modeling it 
using the GSE methodology [5]. Once the system is modeled 
it is then formally verified using the SAL [6] model checker. 
Thereafter, we modeled and verified a possible intruder 
behavior in the WLAN environment. In this paper, we have 
presented a complete and consistent model for the IEEE 
802.11i security protocol highlighting the possible security 
loopholes. We have also suggested feasible improvements to 
the model to address the security issues discussed in the IEEE 
802.11i standard. The results presented give sufficient 
information for Software Engineers to implement the security 
protocol more rigidly. To the best of our knowledge this is the 
first ever analysis to be reported on the security association 
process proposed in IEEE 802.11i. Furthermore, the process 
used in the analysis is also innovative. 

Analysis of IEEE 802.11i WLAN  
Security Protocol 
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We present related work in Section II and our intuition in 

Section III. An overview of the IEEE 802.11i protocol is 
presented in Section IV. The modeling and model checking 
details are explained in Section IV and V. The analysis is 
presented in Section VI and Section VII concludes the paper. 

 

II. RELATED WORK 
The basic idea of analysing network and communication 

protocols is quite old, dating back to at least 1978 [7][8]. In 
recent decades, model checking has made significant progress 
in tackling the verification of complex, concurrent systems 
[9]. Tools such as SMV [10], SPIN [11], and Murphi [12] 
have been used to verify hardware and software protocols by 
exhaustively searching the state space. The drawback of 
traditional model checkers is that the system to be verified 
must be modeled in a particular description language, 
requiring a significant amount of manual effort that can easily 
be error prone.  

 
Some formal verification tools have used the idea of 

executing and checking systems at the implementation level. 
Verisoft [13], for example, systematically executes and 
verifies actual code and has been used to successfully check 
communication protocols written in C. However, Verisoft 
does not store states and therefore, can potentially explore a 
state more than once. This problem is alleviated to some 
degree by partial order reduction, a sound state space 
reduction technique implemented in Verisoft that eliminates 
the exploration of redundant interleaving of transitions created 
by commutative operations. Nevertheless, this technique 
requires hints to be provided by the user and/or some static 
analysis of the code to determine dependencies between 
transitions. 

 
Tools such as ESC [14], LCLint [15], and the MC Checker 

[16] have been used to check source code for errors that can 
be statically detected with minimal manual effort. Splint [17] 
reports a warning for any code path that fails to satisfy the 
storage-release obligation, because it causes a memory leak. 
Although memory leaks do not typically constitute a direct 
security threat, attackers can exploit them to increase a denial-
of-service attack’s effectiveness. Both stack and heap-based 
buffer overflow vulnerabilities are detected by Splint. The 
simplest detection techniques just identify calls to often 
misused functions; more precise techniques depend on 
function descriptions and program-value analysis. 

 
The ESP [18] language uses processes to implicitly express 

state machines. These processes use channels to communicate 
with each other. In addition, ESP has a number of language 
features that simplify the task of writing device firmware. The 
ESP compiler can automatically extract models that can be 
used by a model checker to extensively test the program. ESP 

uses the SPIN model checker to verify correctness of software 
systems. It systematically explores the state space of the 
system and checks for violations of the specified property. 
The Spin models generated by the ESP compiler can be used 
together with programmer-supplied SPIN code to verify 
different properties of the system.  

 
Gray and McLean propose encoding the entire protocol in 

terms of temporal logic [19]. Much like symbolic model 
checking, they describe the model by giving formulas that 
express the possible relationships between variable values in 
the current state and variable values in the next state. This 
makes their framework more formal than the others, but much 
more cumbersome as well. They provide a simple example 
and prove a global variant for this example. The few sub cases 
they consider are very straightforward but their technique 
demands very long proofs even for the extremely simple 
example they present. They argue that their technique could 
be automated but provide no tools for their system. 

 
Woo and Lam propose much more intuitive model for 

authentication protocols [20]. Their model resembles 
sequential programming with each participating principle 
being modeled independently. There is an easy and obvious 
translation from the common description of a protocol as a set 
of messages to their model. Their models are also intuitive 
because they consider all possible execution traces instead of 
considering just the set of words obtainable by the intruder. 
They are concerned with checking of what they call secrecy 
and correspondence properties. The secrecy property is 
expressed as a set of words that the intruder is not allowed to 
obtain. The correspondence properties can express things of 
the form if principal A finishes a protocol run with principal 
B, then principal B must have started the protocol run with A. 
However, they do not provide a general logic in which to 
formalize security properties, nor do they provide an 
automated tool. 

 
Dolev and Yao [21] proposed an approach to model 

network protocols by defining a set of states and a set of 
transitions that takes into account an intruder, the messages 
communicated back and forth, and the information known by 
each of the components. This state space is then traversed to 
check if some particular state can be reached or if some state 
trace can be generated. They developed an algorithm for 
determining whether or not a protocol is secure in their model. 
However, their model is extremely limited. They only 
consider secrecy issues, and they model only encryption, 
decryption, and adding, checking, or deleting a component 
name. 

 
Medow [22] used an extension of the Dolev-Yao model in 

the PROLOG based model checker by giving a description of 
an insecure state to perform the verification. The model 
checker searches backwards in an attempt to find an initial 
state. In PROLOG, this can be achieved by unifying the 
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current state against the right hand side of a rule and deducing 
the state description for the previous state from the left hand 
side. If the initial state is found, then the system is insecure, 
otherwise an attempt is made to prove that that the insecure 
state is unreachable by showing that any state that leads to this 
particular state is also unreachable. This kind of trace can lead 
to infinite search where for an intruder to learn word A, he 
must learn word B, and in order to learn word B, he must 
learn word C, and so on. For these reason formal languages 
allows users to prove that no word in a set of words (or 
language) can be generated by the intruder. However, this 
PROLOG based model checker was still too limited, 
particularly it did not allow modeling of freshly generated 
nonces or session keys.  

 

III. MOTIVATION  
The motivation for our work comes from the paper titled “Is 

this a Revolutionary Idea or not” [23] by Robert Glass. He has 
encouraged researchers to explore the claims made by Geoff 
Dromey - the inventor of GSE methodology who declares 
“GSE methodology is admired for its simplicity, traceability, 
ability to detect defects and its control of complexity”. 
Dromey says that his methodology has been successfully used 
to analyze very large systems such as satellite control systems, 
air traffic control systems and like. Hence, as a novel attempt 
we have used the GSE methodology to model and analyze 
security protocols. Unlike the analysis techniques that are 
specific to security protocols, our approach is different since 
we first use the GSE methodology to model the security 
protocol from its requirement, then convert it into symbolic 
code and finally, verify it using temporal logic. 

 
In GSE methodology each requirement is translated into its 

corresponding behavior tree (BT), which describes the 
behaviors that will result from that requirement. A BT is made 
up of components (the software pieces), states (that those 
components can take on), events and decisions/constraints 
(that are associated with the components), data that the 
components exchange, and the causal, logical, and temporal 
dependencies (associated with component interactions). It is 
the way these BTs are integrated that makes things different. 
To integrate, the BTs are placed together like a jigsaw puzzle, 
where clear points of intersection between the trees make the 
puzzle pieces to fit together. Using this approach, the software 
system is built “out of its requirements” rather than just 
“satisfying its requirements.”  

 
The whole point of this approach, Dromey says, is to master 

the complexity that accompanies building a significant 
software system. Complexity can be handled piecewise via 
integrating the localized behavior trees, rather than as one big 
global cognitively daunting task. This greatly reduces the 
strain on our short-term memory. 

 

A benefit of doing integration is that just as a picture 
emerges when all the pieces of a jigsaw puzzle are put in their 
correct places, a similar thing happens as the behavior trees of 
functional requirements are integrated. Surprisingly, the 
picture in this case is the integrated component architecture of 
the system, along with the integrated behavior of each of the 
components in the system. Dromey claims requirements 
integration has the additional benefit of being a powerful way 
to find defects in a system early - only when a requirement is 
seen in the context where it is applied do we see its problems. 

 
As a fringe benefit of this approach, Dromey claims, the 

traceability of the original requirements into the as-built 
software system becomes much easier. Even with the use of 
commercially available tools, it is well known that 
requirements traceability is a complex and barely manageable 
task due to the “requirements explosion” caused when the 
original requirements explode into the requirements for a 
design to satisfy those requirements. (Some researchers have 
found that explosion rate to be on the order of 50:1). With 
Dromey’s approach, adding a new requirement is like adding 
a new piece to a jigsaw puzzle that was originally incomplete. 
 

It is a well accepted fact in software engineering that fixing 
defects after the software has been implemented is costly both 
in terms of time and money. And in case of security, this can 
jeopardize an entire organization. The GSE methodology 
proposes a systematic approach for deriving the system 
implementation models from the requirements enabling 
conceptual errors to be detected much earlier in the 
development phase rather than waiting until the software is 
implemented. Most, if not all conventional modeling 
techniques are built by intuition to match the system 
requirements which results in implementation models 
representing the designers’ mental replica. The resulting 
model will significantly depend on the designers experience 
and expertise. Further, conventional methodologies have 
several different approaches to describe the various aspects of 
the system. For example the UML modeling technique has 
almost nine different modeling tools to describe the various 
functionalities of a system.  

 
The main aim in applying the GSE methodology to model 

and analyze the security protocol will be to reduce the amount 
of work required to go from system modelling to systematic 
verification. We presume that the analysis will not suffer from 
too many false positives since every scenario checked will be 
a valid execution path due to the inherent qualities of the BT 
models. Unlike the methods that are currently available for 
analysing communication protocols, this approach first 
delivers a complete and consistent model emerging from its 
requirements. Having derived a reliable model we analyse its 
credibility on the various security aspects specific to the 
wireless network environment. We presume that this novel 
approach will reveal greater scope to analyse security 
protocols compared to the existing techniques. 



278 
 

4

 

IV. THE 802.11I SECURITY PROTOCOL 
The IEEE 802.11i standard defines two classes of security 

framework for IEEE 802.11 WLANs: RSN and pre-RSN. A 
station is called RSN-capable equipment if it is capable of 
creating RSN associations (RSNA). Otherwise, it is a pre-
RSN equipment. The network that only allows RSNA with 
RSN-capable equipments is called an RSN security 
framework. The major difference between RSNA and pre-
RSNA is the 4-way handshake. If the 4-way handshake is not 
included in the authentication/association procedures, stations 
are said to use pre-RSNA. The RSN, in addition to enhancing 
the security in pre-RSN defines a number of key management 
procedures for IEEE 802.11 networks. It also enhances the 
authentication and encryption mechanisms from the pre-RSN. 
The enhanced features of RSN are as follows: 

 
Authentication Enhancement: IEEE 802.11i utilizes IEEE 

802.1X for its authentication and key management services. 
The IEEE 802.1X incorporates two components namely, (a) 
IEEE 802.1X Port and (b) Authentication Server (AS) into the 
IEEE 802.11 architecture. The IEEE 802.1X port represents 
the association between two peers as shown in Fig. 1. There is 
a one-to-one mapping between IEEE 802.1X Port and 
association. 

 
Key Management and Establishment: Two ways to 

support key distribution are introduced in IEEE 802.11i: 
manual key management and automatic key management. 
Manual key management requires the administrator to 
manually configure the key. The automatic key management 
is available only in RSNA. It relies on IEEE 802.1X to 
support key management services. More specifically, the 4-
way handshake is used to establish each transient key for 
packet transmission as in Fig. 2. 

 
Encryption Enhancement: In order to enhance 

confidentiality, two advanced cryptographic algorithms are 
developed: Counter-Mode/CBC-MAC Protocol (CCMP) and 
Temporal Key Integrity Protocol (TKIP). In RSN, CCMP is 
mandatory. TKIP is optional and is recommended only to 
patch any pre-RSN equipment. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. IEEE 802.1X EAP Authentication 
 
During the initial security association between a station 

(STA) and an access point (AP), the STA selects an 
authorized Extended Service Set (ESS) by selecting among 
APs that advertise an appropriate Service Set ID (SSID). The 
STA then uses IEEE 802.11 Open System authentication 
followed by association to the chosen AP. Negotiation of 
security parameters takes place during association. Next, the 
AP’s Authenticator or the STA’s Supplicant initiates IEEE 
802.1X authentication. The Extensible Authentication 
Protocol (EAP) used by IEEE 802.1X will support mutual 
authentication, as the STA needs assurance that the AP is a 
legitimate Access Point. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Establishing pairwise & group keys [2] 
 

The last step is the key management. The authentication 
process creates cryptographic keys shared between the IEEE 
802.1X AS and the STA. The AS transfers these keys to the 
AP, and the AP and STA use one key confirmation 
handshake, called the 4-Way Handshake, to complete security 
association establishment. The key confirmation handshake 
indicates when the link has been secured by the keys and is 
ready to allow normal data traffic. 

 
In the case of roaming, an STA requesting (re)association 

followed by IEEE 802.1X or pre-shared key authentication, 
the STA repeats the same actions as for an initial contact 
association, but its Supplicant also deletes the PTK when it 
roams from the old AP. The STA’s Supplicant also deletes the 
PTKSA when it disassociates/deauthenticates from all basic 
service set identifiers in the ESS. An STA already associated 
with the ESS can request its IEEE 802.1X Supplicant to 
authenticate with a new AP before associating to that new AP. 
The normal operation of the DS via the old AP provides 
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communication between the STA and the new AP. 
In the next section the above-described RSN is modeled. 

The complete modeling, from requirements analysis to the 
final design models was carried out using the GSE techniques. 

 

V. MODELING 
Requirements translation is the first formal step in the GSE 

design process. Its purpose is to translate each natural 
language functional requirement, one at a time, into one or 
more behavior trees. This translation identifies the 
components (including actors and users), the states they 
realize (including attribute assignments), the events and 
decision/constraints that they are associated with, the data 
exchange, and the casual, logical and temporal dependencies 
associated with component interactions. 

 
Following the translation and integration of the 

requirements, we evolve the requirements representations into 
design/architecture representations. The first phase of this 
architectural process is the “Component Architecture 
Transformation,” and the output of that phase is a 
“Component Interaction Network.” The primary thing that 
happens here is that components, which may be represented at 
many points in the requirements representation, are isolated 
out to appear only once in the solution representation. This 
amounts to algorithmically transforming the integrated tree of 
requirements into a network of components that interact (the 
traditional conceptual view of a system). The final stage of 
this process is the “Component Behavior Projection.” Here, 
component behaviors are concentrated by separately 
projecting each component’s behavior from the integrated 
requirements tree. The result of this process is a skeleton 
behavior tree for each component that will deliver the 
behavior it needs to exhibit to function as an encapsulated 
component in the component interaction network. 

 
The IEEE 802.11i standard defines two classes of security 

framework for IEEE 802.11 WLANs: RSN and pre-RSN 
security frameworks. This study is mainly focused on the RSN 
security framework since it is expected to drive the future of 
distributed wireless networks. STAs in the RSN environment 
can make contact with the ESS in one of two ways: initial 
contact or Roaming. In case of roaming we are not concerned 
of whether the STAs are navigating inter-subnet or intra-
subnet since the security policy in both cases will be the same. 

 
Clauses 8.4.1 to 8.4.10 in the IEEE 802.11i standard 

describe the steps involved in the RSN security association 
life cycle. We have made use of these steps to develop the 
requirements behavior trees (RBTs) for the RSN. Each 
individual functional requirement is translated into one or 
more corresponding RBTs. Altogether, we assembled twelve 
functional requirements and an RBT was developed for each. 
As an example we have listed the fifth requirement below: 

 
Requirement 5, Policy selection in ESS: The STA initiating 

an association shall insert an RSN IE into its (Re) Association 
Request whenever the targeted AP indicates RSN support. The 
initiating STA's RSN IE shall include one authentication and 
pairwise cipher suite from among those advertised by the 
targeted AP in its Beacons and Probe Responses. It shall also 
specify a group key cipher suite specified by the targeted AP. 
If the RSN capable AP receives a (Re) Association request 
including an RSN IE, and if it chooses to accept the 
association, the AP shall, to secure this association use the 
authentication and pairwise cipher suites specified in the RSN 
IE sent by the STA. The AP shall then include the selected 
suites Association response to the STA. Once both AP and 
STA agree on a common security policy they are said to be at 
the CONNECTING state. 

 
Fig. 3 shows the RBT for this requirement. The shaded 

boxes (colors used in real) in the tree denote assumed or 
missing requirements. In a similar fashion RBTs are created 
for all of the twelve requirements extracted from clause 8 of 
the standard. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. RBT for Requirement 5 
 
During the development of the RBTs we encountered 

several incompleteness and uncertainties in requirements. We 
used appropriate domain expertise to resolve these 
ambiguities. Table 1 below lists the ambiguities and the 
relevant decisions taken by us. 
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Figue 4. Supplicant/Authenticator Component Behavior Projection 

 
Having developed all the RBTs, we systematically and 

incrementally integrated the twelve RBTs to construct the 
design behavior tree (DBT) that satisfies all its requirements. 
During the integration process several integration issues were 
identified. These integration issues, which are mostly due to 
inconsistencies in pre and post conditions, were again 
resolved using appropriate domain expertise. A complete 
record of the modeling technique and the various models 
derived from the requirements can be found in [24]. 

  

A. Component behavior projection 
Component projection models for the supplicant and the 

authenticator are derived by systematic inspection of the DBT. 
We did this by simply ignoring the component-states of all 
components other than the one we are currently projecting. 
The resulting connected behavior tree for a particular 
component defines the behavior of the component that we will 
need to implement and encapsulate in the final component-
based implementation. The projected component behavior for 
the supplicant and the authenticator are shown in Fig. 4.  

 
In the component projection models, both the STA and the 

AP are initially at the DISCONNECTED state, which means 
that the control port is at unauthorized state. From this state 
the STA begins the dot11 association by sending a ProbeReq 
signal. This dot11 association state of the STA is indicated as 
dot11 ASSOCIATION in the STA projection model. In case if 
the STA is unable to establish common security parameters 
with the AP, the STA will decline connection reverting to the 
DISCONNETED state. Once dot11 association is completed 
both the STA and the AP transfer to the CONNECTING state 
enabling the port filters.  

 
Next the dot1x authentication begins. During this process 

both the AP and the STA first transit to AUTHENTICATING 
state followed by AUTHENTICATED as discussed in the 

earlier section. However, at any instance if the supplicant is 
unable to establish its identity the authenticator declines 
connection with the STA, thereby pushing the STA to the 
DISCONNECTED state.  

 
When dot1x authentication process successfully completes, 

both STA and the AP share a common pairwise master key 
(PMK) and reach AUTHENTICATED state. This state 
initiates the 4-way handshake. During the 4-way handshake 
both the pairwise transient keys (PTK) and the groupwise 
transient keys (GTK) are installed on both the STA and the 
AP. At this point both the AP and the STA become RSN-
ASSOCIATED and the controlled port reach the authorized 
state allowing normal data traffic. During the 4-way 
handshake if the STA or the AP does not disclose the correct 
RSN capabilities as advertised in the dot11 association 
process, the STA will DISCONNECT from the AP and vice-
versa. 

  
The projection models of GSE are comparable to the 

supplicant and authenticator PAE state machines presented in 
the 802.11 standards. Unlike the state machines which are 
created by deduction, the projection models are derived in a 
systematic manner from the requirements. Although the 
projection models do not show state transition details as in the 
state machines, such information can be obtained from the 
DBT with the requirement tracking numbers present in the BT 
models. 

 
The projection models derived show the normal behavior of 

the STA and the AP. Accordingly, both STA and the AP have 
definite state changes with reversions permitted to 
DISCONNECTED states only. This normal behavior of our 
model does not permit state transitions from one intermediate 
state to another. Tracking this behavior in the software 
implementations of the STA and the AP can be a useful 
exercise for anomaly detection and intrusion prevention. 
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VI. MODEL CHECKING 
First, we used a special toolset [25] developed by the ARC 

Center for Complex Systems to automatically translate the BT 
model into formal notations like Communicating Sequential 
Processes CSP [26] and SAL.  The static analysis of the 
translated specification is possible using different analysis 
tools available for CSP and SAL.  In this study we have 
translated the integrated model for security policy selection, 
authentication and key distribution into SAL specification. 

 
SAL is an integrated environment of static analysis tools 

that includes tools for model checking and theorem proving.  
In the SAL environment the systems are specified using a 
description language for state transition.  The system 
properties of interest are calculated in SAL based on the 
system expressed as a transition system in this description 
language.  In the SAL environment a number of tools provide 
support for abstraction, program analysis, theorem proving, 
and model checking. A detailed description of the translation 
of BT to SAL specification is beyond the scope of this paper 
but only a brief overview has been provided here.  In BT 
models concurrent systems are expressed as state transitions, 
hence, the translation rules for a subset of BT notation is 
relatively straight forward.  A wider coverage of translation of 
BT notation is part of the ongoing research work at the ARC 
Center for Complex Systems [27]. 

 
The BT is represented in a single SAL transition system 

module.  The components and their states are declared as state 
types in the module.  The BT events that are marked with 
INPUT tags are translated as input variables.  A set of special 
variables called pc1.. pcN (program counters) is used to keep 
track of concurrent state transitions in the tree.  An atomic 
action can be either manually specified or automatically 
generated from a set of BT state transitions between two 
external (observable) events. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Translation of BT into SAL specification 

 
In the BT segment shown in Fig. 5, the state transition from 

the root node (AP [Disconnected]) until the node right 
before the event (AP ??ProbeRequest[Receive] ??) 
is considered as one action which is guarded by the initial 
value of the program counter.  The SAL translation generated 
by the translator for the above BT segment is shown below: 

 
INITIALIZATION 
pc1=1 
TRANSITION 
[] 
A1: pc1=1 
    -->aP'=apDisconnected; 
       sTA'=staDisconnected; 
       pTK'=notDone; 
       port_Data'=pdValid; 
       sTA_ProbeRequest'=pbSend; 
       pc1'=2; 
[] 
A2: pc1=2 AND aP_ProbeRequestpbRecieve 
    -->aP_ProbeRequest'=pbProcess; 
       aP_SSID'=idSend; 
       pc1'=3; 
[]… 
 
In the above SAL specification the program counter (pc1) 

has been initialized to 1.  This program counter serves as a 
guard for the first action A1, which starts at the root of the tree 
and includes states until the node just before the first event. 
The new states of the state variables in the SAL code directly 
correspond to the first segment of the BT shown in Figure 5.  
The action A1 also increments the program counter pc1 to 2 to 
indicate the process control can now move to the next possible 
action.  The second action, A2, is guarded by the incremented 
value of program counter (pc = 2) and the input variable 
aP_ProbeRequestpbRecieve. This input variable 
corresponds to the first event in the BT example illustrated in 
Figure 5. If the conditions for the second action (A2) are 
satisfied, then the set of state transitions occur which 
correspond to the BT state transitions shown after the first 
event in Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Translation of BT with multiple paths 
 
In the next example we show how BT with multiple paths 

8.4.1 AP
[Disconnected]

8.4.1 PTK
[Not Done]

8.4.1 Port
[Data [Valid]]

8.4.1 STA
[Disconnected]

8.4.1 STA
< Probe Request [Send] >

8.4.1
INPUT

AP
?? Probe Request

[Receive] ??

8.4.1 AP
[Probe Request [Process]]

8.4.1 AP
< SSID [Send] >

8.4.1
INPUT

STA
?? SSID [Receive] ??

Action: A1
Program Counter: pc1=1

Input Variable: aP__ProbeRequestpbRecieve

Action: A2
Program Counter: pc1=2

8.4.2
INPUT

STA
?? SSID [Receive] ??

8.4.2 STA
? SSID [Invalid] ?

8.4.2 STA
< Decline [Send] >

Input variable: sTA__SSIDidRecieve
pc1=3

8.4.2 STA
? SSID [Valid] ?

8.4.3 STA
? Fields [Overlap] ? 8.4.3 STA

? Fields [Not Overlap] ?

8.4.3 STA
< Decline [Send] >

8.4.3 STA
[Disconnected]

8.4.2 STA
[Disconnected] 8.4.3 STA

< Dot11 Request [Send] >

Action: A4

Action: A5

Action: A3
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as shown in Fig. 6 is translated into SAL code.  In this 
example, the set of transitions in action A3 is guarded by input 
variable sTA_SSIDidRecieve and pc1 = 3 along with the 
condition sTA_SSID=idInvalid.  If these conditions are true 
then the set of state transitions indicated in action A3 will be 
performed.  The other two actions (A4 and A5) are also 
possible if and when the event happens.  Both of these actions 
are guarded by a set of conditions i.e. pc1=3, 
sTA_SSIDidRecieve, sTA_SSID= idValid, 
sTA_Fields=Overlap and pc1=3, sTA_SSIDidRecieve, 
sTA_SSID=idValid, sTA_Fields= notOverlap, respectively.  It 
may be noted that the program counter has been set to 3 
before the process flow can continue down any of the paths 
(A3, A4 or A5) in the BT.  This indicates that, at this point in 
the BT the process flow control can go to any branch that 
fulfills the conditions imposed on it. The SAL code for the 
example is shown below: 

 
…[] 
A3: pc1=3 AND sTA_SSIDidRecieve AND  
sTA_SSID=idInvalid 
              -->sTA_SSID'=idRecieve; 
                 sTA_Decline'=dSend; 
                 sTA'=staDisconnected; 
                 pc1'=6; 
[] 
A4: pc1=3 AND sTA_SSIDidRecieve AND  
sTA_SSID=idvalid AND sTA_Fields=overlap 
              -->sTA_SSID'=idRecieve; 
                 sTA_dot11Request'=d11Send; 
                 pc1'=7; 
[] 
A5: pc1=3 AND sTA_SSIDidRecieve AND  
sTA_SSID=idInvalid AND sTA_Fields=notOverlap 
              -->sTA_SSID'=idRecieve; 
                 sTA_Decline'=dSend; 
                 sTA'=staDisconnected; 
                 pc1'=8; 
[]… 
 
Once the system has been specified in the SAL environment 

language, a number of analyses can be performed [28] on the 
system specification.  The SAL environment contains a 
symbolic model checker called sal-smc. It allows users to 
specify properties in linear temporal logic (LTL) and 
computation tree logic (CTL). However, the current version of 
SAL does not provide counterexamples for CTL properties. 
When users provide an invalid property in LTL, a counter 
example is produced. LTL formulas state properties about 
each linear path induced by a module (transition system). 
Typical LTL operators are: 

 
• G (p) (read “always p”), stating p is always true 
• F (p) (read “eventually p”), stating that p will be 

eventually true 
• U (p, q) (read “p until q”), stating that p holds until a 

state is reached where q holds 
• X (p) (read “next p”), stating that p is true in the next 

state 
 

For example, the formula G (p => F (q)) states that 
whenever p holds, q will eventually hold. The formula G (F 
(p)) states that p holds infinitely often. In the following section 
we describe how these properties are used to model check the 
IEEE 802.11i security protocol, using the sal-smc. 
  

VII. ANALYSIS 
Having generated the SAL code for the IEEE 802.11i 

security protocol we developed a number of theorems to 
formally verify the model. Firstly, we verified all the 
assumptions made by us during the modeling process to 
resolve ambiguities and/or inconsistencies. Table 1 shows all 
such issues and the corresponding LTL theorems used to 
verify. The GSE modeling technique compels all ambiguities 
and inconsistencies to be resolved during the requirements 
translation and integration. The component behavior 
projection models shown in Fig. 4 demonstrate the normal 
behavior of our security model. Accordingly, both STA and 
AP are expected to transit states simultaneously as defined by 
the following LTL formulas.   

 
G ((sTA = staConnecting) => (aP = apConnecting)) 
G ((sTA = staAuthenticating) => (aP = apAuthenticating)) 
G ((sTA = staAuthenticated) => (aP = apAuthenticated)) 
G ((aP = rsnAssociated) => (sTA = rsnAssociated))  
 
All of the above four LTL theorems were proved 

confirming the normal behavior as per our component 
behavior projection. The normal behavior of the STA and AP 
was further verified with the following LTLs.  

 
U ((sTA = staConnecting), ((sTA = staDisconnected)  
 OR (sTA = staAuthenticating)) 
U ((sTA = staAuthenticating), ((sTA = staDisconnected)) 
 OR (sTA = staAuthenticated)) 
U ((sTA = staAuthenticated), (sTA = staDisconnected)) 
 OR (sTA = rsnAssociated)) 
 
The above LTL theorems were also proved confirming our 

aim that the participating components are disconnected from 
every intermediate state if they do not transit to the next state. 
We have made these state transitions mandatory in our models 
to protect our system from possible security threats which can 
arise from exploiting the unsynchronized behavior of the STA 
and AP.  
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Table 1. Theorems Proved to Resolve Ambiguities 
 

Once the model was verified for normal behavior, we then 
verified the consistency of the security association process. 
Clauses 8.4.2 and 8.4.3 of the standard describe the security 
policy selection process in the WLAN. To begin with, an AP 
returns the SSID in response to a probe request from the STA. 
An STA has to decline associating with the AP if it receives 
an invalid SSID. The following LTL theorem was established 
to test this condition. The sTA_SSID is a sub state in our BT 
model and is reached once the SSID is received from the AP. 

 
G ((sTA_SSID = idInvalid) => F (sTA = staDisconnected)) 
 
The above LTL formula was proved to confirm that an STA 

eventually disconnects itself, if it receives an invalid SSID. 
However, if the STA receives a valid SSID it then validates 
the RSN capabilities advertised by the AP. If the AP is not 
RSN capable or does not match the capabilities of the STA, 
the STA disconnects itself maintaining strict RSN policy. In 
the following theorem we check for the validity of 
authentication and cipher suites. 

 
G ((aP_Rsn = inCapable) OR (aP_Cipher = inValid)  
 OR (aP_Auth = inValid)) => F (sTA = staDisconnected)) 
 
The above LTL formula was proved confirming the 

behavior of the STA when it receives invalid RSN suites. On 
the other hand, when the STA advertises its capabilities the 
AP also performs similar validation. Once both STA and AP 
agree on the common security policy they both transit to 
CONNECTING state and continue with the authentication 
process.  

 
In our BT model we introduced a component named 

control__Port to indicate the controlled port between the AP 
and the STA. This component was initialized to 
pUnauthorized state to indicate the unsecured state of the port. 
During IEEE 802.1X authentication and key distribution 
process this port continues to remains unauthorized. Finally, 
only when the PTK is installed on both the AP and the STA it 
transits to the authorized state - pAuthorized enabling normal 
data traffic. Having this in mind, we used the following LTL 
formula to examine that the control port remains unauthorized 
during the authentication and the 4-way key handshake 

process.  
 
G ((control__Port = pUnauthorized) => 
 ((sTA = staConnecting) 
 OR (sTA = staAuthenticating)  
 OR (sTA = staAuthenticated) 
 OR (sTA = 4wayHandshake))) 
 
This formula was proved confirming the notion that the 

control port remains unauthorized throughout the 
authentication and key distribution process. Finally, we tested 
the authorized state of the control port with the following LTL 
theorem. 

 
G ((control__Port = pAuthorized) => 
 ((aP = apptkInstalled)  AND (sTA = staptkInstalled))) 
 
The above LTL theorem was proved to confirm the 

authorized state of the control port implying PTK is installed 
on both AP and STA. All of the above analysis was done to 
verify the normal behavior of our model during the security 
association process. However, one must keep in mind that 
during this process the participating hosts will demonstrate 
their normal behavior if both communicating hosts operate in 
a synchronized manner. If we cannot guarantee the 
synchronized operation of the hosts the security of the 
participating hosts become dubious as discussed below.  

 

A. Security Issues 
As highlighted in Clause 8.4.1 permitting APs to advertise 

their SSIDs can lead to malicious associations. Furthermore, 
as shown in Fig. 4, during the dot11 association both 
supplicant and the authenticator operate independently 
without any form of software synchronization. Therefore, in a 
situation where the supplicant or the authenticator is allowed 
to make presumptions about the characteristics of other 
participating components can lead to malicious associations or 
Identity-Theft [29]. In case of a re-association request by a 
roaming STA, we first transit the STA into DISCONNECTED 
state before it is made to associate with the new AP. This 
makes the RSN more reliable so that session-hijack attacks 
[30] can be avoided. In our model the following LTL formula 

IEEE Clause Req. No. Defect Description LTL Formulas

8.4.1 1 Missing Initial State of an AP assumed DISCONNECTED INITIALIZATION

1 Uncertain Post-condition if an AP does not advertise a valid SSID not clear G ((sTA_SSID = idInvalid) => F (sTA = staDisconnected))

8.4.2 3 Missing Initial state of a STA assumed DISCONNECTED INITIALIZATION

3 Missing Post-condition if STA not RSN capable assumed DISCONNECTED G ((sTA_RSN = rsnIncapable) => F (sTA = staDisconnected))
3 Missing Post-condition of cipher suites mismatch assumed DISCONNECTED in ESS G ((sTA_Fields = notOverlap) => F (sTA = staDisconnected))

3 Missing STA intermediate state assumed CONNECTING (ref. dot1x) Please see examples given in the text

4 Uncertain STA is able to decapsulate a message but sees invalid SSID G ((sTA_SSID = idInvalid) => F (sTA = staDisconnected))

8.4.3 5 Missing Post-condition of RSN-IE mismatch assumed DISCONNECTED in ESS G ((sTA_Fields = notOverlap) => F (sTA = staDisconnected))
5 Missing Post-condition of dot11 association failure assumed DISCONNECTED G ((sTA_dot11 = dot11Reject) => F (sTA = staDisconnected))

8.4.5 7 Missing Post-condition if dot1x Auth not supported assumed DISCONNECTED G ((sTA_dot1x = notSupport) => F (sTA = staDisconnected))

8.4.6 8 Assumed STA at ACQUIRED state when EapolReq/Identity received (ref. dot1x) G ((sTA_Eapol = reqidReceive) => F (sTA = staAcquired))

8 Assumed AP at AUTHENTICATING state once EapolResp/Identity received (ref. dot1x) G ((aP_Eapol = residReceive) => F (aP = apAuthenticating))
8 Assumed STA at AUTHENTICATING state once EapolAcc/Challenge received (ref. dot1x) G ((sTA_Eapol = accchReceive) => F (sTA = staAuthenticating ))

8 Missing Post-condition when AS rejects STA identity assumed DISCONNECTED G ((AS_AccChallenge = stachReject) => (sTA = Disconnected))

8 Assumed STA at AUTHENTICATED state once EapolSuccess received (ref. dot1x) G ((sTA_Eapol = succReceive) => F (sTA = staAuthenticated))

8.4.8 10 Missing Pre-condition for 4-way key exchange assumed AUTHENTICATED Please see examples given in the text
10 Missing Post-condition after the GwK's are installed assumed RSNA Please see examples given in the text
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was proved to be false endorsing our decision: 
 
U ((sTA = rsnAssociated), ((sTA = staDisconnected)  
 OR (sTA = staAuthenticating)) 
 
Although this is a possible state transition in an RSN, we 

have deliberately DISCONNECTED the STA to make the 
RSN more reliable, i.e. an attacker cannot pretend as an 
Authenticating STA. Further, in Clause 8.4.2, we force the 
STA to DISCONNECT from the AP if it is not RSN capable. 
Similarly an AP DISCONNECTs itself if it sees an STA that 
is RSN incapable.  

 
G ((aP_Rsn = inCapable) => F (sTA = staDisconnected)) 
G ((sTA_Rsn = inCapable) => F (aP = apDisconnected)) 
 
In Clause 8.4.3 both STA and AP disassociate with each 

other if they don’t mutually agree on a common security 
policy. In Fig. 8, we have illustrated a malicious association 
scenario making use of this condition. The BT model shows 
an intruder, InAP (shaded boxes), reading messages from a 
legitimate AP and appropriately issuing an Association 
Request to the legitimate AP with a wrong RSN IE (as if it is 
sent by the associating STA). The legitimate AP disassociates 
itself assuming the STA is not RSN capable. In the mean time 
the intruder pretends as the legitimate AP and associates with 
the mistaken STA.  

 
G (inAP_dot11Request=d11Send) = > 
 (sTA_Rsn = inCapable) AND (aP = apDisconnected)) 
 
If this type of malicious association takes place the intruder 

can simply walkthrough the legitimate STA via the entire 
process of authentication and key distribution acquiring all the 
necessary security information and characteristics of the 
legitimate STA. This type of an association cannot be stopped 
by software means and requires some form of synchronization 
at lower layers of communication.   

 
Let us now focus on the authentication process. As shown 

in Fig. 9 this process is initiated by the STA issuing the 
EapStart message. The STA eventually communicates with 
the Authentication Server (AS) via a secure channel to 
validate its credentials. As said in Clause 8.4.6, if the AS does 
not recognize the challenge sent by the STA, the STA has to 
eventually reach the disconnected state as proved by the 
following LTL formula. 

 
G ((aS_AccChallenge = stachReject)  
 => F (sTA = staDisconnected)) 
 
This situation also implies that STA and AP will never 

reach a state where the controlled port becomes authorized. 
The following LTL formula proves that the control port never 
reaches the authorized state if STA does not prove its identity.  
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?? < ProbeReq > ??
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AP #1
?? < SSID, RSN IE / > ??
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/ Pairwise Cipher Suite #
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Figure 8. Malicious Association 
    
 
G ((aS_AccChallenge = stachReject)  => 
 (control__Port = pUnauthorized)) 
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We use this condition to demonstrate another malicious 

association scenario in Fig. 9. The intruder having gained vital 
information about a legitimate STA during the dot11 
association, now wants to act as a legitimate STA, shown as 
InSTA (shaded boxes) in the BT model. The intruder keeps 
monitoring the messages exchanged during the authentication 
process. The intruder tracks all messages and just before the 
AP is ready to authenticate the STA (by sending EapSuccess 
message), it disassociates the STA by sending an EapFailure 
message as if sent from the legitimate AP. The intruder then 
associates with the AP receiving the EapSuccess message.  

 
G ((InSTA_Eap = instaFailure)  => 
 F (sTA = staDisconnected)) 
 
G ((ap_Eap = apSuccess)  
 => F (InsTA = instaAuthenticated)) 
 As such, if the intruder successfully associates he will now 

be in possession of the primary master key (PMK), thereby 
enabling him to continue the association process and 
becoming RSN associated. Thus, the intruder has penetrated 
the organizational network. Although, this sought of an 
association is difficult with the use of digital certificates or 
smart card like authentication options, the chances of poorly 
configured users associating with a wireless AP are high. 
Unless, every user is educated on the consequences of security 
breaches and are adequately trained to protect their own 
environments, the attackers will find these loopholes to gain 
access to the organizational networks. 

 
According to Clause 8.4.6, the control port remains 

unauthorized during and after the Authentication process. 
However, the STA reaches the Authenticated state once PMK 
is received by both AP and the STA or if the shared key is 
installed. 

 
G ((sTA = staAuthenticated) =>  
 (((STA_PMK = stapmkInstalled) 
 AND (AP_PMK = appmkInstalled)) 
 OR (PMK = PSK)) 
 
When both STA and the AP reach the Authenticated state 

the AP begins the 4-way key handshake by sending the first 
message of the handshake process. 

 
The purposes of the 4-way handshake are: 
 

• Confirm the existence of the PMK. The second 
message transfer occurs only if the PMKIDs of STA 
and AP match each other. 

 
   G ((sTA_Key2 = K2Send) => 
    (STA_PMKID = AP_PMKID)) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Malicious Association during Authentication 
•  Ensure that security association keys are fresh. If 

both STA and AP derive the transient keys they will 
eventually transit to RSN Associated state. 
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   G ((sTA_PTK = staptkDerive) => 
    F (sTA = staRsnAssociated))  
   G (((aP_PTK = apptkDerive)) => 
    F (aP = apRsnAssociated)) 
 

• Synchronize the installation of temporal keys. For 
both STA and AP to reach RSN Associated state 
transient keys must be installed.    

 

   G (((aP = apRsnAssociated) AND 
    (sTA = staRsnAssociated)) => 
    ((aP_PTK = apptkInstall) AND 
    (sTA_PTK = staptkInstall))) 
 
Other than the session hijack issue discussed earlier, the 

IEEE 802.11i security mechanism has another weak point in 
the key distribution process. In the earlier case we described 
how the intruder could gain access to the PMK. Now, having 
gained access to the PMK, we show in Fig. 10 how the 
intruder can perform a session hijack. During the second and 
third message exchanges both the STA and AP validate the 
RSN IEs. They both compare the RSN IEs advertised during 
the dot11 association with that of the RSN IEs transferred 
during the second and third messages. If the RSN IEs do not 
match they disassociate. Therefore, an intruder monitoring the 
key exchanges can deliberately disassociate an STA by 
issuing a third message with an invalid RSN IE as if it is sent 
by the AP. Having disconnected the legitimate STA, the 
intruder will now receive the correct third message from the 
AP, installs the PTK and become RSN associated. As such, 
the intruder is now in full control of the wireless network. 

 
However, one could argue that the above security issues are 

insignificant and with the strong authentication and key 
distribution mechanisms proposed in IEEE 802.11i, they are 
annulled. Yet, the point is that intruders one way or another 
make use of such loopholes to gain some knowledge of the 
participating hosts and eventually succeed in penetrating the 
network. Therefore, it is our responsibility to take utmost 
precaution in every perspective to protect the WLAN. 
 

The above discussion shows the importance of a complete 
and a consistent set of requirements together with a proven 
analysis technique. Issues in requirements can lead to defects 
in the final system. In this case such defects can lead to 
significant wireless attacks that could endanger an entire 
organization. However, merely conducting a rigorous analysis 
is not ultimate. It is also necessary to ensure that issues 
resolved during the analysis are effective and pertinent. The 
GSE technique together with formal verification is effective 
not only for requirements analysis and validation; but it also 
provides a systematic approach to integrate the system 
ensuring that all parts of the system corporate and coordinate 
correctly with good traceability. The formal nature of the 
Behavior Tree notation used within GSE requires all 

ambiguities, incompleteness and inconsistencies are resolved 
at the time of integration.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Session Hijack during Key Distribution 
 
 
 
 
 

VII. CONCLUSION 
 
From our use of the GSE methodology for modeling the 
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[ RSN ASSOCIATED ]

I3 InSTA #1
[ RSN ASSOCIATED ]

I3 InSTA #1
[ [Install] PTK, GTK ]

(10)
8.4.8

-
STA #1

[ AUTHENTICATED ]

(10)
8.4.8

AP #1
[ [Validate] RSN IE #s2 ]

(10)
8.4.8

AP #1
? RSN IE #s1 = RSN IE #s2 ?

(10)
8.4.8

AP #1
? NOT: RSN IE #s1

= RSN IE #s2 ?

(8)
8.4.6

-
AP #1 ^

[ DISCONNECTED ]

I3 InSTA #1
[ [Analyse] RSN IE #a2]

(10)
8.4.8

-
AP #1

[ AUTHENTICATED ]

I3 InSTA #1
> EapolKey #1 <

I3 InSTA #1
> EapolKey #2 <

(10)
8.4.8

STA #1
?? > EapolKey #3 < ??

(10)
8.4.8

STA #1
[ [Validate] RSN IE #a2]

(10)
8.4.8

STA #1
? NOT: RSN IE #a1

= RSN IE #a2 ?

(8)
8.4.6

-
STA #1 ^

[ DISCONNECTED ]

I3 InSTA #1
< EapolKeys #4 / >

/ key_info
/ MIC

(10)
8.4.8

AP #1
< EapolKey #1 / >

/ key_info

/ Anonce

/ PMKID

(10)
8.4.8 STA #1

< EapolKey #2 / >
/ key_info
/ Snonce
/ MIC
/ RSN IE #s2

(10)
8.4.8

AP #1
< EapolKey #3 / >

/ key_info

/ Anonce

/ MIC

/ RSN IE #a2

I3 InSTA #1
< EapolKey #3 / >

/ key_info
/ Anonce
/ MIC
/ RSN IE #a2
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security protocol we have found it to be a promising tool to 
express the behavior of the system. It definitely helps in 
getting the system complete and consistent. The systematic 
approach enables designers to resolve ambiguities early with 
reliability. Since requirements translation and integration 
enables issues to be resolved early the resulting model is 
guaranteed complete and consistent. With our wide experience 
in applying this methodology to model communication 
protocols we are confident that this technique is capable of 
handling such applications and provides designers an 
opportunity to develop cohesive and reliable systems with 
good tracebility and control over complexity. 

 
The systematic analysis performed in this study using the 

GSE methodology identified a number of ambiguities and 
defects in specifications. Many of the identified 
incompleteness issues and ambiguities in the standard’s 
requirements arise from semi-tacit and tacit knowledge not 
being specified. This enabled us to acquire considerable 
domain knowledge to analyze, design and implement a 
complete and consistent security model. The formal 
verification carried out using LTL formulas has proved that 
GSE models developed are robust and consistent.  

 
However, there were significant gaps in the verification 

process mainly due to the limitations of SAL translation. The 
symbolic code generated by SAL is generic and does not meet 
the requirements of a communication/security protocol. SAL 
does not provide support symbolic analysis of authentication 
and key distribution mechanisms. Therefore, we are now 
focusing on translating the BT models into protocol specific 
symbolic code which will enable us to verify security 
protocols more completely. 
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