
278

1

Abstract — As wireless LAN (WLAN) deployments increase,

so does the challenge to provide these networks with adequate
security. Business organizations, educational institutions and
government co-operations are becoming more and more
concerned about their e-security. The need for reliable and
robust security mechanisms for WLANs is increasing. The latest
WLAN security protocol IEEE 802.11i guarantees robust
security with improved authentication, authorization and key
distribution mechanisms. However, though the newest security
protocol assures dependable communication sessions, the
credibility of the three connection phases; security policy
selection, authentication and key distribution needs further
investigation. The loosely coupled state machines of the
participating components can pave the way to security breaches.
In this study we have investigated the integrity of these three
phases. The analysis is carried out in two stages. Initially, the
three phases are modeled using Genetic Software Engineering
(GSE) methodology and then formally verified with Symbolic
Analysis Laboratory (SAL) tools. We established several Linear
Temporal Logic (LTL) formulas to model check our models. We
have also examined and analyzed possible security threats due to
various issues arising from software implementations and
intruder behaviors.

Index Terms — Wireless LAN Security, Formal Methods,
Model Checking, Behavior Trees, IEEE 802.11i, Genetic
Software Engineering (GSE).

I. INTRODUCTION

WLANs have gained vast popularity over the last couple of
years due to its ease of use. Unlike the wired network the
wireless networks provides connection from any where
without the need for a direct physical connection. This
flexibility attracts many mobile users to opt for wireless
connectivity. In contrast, this very nature of the wireless
communication has also enabled easy means of breaking into
organizational networks through a range of gaps in wireless

Manuscript received May 6, 2005. This work was supported in part by the
Institute for Integrated and Intelligent Systems, Griffith University, Australia.

Elankayer Sithirasenan is with the Institute for Integrated and Intelligent
Systems, Griffith University, Brisbane, Australia (phone: +61-7-387-56603; e-
mail: Elankayer.Sithirasenan@student.griffith.edu. au).

Saad Zafar is with Software Quality Institute, Griffith University, Brisbane,
Australia. (phone: +61-7-387-56603; e-mail: Saad.Zafar@
student.griffith.edu.au).

Vallipuram Muthukkumarasamy is with the School of Information and
Communication Technology, Faculty of Engineering, Griffith University,
Gold Coast, Australia (phone: +61-7-555-28256; e-mail: v.muthu@
griffith.edu.au).

connectivity.

The first wireless security solution for 802.11 based

networks, the Wireless Equivalency Protocol (WEP), received
a great deal of coverage due to various technical failures in the
protocol [1]. Standard bodies and industry organizations are
spending enormous amount of time and money in developing
and deploying next-generation solutions that address growing
wireless network security problems. The IEEE 802.11i
standard [2] provides much-improved authentication,
authorization, and encryption capabilities. The Wi-Fi
Protected Access (WPA) standard [3], a subset of the 802.11i,
created by the Wi-Fi Alliance, addresses the weaknesses of
802.11 data privacy by incorporating Temporal Key Integrity
Protocol (TKIP), a much stronger implementation of the RC4
encryption algorithm, plus a sophisticated keying system that
ties together the data privacy and authentication functions.
IEEE 802.1X [4] was introduced to specifically address the
authentication functions in the network environment. The
IEEE 802.1X standard enhances the security capabilities of
the IEEE 802.11i standard with its powerful authentication,
authorization and key management functions.

The strong security mechanisms introduced by the standard

bodies and other organizations must be correctly interpreted
and comprehend by Software Engineers for proper
implementation. A naïve implementation of security protocols
can lead to the similar security breaches as in the case of
technical flaws. As such, the primary aim of this study is to
build a complete and consistent software model for the IEEE
802.11i security protocol. This is achieved by first identifying
the requirements of the security protocol and then modeling it
using the GSE methodology [5]. Once the system is modeled
it is then formally verified using the SAL [6] model checker.
Thereafter, we modeled and verified a possible intruder
behavior in the WLAN environment. In this paper, we have
presented a complete and consistent model for the IEEE
802.11i security protocol highlighting the possible security
loopholes. We have also suggested feasible improvements to
the model to address the security issues discussed in the IEEE
802.11i standard. The results presented give sufficient
information for Software Engineers to implement the security
protocol more rigidly. To the best of our knowledge this is the
first ever analysis to be reported on the security association
process proposed in IEEE 802.11i. Furthermore, the process
used in the analysis is also innovative.

Analysis of IEEE 802.11i WLAN
Security Protocol

Elankayer Sithirasenan, Saad Zafar, and Vallipuram Muthukkumarasamy, Member, IEEE

278

2

We present related work in Section II and our intuition in

Section III. An overview of the IEEE 802.11i protocol is
presented in Section IV. The modeling and model checking
details are explained in Section IV and V. The analysis is
presented in Section VI and Section VII concludes the paper.

II. RELATED WORK
The basic idea of analysing network and communication

protocols is quite old, dating back to at least 1978 [7][8]. In
recent decades, model checking has made significant progress
in tackling the verification of complex, concurrent systems
[9]. Tools such as SMV [10], SPIN [11], and Murphi [12]
have been used to verify hardware and software protocols by
exhaustively searching the state space. The drawback of
traditional model checkers is that the system to be verified
must be modeled in a particular description language,
requiring a significant amount of manual effort that can easily
be error prone.

Some formal verification tools have used the idea of

executing and checking systems at the implementation level.
Verisoft [13], for example, systematically executes and
verifies actual code and has been used to successfully check
communication protocols written in C. However, Verisoft
does not store states and therefore, can potentially explore a
state more than once. This problem is alleviated to some
degree by partial order reduction, a sound state space
reduction technique implemented in Verisoft that eliminates
the exploration of redundant interleaving of transitions created
by commutative operations. Nevertheless, this technique
requires hints to be provided by the user and/or some static
analysis of the code to determine dependencies between
transitions.

Tools such as ESC [14], LCLint [15], and the MC Checker

[16] have been used to check source code for errors that can
be statically detected with minimal manual effort. Splint [17]
reports a warning for any code path that fails to satisfy the
storage-release obligation, because it causes a memory leak.
Although memory leaks do not typically constitute a direct
security threat, attackers can exploit them to increase a denial-
of-service attack’s effectiveness. Both stack and heap-based
buffer overflow vulnerabilities are detected by Splint. The
simplest detection techniques just identify calls to often
misused functions; more precise techniques depend on
function descriptions and program-value analysis.

The ESP [18] language uses processes to implicitly express

state machines. These processes use channels to communicate
with each other. In addition, ESP has a number of language
features that simplify the task of writing device firmware. The
ESP compiler can automatically extract models that can be
used by a model checker to extensively test the program. ESP

uses the SPIN model checker to verify correctness of software
systems. It systematically explores the state space of the
system and checks for violations of the specified property.
The Spin models generated by the ESP compiler can be used
together with programmer-supplied SPIN code to verify
different properties of the system.

Gray and McLean propose encoding the entire protocol in

terms of temporal logic [19]. Much like symbolic model
checking, they describe the model by giving formulas that
express the possible relationships between variable values in
the current state and variable values in the next state. This
makes their framework more formal than the others, but much
more cumbersome as well. They provide a simple example
and prove a global variant for this example. The few sub cases
they consider are very straightforward but their technique
demands very long proofs even for the extremely simple
example they present. They argue that their technique could
be automated but provide no tools for their system.

Woo and Lam propose much more intuitive model for

authentication protocols [20]. Their model resembles
sequential programming with each participating principle
being modeled independently. There is an easy and obvious
translation from the common description of a protocol as a set
of messages to their model. Their models are also intuitive
because they consider all possible execution traces instead of
considering just the set of words obtainable by the intruder.
They are concerned with checking of what they call secrecy
and correspondence properties. The secrecy property is
expressed as a set of words that the intruder is not allowed to
obtain. The correspondence properties can express things of
the form if principal A finishes a protocol run with principal
B, then principal B must have started the protocol run with A.
However, they do not provide a general logic in which to
formalize security properties, nor do they provide an
automated tool.

Dolev and Yao [21] proposed an approach to model

network protocols by defining a set of states and a set of
transitions that takes into account an intruder, the messages
communicated back and forth, and the information known by
each of the components. This state space is then traversed to
check if some particular state can be reached or if some state
trace can be generated. They developed an algorithm for
determining whether or not a protocol is secure in their model.
However, their model is extremely limited. They only
consider secrecy issues, and they model only encryption,
decryption, and adding, checking, or deleting a component
name.

Medow [22] used an extension of the Dolev-Yao model in

the PROLOG based model checker by giving a description of
an insecure state to perform the verification. The model
checker searches backwards in an attempt to find an initial
state. In PROLOG, this can be achieved by unifying the

278

3

current state against the right hand side of a rule and deducing
the state description for the previous state from the left hand
side. If the initial state is found, then the system is insecure,
otherwise an attempt is made to prove that that the insecure
state is unreachable by showing that any state that leads to this
particular state is also unreachable. This kind of trace can lead
to infinite search where for an intruder to learn word A, he
must learn word B, and in order to learn word B, he must
learn word C, and so on. For these reason formal languages
allows users to prove that no word in a set of words (or
language) can be generated by the intruder. However, this
PROLOG based model checker was still too limited,
particularly it did not allow modeling of freshly generated
nonces or session keys.

III. MOTIVATION
The motivation for our work comes from the paper titled “Is

this a Revolutionary Idea or not” [23] by Robert Glass. He has
encouraged researchers to explore the claims made by Geoff
Dromey - the inventor of GSE methodology who declares
“GSE methodology is admired for its simplicity, traceability,
ability to detect defects and its control of complexity”.
Dromey says that his methodology has been successfully used
to analyze very large systems such as satellite control systems,
air traffic control systems and like. Hence, as a novel attempt
we have used the GSE methodology to model and analyze
security protocols. Unlike the analysis techniques that are
specific to security protocols, our approach is different since
we first use the GSE methodology to model the security
protocol from its requirement, then convert it into symbolic
code and finally, verify it using temporal logic.

In GSE methodology each requirement is translated into its

corresponding behavior tree (BT), which describes the
behaviors that will result from that requirement. A BT is made
up of components (the software pieces), states (that those
components can take on), events and decisions/constraints
(that are associated with the components), data that the
components exchange, and the causal, logical, and temporal
dependencies (associated with component interactions). It is
the way these BTs are integrated that makes things different.
To integrate, the BTs are placed together like a jigsaw puzzle,
where clear points of intersection between the trees make the
puzzle pieces to fit together. Using this approach, the software
system is built “out of its requirements” rather than just
“satisfying its requirements.”

The whole point of this approach, Dromey says, is to master

the complexity that accompanies building a significant
software system. Complexity can be handled piecewise via
integrating the localized behavior trees, rather than as one big
global cognitively daunting task. This greatly reduces the
strain on our short-term memory.

A benefit of doing integration is that just as a picture
emerges when all the pieces of a jigsaw puzzle are put in their
correct places, a similar thing happens as the behavior trees of
functional requirements are integrated. Surprisingly, the
picture in this case is the integrated component architecture of
the system, along with the integrated behavior of each of the
components in the system. Dromey claims requirements
integration has the additional benefit of being a powerful way
to find defects in a system early - only when a requirement is
seen in the context where it is applied do we see its problems.

As a fringe benefit of this approach, Dromey claims, the

traceability of the original requirements into the as-built
software system becomes much easier. Even with the use of
commercially available tools, it is well known that
requirements traceability is a complex and barely manageable
task due to the “requirements explosion” caused when the
original requirements explode into the requirements for a
design to satisfy those requirements. (Some researchers have
found that explosion rate to be on the order of 50:1). With
Dromey’s approach, adding a new requirement is like adding
a new piece to a jigsaw puzzle that was originally incomplete.

It is a well accepted fact in software engineering that fixing
defects after the software has been implemented is costly both
in terms of time and money. And in case of security, this can
jeopardize an entire organization. The GSE methodology
proposes a systematic approach for deriving the system
implementation models from the requirements enabling
conceptual errors to be detected much earlier in the
development phase rather than waiting until the software is
implemented. Most, if not all conventional modeling
techniques are built by intuition to match the system
requirements which results in implementation models
representing the designers’ mental replica. The resulting
model will significantly depend on the designers experience
and expertise. Further, conventional methodologies have
several different approaches to describe the various aspects of
the system. For example the UML modeling technique has
almost nine different modeling tools to describe the various
functionalities of a system.

The main aim in applying the GSE methodology to model

and analyze the security protocol will be to reduce the amount
of work required to go from system modelling to systematic
verification. We presume that the analysis will not suffer from
too many false positives since every scenario checked will be
a valid execution path due to the inherent qualities of the BT
models. Unlike the methods that are currently available for
analysing communication protocols, this approach first
delivers a complete and consistent model emerging from its
requirements. Having derived a reliable model we analyse its
credibility on the various security aspects specific to the
wireless network environment. We presume that this novel
approach will reveal greater scope to analyse security
protocols compared to the existing techniques.

278

4

IV. THE 802.11I SECURITY PROTOCOL
The IEEE 802.11i standard defines two classes of security

framework for IEEE 802.11 WLANs: RSN and pre-RSN. A
station is called RSN-capable equipment if it is capable of
creating RSN associations (RSNA). Otherwise, it is a pre-
RSN equipment. The network that only allows RSNA with
RSN-capable equipments is called an RSN security
framework. The major difference between RSNA and pre-
RSNA is the 4-way handshake. If the 4-way handshake is not
included in the authentication/association procedures, stations
are said to use pre-RSNA. The RSN, in addition to enhancing
the security in pre-RSN defines a number of key management
procedures for IEEE 802.11 networks. It also enhances the
authentication and encryption mechanisms from the pre-RSN.
The enhanced features of RSN are as follows:

Authentication Enhancement: IEEE 802.11i utilizes IEEE

802.1X for its authentication and key management services.
The IEEE 802.1X incorporates two components namely, (a)
IEEE 802.1X Port and (b) Authentication Server (AS) into the
IEEE 802.11 architecture. The IEEE 802.1X port represents
the association between two peers as shown in Fig. 1. There is
a one-to-one mapping between IEEE 802.1X Port and
association.

Key Management and Establishment: Two ways to

support key distribution are introduced in IEEE 802.11i:
manual key management and automatic key management.
Manual key management requires the administrator to
manually configure the key. The automatic key management
is available only in RSNA. It relies on IEEE 802.1X to
support key management services. More specifically, the 4-
way handshake is used to establish each transient key for
packet transmission as in Fig. 2.

Encryption Enhancement: In order to enhance

confidentiality, two advanced cryptographic algorithms are
developed: Counter-Mode/CBC-MAC Protocol (CCMP) and
Temporal Key Integrity Protocol (TKIP). In RSN, CCMP is
mandatory. TKIP is optional and is recommended only to
patch any pre-RSN equipment.

Figure 1. IEEE 802.1X EAP Authentication

During the initial security association between a station

(STA) and an access point (AP), the STA selects an
authorized Extended Service Set (ESS) by selecting among
APs that advertise an appropriate Service Set ID (SSID). The
STA then uses IEEE 802.11 Open System authentication
followed by association to the chosen AP. Negotiation of
security parameters takes place during association. Next, the
AP’s Authenticator or the STA’s Supplicant initiates IEEE
802.1X authentication. The Extensible Authentication
Protocol (EAP) used by IEEE 802.1X will support mutual
authentication, as the STA needs assurance that the AP is a
legitimate Access Point.

Figure 2. Establishing pairwise & group keys [2]

The last step is the key management. The authentication
process creates cryptographic keys shared between the IEEE
802.1X AS and the STA. The AS transfers these keys to the
AP, and the AP and STA use one key confirmation
handshake, called the 4-Way Handshake, to complete security
association establishment. The key confirmation handshake
indicates when the link has been secured by the keys and is
ready to allow normal data traffic.

In the case of roaming, an STA requesting (re)association

followed by IEEE 802.1X or pre-shared key authentication,
the STA repeats the same actions as for an initial contact
association, but its Supplicant also deletes the PTK when it
roams from the old AP. The STA’s Supplicant also deletes the
PTKSA when it disassociates/deauthenticates from all basic
service set identifiers in the ESS. An STA already associated
with the ESS can request its IEEE 802.1X Supplicant to
authenticate with a new AP before associating to that new AP.
The normal operation of the DS via the old AP provides

AuthenticatorSupplicant AS

8021X EAP Request

8021X EAP Response
Access Request (EAP Request)

Accept (EAP Success)
Key Material

EAP Authentication
Protocol Exchange

8021X EAP Success

IEEE 802.1X
Control Port Blocked

for STA

AuthenticatorSupplicant

Message 1: EAPOL-Key (ANonce, Unicast)

IEEE 802.1X
Control Port Blocked

for STA

Key (PMK) is Known
Generate SNonce

Key (PMK) is Known
Generate ANonce

Derive PTK

Message 2: EAPOL-Key (SNonce, Unicast, MIC)

Derive PTK
if needed derive GTK

Message 3: EAPOL-Key (Install PTK, Unicast, MIC
Encrypted GTK))

Message 4: EAPOL-Key (Unicast, MIC)

Install PTK and GTK Install PTK

278

5

communication between the STA and the new AP.
In the next section the above-described RSN is modeled.

The complete modeling, from requirements analysis to the
final design models was carried out using the GSE techniques.

V. MODELING
Requirements translation is the first formal step in the GSE

design process. Its purpose is to translate each natural
language functional requirement, one at a time, into one or
more behavior trees. This translation identifies the
components (including actors and users), the states they
realize (including attribute assignments), the events and
decision/constraints that they are associated with, the data
exchange, and the casual, logical and temporal dependencies
associated with component interactions.

Following the translation and integration of the

requirements, we evolve the requirements representations into
design/architecture representations. The first phase of this
architectural process is the “Component Architecture
Transformation,” and the output of that phase is a
“Component Interaction Network.” The primary thing that
happens here is that components, which may be represented at
many points in the requirements representation, are isolated
out to appear only once in the solution representation. This
amounts to algorithmically transforming the integrated tree of
requirements into a network of components that interact (the
traditional conceptual view of a system). The final stage of
this process is the “Component Behavior Projection.” Here,
component behaviors are concentrated by separately
projecting each component’s behavior from the integrated
requirements tree. The result of this process is a skeleton
behavior tree for each component that will deliver the
behavior it needs to exhibit to function as an encapsulated
component in the component interaction network.

The IEEE 802.11i standard defines two classes of security

framework for IEEE 802.11 WLANs: RSN and pre-RSN
security frameworks. This study is mainly focused on the RSN
security framework since it is expected to drive the future of
distributed wireless networks. STAs in the RSN environment
can make contact with the ESS in one of two ways: initial
contact or Roaming. In case of roaming we are not concerned
of whether the STAs are navigating inter-subnet or intra-
subnet since the security policy in both cases will be the same.

Clauses 8.4.1 to 8.4.10 in the IEEE 802.11i standard

describe the steps involved in the RSN security association
life cycle. We have made use of these steps to develop the
requirements behavior trees (RBTs) for the RSN. Each
individual functional requirement is translated into one or
more corresponding RBTs. Altogether, we assembled twelve
functional requirements and an RBT was developed for each.
As an example we have listed the fifth requirement below:

Requirement 5, Policy selection in ESS: The STA initiating

an association shall insert an RSN IE into its (Re) Association
Request whenever the targeted AP indicates RSN support. The
initiating STA's RSN IE shall include one authentication and
pairwise cipher suite from among those advertised by the
targeted AP in its Beacons and Probe Responses. It shall also
specify a group key cipher suite specified by the targeted AP.
If the RSN capable AP receives a (Re) Association request
including an RSN IE, and if it chooses to accept the
association, the AP shall, to secure this association use the
authentication and pairwise cipher suites specified in the RSN
IE sent by the STA. The AP shall then include the selected
suites Association response to the STA. Once both AP and
STA agree on a common security policy they are said to be at
the CONNECTING state.

Fig. 3 shows the RBT for this requirement. The shaded

boxes (colors used in real) in the tree denote assumed or
missing requirements. In a similar fashion RBTs are created
for all of the twelve requirements extracted from clause 8 of
the standard.

Figure 3. RBT for Requirement 5

During the development of the RBTs we encountered

several incompleteness and uncertainties in requirements. We
used appropriate domain expertise to resolve these
ambiguities. Table 1 below lists the ambiguities and the
relevant decisions taken by us.

(5)
8.4.3

AP #1
> AsocReq + RSN IE #s1 / <

(5)
8.4.3

-
AP #1

? STA RSN Capable ?

(5)
8.4.3

-
AP #1

? NOT: RSN Capable ?

(5)
8.4.3

+
AP #1

[[Validate] RSN IE #s]

(5)
8.4.3

STA #1
< AsocReq + RSN IE #s1 / >

/ AKM Suite #
/ Pairwise Cipher Suite #
/ Group Cipher Suite #

(5)
8.4.3

AP #1
< AssnResp., RSN IE #a1 >

(5)
8.4.3

-
AP #1

[DISCONNECTED]

(5)
8.4.3

-
AP #1

[CONNECTING]

(5)
8.4.3

-
STA #1

[CONNECTING]

(5)
8.4.3

STA #1
> AssnResp., RSN IE #a1 <

/ AKM Suite #
/ Pairwise Cipher Suite #
/ Group Cipher Suite #

278

6

Figue 4. Supplicant/Authenticator Component Behavior Projection

Having developed all the RBTs, we systematically and

incrementally integrated the twelve RBTs to construct the
design behavior tree (DBT) that satisfies all its requirements.
During the integration process several integration issues were
identified. These integration issues, which are mostly due to
inconsistencies in pre and post conditions, were again
resolved using appropriate domain expertise. A complete
record of the modeling technique and the various models
derived from the requirements can be found in [24].

A. Component behavior projection
Component projection models for the supplicant and the

authenticator are derived by systematic inspection of the DBT.
We did this by simply ignoring the component-states of all
components other than the one we are currently projecting.
The resulting connected behavior tree for a particular
component defines the behavior of the component that we will
need to implement and encapsulate in the final component-
based implementation. The projected component behavior for
the supplicant and the authenticator are shown in Fig. 4.

In the component projection models, both the STA and the

AP are initially at the DISCONNECTED state, which means
that the control port is at unauthorized state. From this state
the STA begins the dot11 association by sending a ProbeReq
signal. This dot11 association state of the STA is indicated as
dot11 ASSOCIATION in the STA projection model. In case if
the STA is unable to establish common security parameters
with the AP, the STA will decline connection reverting to the
DISCONNETED state. Once dot11 association is completed
both the STA and the AP transfer to the CONNECTING state
enabling the port filters.

Next the dot1x authentication begins. During this process

both the AP and the STA first transit to AUTHENTICATING
state followed by AUTHENTICATED as discussed in the

earlier section. However, at any instance if the supplicant is
unable to establish its identity the authenticator declines
connection with the STA, thereby pushing the STA to the
DISCONNECTED state.

When dot1x authentication process successfully completes,

both STA and the AP share a common pairwise master key
(PMK) and reach AUTHENTICATED state. This state
initiates the 4-way handshake. During the 4-way handshake
both the pairwise transient keys (PTK) and the groupwise
transient keys (GTK) are installed on both the STA and the
AP. At this point both the AP and the STA become RSN-
ASSOCIATED and the controlled port reach the authorized
state allowing normal data traffic. During the 4-way
handshake if the STA or the AP does not disclose the correct
RSN capabilities as advertised in the dot11 association
process, the STA will DISCONNECT from the AP and vice-
versa.

The projection models of GSE are comparable to the

supplicant and authenticator PAE state machines presented in
the 802.11 standards. Unlike the state machines which are
created by deduction, the projection models are derived in a
systematic manner from the requirements. Although the
projection models do not show state transition details as in the
state machines, such information can be obtained from the
DBT with the requirement tracking numbers present in the BT
models.

The projection models derived show the normal behavior of

the STA and the AP. Accordingly, both STA and the AP have
definite state changes with reversions permitted to
DISCONNECTED states only. This normal behavior of our
model does not permit state transitions from one intermediate
state to another. Tracking this behavior in the software
implementations of the STA and the AP can be a useful
exercise for anomaly detection and intrusion prevention.

(a) Supplicant (STA) (b) Authenticator (AP)

8.4.1 AP #1
[DISCONNECTED]

8.4.2
AP #1

[dot11 ASSOCIATION]

8.4.5 AP #1
[CONNECTING]

8.4.1 AP #1^
[DISCONNECTED]

8.4.6 AP #1
[AUTHENTICATING]

8.4.8 AP #1
[AUTHENTICATED]

8.4.1 AP #1^
[DISCONNECTED]

8.4.8 AP #1
[KEY MANAGEMENT]

8.4.8 AP #1
[RSN ASSOCIATED]

EapolResp/Identity
Received

EapolAccept
Received

dot11 Association
Complete

1st Message of
4 Way handshake

Sent

PTK
Installed

8.4.1 STA
[DISCONNECTED]

8.4.2
STA #1

[dot11 ASSOCIATION]

8.4.5 STA #1
[CONNECTING]

8.4.1 STA #1^
[DISCONNECTED]

8.4.6 STA #1
[AUTHENTICATING]

8.4.8 STA #1
[AUTHENTICATED]

8.4.1 STA #1^
[DISCONNECTED]

8.4.8 STA #1
[KEY MANAGEMENT]

8.4.8 STA #1
[RSN ASSOCIATED]

8.4.1 STA #1^
[DISCONNECTED]

EapolAcc/Challenge
Received

EapolSuccess
Received

dot11 Association
Complete

1st Message of
4 Way handshake

Received

PTK
Installed

Synchronize ?

Synchronize ?

Synchronized
8.4.1 AP #1^

[DISCONNECTED]

8.4.1 AP #1^
[DISCONNECTED]

8.4.1 STA #1^
[DISCONNECTED]

278

7

VI. MODEL CHECKING
First, we used a special toolset [25] developed by the ARC

Center for Complex Systems to automatically translate the BT
model into formal notations like Communicating Sequential
Processes CSP [26] and SAL. The static analysis of the
translated specification is possible using different analysis
tools available for CSP and SAL. In this study we have
translated the integrated model for security policy selection,
authentication and key distribution into SAL specification.

SAL is an integrated environment of static analysis tools

that includes tools for model checking and theorem proving.
In the SAL environment the systems are specified using a
description language for state transition. The system
properties of interest are calculated in SAL based on the
system expressed as a transition system in this description
language. In the SAL environment a number of tools provide
support for abstraction, program analysis, theorem proving,
and model checking. A detailed description of the translation
of BT to SAL specification is beyond the scope of this paper
but only a brief overview has been provided here. In BT
models concurrent systems are expressed as state transitions,
hence, the translation rules for a subset of BT notation is
relatively straight forward. A wider coverage of translation of
BT notation is part of the ongoing research work at the ARC
Center for Complex Systems [27].

The BT is represented in a single SAL transition system

module. The components and their states are declared as state
types in the module. The BT events that are marked with
INPUT tags are translated as input variables. A set of special
variables called pc1.. pcN (program counters) is used to keep
track of concurrent state transitions in the tree. An atomic
action can be either manually specified or automatically
generated from a set of BT state transitions between two
external (observable) events.

Figure 5. Translation of BT into SAL specification

In the BT segment shown in Fig. 5, the state transition from

the root node (AP [Disconnected]) until the node right
before the event (AP ??ProbeRequest[Receive] ??)
is considered as one action which is guarded by the initial
value of the program counter. The SAL translation generated
by the translator for the above BT segment is shown below:

INITIALIZATION
pc1=1
TRANSITION
[]
A1: pc1=1
 -->aP'=apDisconnected;
 sTA'=staDisconnected;
 pTK'=notDone;
 port_Data'=pdValid;
 sTA_ProbeRequest'=pbSend;
 pc1'=2;
[]
A2: pc1=2 AND aP_ProbeRequestpbRecieve
 -->aP_ProbeRequest'=pbProcess;
 aP_SSID'=idSend;
 pc1'=3;
[]…

In the above SAL specification the program counter (pc1)

has been initialized to 1. This program counter serves as a
guard for the first action A1, which starts at the root of the tree
and includes states until the node just before the first event.
The new states of the state variables in the SAL code directly
correspond to the first segment of the BT shown in Figure 5.
The action A1 also increments the program counter pc1 to 2 to
indicate the process control can now move to the next possible
action. The second action, A2, is guarded by the incremented
value of program counter (pc = 2) and the input variable
aP_ProbeRequestpbRecieve. This input variable
corresponds to the first event in the BT example illustrated in
Figure 5. If the conditions for the second action (A2) are
satisfied, then the set of state transitions occur which
correspond to the BT state transitions shown after the first
event in Fig. 5.

Figure 6. Translation of BT with multiple paths

In the next example we show how BT with multiple paths

8.4.1 AP
[Disconnected]

8.4.1 PTK
[Not Done]

8.4.1 Port
[Data [Valid]]

8.4.1 STA
[Disconnected]

8.4.1 STA
< Probe Request [Send] >

8.4.1
INPUT

AP
?? Probe Request

[Receive] ??

8.4.1 AP
[Probe Request [Process]]

8.4.1 AP
< SSID [Send] >

8.4.1
INPUT

STA
?? SSID [Receive] ??

Action: A1
Program Counter: pc1=1

Input Variable: aP__ProbeRequestpbRecieve

Action: A2
Program Counter: pc1=2

8.4.2
INPUT

STA
?? SSID [Receive] ??

8.4.2 STA
? SSID [Invalid] ?

8.4.2 STA
< Decline [Send] >

Input variable: sTA__SSIDidRecieve
pc1=3

8.4.2 STA
? SSID [Valid] ?

8.4.3 STA
? Fields [Overlap] ? 8.4.3 STA

? Fields [Not Overlap] ?

8.4.3 STA
< Decline [Send] >

8.4.3 STA
[Disconnected]

8.4.2 STA
[Disconnected] 8.4.3 STA

< Dot11 Request [Send] >

Action: A4

Action: A5

Action: A3

278

8

as shown in Fig. 6 is translated into SAL code. In this
example, the set of transitions in action A3 is guarded by input
variable sTA_SSIDidRecieve and pc1 = 3 along with the
condition sTA_SSID=idInvalid. If these conditions are true
then the set of state transitions indicated in action A3 will be
performed. The other two actions (A4 and A5) are also
possible if and when the event happens. Both of these actions
are guarded by a set of conditions i.e. pc1=3,
sTA_SSIDidRecieve, sTA_SSID= idValid,
sTA_Fields=Overlap and pc1=3, sTA_SSIDidRecieve,
sTA_SSID=idValid, sTA_Fields= notOverlap, respectively. It
may be noted that the program counter has been set to 3
before the process flow can continue down any of the paths
(A3, A4 or A5) in the BT. This indicates that, at this point in
the BT the process flow control can go to any branch that
fulfills the conditions imposed on it. The SAL code for the
example is shown below:

…[]
A3: pc1=3 AND sTA_SSIDidRecieve AND
sTA_SSID=idInvalid
 -->sTA_SSID'=idRecieve;
 sTA_Decline'=dSend;
 sTA'=staDisconnected;
 pc1'=6;
[]
A4: pc1=3 AND sTA_SSIDidRecieve AND
sTA_SSID=idvalid AND sTA_Fields=overlap
 -->sTA_SSID'=idRecieve;
 sTA_dot11Request'=d11Send;
 pc1'=7;
[]
A5: pc1=3 AND sTA_SSIDidRecieve AND
sTA_SSID=idInvalid AND sTA_Fields=notOverlap
 -->sTA_SSID'=idRecieve;
 sTA_Decline'=dSend;
 sTA'=staDisconnected;
 pc1'=8;
[]…

Once the system has been specified in the SAL environment

language, a number of analyses can be performed [28] on the
system specification. The SAL environment contains a
symbolic model checker called sal-smc. It allows users to
specify properties in linear temporal logic (LTL) and
computation tree logic (CTL). However, the current version of
SAL does not provide counterexamples for CTL properties.
When users provide an invalid property in LTL, a counter
example is produced. LTL formulas state properties about
each linear path induced by a module (transition system).
Typical LTL operators are:

• G (p) (read “always p”), stating p is always true
• F (p) (read “eventually p”), stating that p will be

eventually true
• U (p, q) (read “p until q”), stating that p holds until a

state is reached where q holds
• X (p) (read “next p”), stating that p is true in the next

state

For example, the formula G (p => F (q)) states that
whenever p holds, q will eventually hold. The formula G (F
(p)) states that p holds infinitely often. In the following section
we describe how these properties are used to model check the
IEEE 802.11i security protocol, using the sal-smc.

VII. ANALYSIS
Having generated the SAL code for the IEEE 802.11i

security protocol we developed a number of theorems to
formally verify the model. Firstly, we verified all the
assumptions made by us during the modeling process to
resolve ambiguities and/or inconsistencies. Table 1 shows all
such issues and the corresponding LTL theorems used to
verify. The GSE modeling technique compels all ambiguities
and inconsistencies to be resolved during the requirements
translation and integration. The component behavior
projection models shown in Fig. 4 demonstrate the normal
behavior of our security model. Accordingly, both STA and
AP are expected to transit states simultaneously as defined by
the following LTL formulas.

G ((sTA = staConnecting) => (aP = apConnecting))
G ((sTA = staAuthenticating) => (aP = apAuthenticating))
G ((sTA = staAuthenticated) => (aP = apAuthenticated))
G ((aP = rsnAssociated) => (sTA = rsnAssociated))

All of the above four LTL theorems were proved

confirming the normal behavior as per our component
behavior projection. The normal behavior of the STA and AP
was further verified with the following LTLs.

U ((sTA = staConnecting), ((sTA = staDisconnected)
 OR (sTA = staAuthenticating))
U ((sTA = staAuthenticating), ((sTA = staDisconnected))
 OR (sTA = staAuthenticated))
U ((sTA = staAuthenticated), (sTA = staDisconnected))
 OR (sTA = rsnAssociated))

The above LTL theorems were also proved confirming our

aim that the participating components are disconnected from
every intermediate state if they do not transit to the next state.
We have made these state transitions mandatory in our models
to protect our system from possible security threats which can
arise from exploiting the unsynchronized behavior of the STA
and AP.

278

9

Table 1. Theorems Proved to Resolve Ambiguities

Once the model was verified for normal behavior, we then
verified the consistency of the security association process.
Clauses 8.4.2 and 8.4.3 of the standard describe the security
policy selection process in the WLAN. To begin with, an AP
returns the SSID in response to a probe request from the STA.
An STA has to decline associating with the AP if it receives
an invalid SSID. The following LTL theorem was established
to test this condition. The sTA_SSID is a sub state in our BT
model and is reached once the SSID is received from the AP.

G ((sTA_SSID = idInvalid) => F (sTA = staDisconnected))

The above LTL formula was proved to confirm that an STA

eventually disconnects itself, if it receives an invalid SSID.
However, if the STA receives a valid SSID it then validates
the RSN capabilities advertised by the AP. If the AP is not
RSN capable or does not match the capabilities of the STA,
the STA disconnects itself maintaining strict RSN policy. In
the following theorem we check for the validity of
authentication and cipher suites.

G ((aP_Rsn = inCapable) OR (aP_Cipher = inValid)
 OR (aP_Auth = inValid)) => F (sTA = staDisconnected))

The above LTL formula was proved confirming the

behavior of the STA when it receives invalid RSN suites. On
the other hand, when the STA advertises its capabilities the
AP also performs similar validation. Once both STA and AP
agree on the common security policy they both transit to
CONNECTING state and continue with the authentication
process.

In our BT model we introduced a component named

control__Port to indicate the controlled port between the AP
and the STA. This component was initialized to
pUnauthorized state to indicate the unsecured state of the port.
During IEEE 802.1X authentication and key distribution
process this port continues to remains unauthorized. Finally,
only when the PTK is installed on both the AP and the STA it
transits to the authorized state - pAuthorized enabling normal
data traffic. Having this in mind, we used the following LTL
formula to examine that the control port remains unauthorized
during the authentication and the 4-way key handshake

process.

G ((control__Port = pUnauthorized) =>
 ((sTA = staConnecting)
 OR (sTA = staAuthenticating)
 OR (sTA = staAuthenticated)
 OR (sTA = 4wayHandshake)))

This formula was proved confirming the notion that the

control port remains unauthorized throughout the
authentication and key distribution process. Finally, we tested
the authorized state of the control port with the following LTL
theorem.

G ((control__Port = pAuthorized) =>
 ((aP = apptkInstalled) AND (sTA = staptkInstalled)))

The above LTL theorem was proved to confirm the

authorized state of the control port implying PTK is installed
on both AP and STA. All of the above analysis was done to
verify the normal behavior of our model during the security
association process. However, one must keep in mind that
during this process the participating hosts will demonstrate
their normal behavior if both communicating hosts operate in
a synchronized manner. If we cannot guarantee the
synchronized operation of the hosts the security of the
participating hosts become dubious as discussed below.

A. Security Issues
As highlighted in Clause 8.4.1 permitting APs to advertise

their SSIDs can lead to malicious associations. Furthermore,
as shown in Fig. 4, during the dot11 association both
supplicant and the authenticator operate independently
without any form of software synchronization. Therefore, in a
situation where the supplicant or the authenticator is allowed
to make presumptions about the characteristics of other
participating components can lead to malicious associations or
Identity-Theft [29]. In case of a re-association request by a
roaming STA, we first transit the STA into DISCONNECTED
state before it is made to associate with the new AP. This
makes the RSN more reliable so that session-hijack attacks
[30] can be avoided. In our model the following LTL formula

IEEE Clause Req. No. Defect Description LTL Formulas

8.4.1 1 Missing Initial State of an AP assumed DISCONNECTED INITIALIZATION

1 Uncertain Post-condition if an AP does not advertise a valid SSID not clear G ((sTA_SSID = idInvalid) => F (sTA = staDisconnected))

8.4.2 3 Missing Initial state of a STA assumed DISCONNECTED INITIALIZATION

3 Missing Post-condition if STA not RSN capable assumed DISCONNECTED G ((sTA_RSN = rsnIncapable) => F (sTA = staDisconnected))
3 Missing Post-condition of cipher suites mismatch assumed DISCONNECTED in ESS G ((sTA_Fields = notOverlap) => F (sTA = staDisconnected))

3 Missing STA intermediate state assumed CONNECTING (ref. dot1x) Please see examples given in the text

4 Uncertain STA is able to decapsulate a message but sees invalid SSID G ((sTA_SSID = idInvalid) => F (sTA = staDisconnected))

8.4.3 5 Missing Post-condition of RSN-IE mismatch assumed DISCONNECTED in ESS G ((sTA_Fields = notOverlap) => F (sTA = staDisconnected))
5 Missing Post-condition of dot11 association failure assumed DISCONNECTED G ((sTA_dot11 = dot11Reject) => F (sTA = staDisconnected))

8.4.5 7 Missing Post-condition if dot1x Auth not supported assumed DISCONNECTED G ((sTA_dot1x = notSupport) => F (sTA = staDisconnected))

8.4.6 8 Assumed STA at ACQUIRED state when EapolReq/Identity received (ref. dot1x) G ((sTA_Eapol = reqidReceive) => F (sTA = staAcquired))

8 Assumed AP at AUTHENTICATING state once EapolResp/Identity received (ref. dot1x) G ((aP_Eapol = residReceive) => F (aP = apAuthenticating))
8 Assumed STA at AUTHENTICATING state once EapolAcc/Challenge received (ref. dot1x) G ((sTA_Eapol = accchReceive) => F (sTA = staAuthenticating))

8 Missing Post-condition when AS rejects STA identity assumed DISCONNECTED G ((AS_AccChallenge = stachReject) => (sTA = Disconnected))

8 Assumed STA at AUTHENTICATED state once EapolSuccess received (ref. dot1x) G ((sTA_Eapol = succReceive) => F (sTA = staAuthenticated))

8.4.8 10 Missing Pre-condition for 4-way key exchange assumed AUTHENTICATED Please see examples given in the text
10 Missing Post-condition after the GwK's are installed assumed RSNA Please see examples given in the text

278

10

was proved to be false endorsing our decision:

U ((sTA = rsnAssociated), ((sTA = staDisconnected)
 OR (sTA = staAuthenticating))

Although this is a possible state transition in an RSN, we

have deliberately DISCONNECTED the STA to make the
RSN more reliable, i.e. an attacker cannot pretend as an
Authenticating STA. Further, in Clause 8.4.2, we force the
STA to DISCONNECT from the AP if it is not RSN capable.
Similarly an AP DISCONNECTs itself if it sees an STA that
is RSN incapable.

G ((aP_Rsn = inCapable) => F (sTA = staDisconnected))
G ((sTA_Rsn = inCapable) => F (aP = apDisconnected))

In Clause 8.4.3 both STA and AP disassociate with each

other if they don’t mutually agree on a common security
policy. In Fig. 8, we have illustrated a malicious association
scenario making use of this condition. The BT model shows
an intruder, InAP (shaded boxes), reading messages from a
legitimate AP and appropriately issuing an Association
Request to the legitimate AP with a wrong RSN IE (as if it is
sent by the associating STA). The legitimate AP disassociates
itself assuming the STA is not RSN capable. In the mean time
the intruder pretends as the legitimate AP and associates with
the mistaken STA.

G (inAP_dot11Request=d11Send) = >
 (sTA_Rsn = inCapable) AND (aP = apDisconnected))

If this type of malicious association takes place the intruder

can simply walkthrough the legitimate STA via the entire
process of authentication and key distribution acquiring all the
necessary security information and characteristics of the
legitimate STA. This type of an association cannot be stopped
by software means and requires some form of synchronization
at lower layers of communication.

Let us now focus on the authentication process. As shown

in Fig. 9 this process is initiated by the STA issuing the
EapStart message. The STA eventually communicates with
the Authentication Server (AS) via a secure channel to
validate its credentials. As said in Clause 8.4.6, if the AS does
not recognize the challenge sent by the STA, the STA has to
eventually reach the disconnected state as proved by the
following LTL formula.

G ((aS_AccChallenge = stachReject)
 => F (sTA = staDisconnected))

This situation also implies that STA and AP will never

reach a state where the controlled port becomes authorized.
The following LTL formula proves that the control port never
reaches the authorized state if STA does not prove its identity.

(3)
8.4.2

STA #1
? NOT: Valid SSID ?

(3)
8.4.2

STA #1
? Valid SSID ?

(3)
8.4.2

+
STA #1

[[Validate] SSID]

(3)
8.4.2

STA #1 =
> SSID + RSN IE / <

(3)
8.4.2

-
STA #1 ^

[DISCONNECTED]

(1)
8.4.1

-
STA #1

[DISCONNECTED]

(5)
8.4.3

+
STA #1

[[Match] RSN IE]

(5)
8.4.3

STA #1
? NOT: Fields Match ?

(5)
8.4.3

STA #1
? Fields Match ?

I1 InAP #1
> AsocReq + RSN IE #s1 / <

I1 InAP #1
[[Analyse] RSN IE #s1]

(5)
8.4.3

-
STA #1^

[DISCONNECTED]

(1)
8.4.1

-
AP #1

[DISCONNECTED]

(3)
8.4.2

STA #1
?? < ProbeReq > ??

(3)
8.4.2

AP #1
> ProbeReq <

(1)
8.4.1

AP #1
?? < SSID, RSN IE / > ??

(1)
8.4.1

STA #1 =
> SSID, RSN IE / <

(3)
8.4.2

STA #1
[[Validate] RSN IE]

(3)
8.4.2

STA #1
? AP RSN Capable ?

(3)
8.4.2

STA #1
? NOT: AP RSN Incapable ?

(3)
8.4.2

-
STA #1 ^

[DISCONNECTED]
(3)

8.4.2
STA #1

[[Validate] Auth. & Cipher]

(3)
8.4.2

STA #1
? Valid Cipher ?

(3)
8.4.2

STA #1
? NOT: Valid Cipher ?

(3)
8.4.2

-
STA #1 ^

[DISCONNECTED]

I1 InAP #1
[CONNECTING]

(5)
8.4.3

-
STA #1

[CONNECTING]

(5)
8.4.3

STA #1
> AssnResp., RSN IE #a1 <

I1 InAP #1
> SSID + RSN IE / <

(5)
8.4.3

-
AP #1

? NOT: RSN Capable ?

(5)
8.4.3

+
AP #1

[[Validate] RSN IE #s1]

(5)
8.4.3

-
AP #1

[DISCONNECTED]

(5)
8.4.3

AP #1
> AsocReq + RSN IE #s1 / <

Legitimate AP forced
to disconnect

NOT PERMITTED

(3)
8.4.2

AP #1
< SSID, RSN IE / >

/ AKM Suite
/ Pairwise Cipher Suite
/ Group Cipher Suite

(5)
8.4.3

STA #1
< AsocReq + RSN IE #s1 / >

/ AKM Suite #
/ Pairwise Cipher Suite #
/ Group Cipher Suite #

I1 InAP #1
< AsocReq + RSN IE #s1 / >

/ AKM Suite #
/ Pairwise Cipher Suite #
/ Group Cipher Suite #

I1 InAP #1
< AssnResp., RSN IE #a1 >

/ AKM Suite #
/ Pairwise Cipher Suite #
/ Group Cipher Suite #

Figure 8. Malicious Association

G ((aS_AccChallenge = stachReject) =>
 (control__Port = pUnauthorized))

278

11

We use this condition to demonstrate another malicious

association scenario in Fig. 9. The intruder having gained vital
information about a legitimate STA during the dot11
association, now wants to act as a legitimate STA, shown as
InSTA (shaded boxes) in the BT model. The intruder keeps
monitoring the messages exchanged during the authentication
process. The intruder tracks all messages and just before the
AP is ready to authenticate the STA (by sending EapSuccess
message), it disassociates the STA by sending an EapFailure
message as if sent from the legitimate AP. The intruder then
associates with the AP receiving the EapSuccess message.

G ((InSTA_Eap = instaFailure) =>
 F (sTA = staDisconnected))

G ((ap_Eap = apSuccess)
 => F (InsTA = instaAuthenticated))
 As such, if the intruder successfully associates he will now

be in possession of the primary master key (PMK), thereby
enabling him to continue the association process and
becoming RSN associated. Thus, the intruder has penetrated
the organizational network. Although, this sought of an
association is difficult with the use of digital certificates or
smart card like authentication options, the chances of poorly
configured users associating with a wireless AP are high.
Unless, every user is educated on the consequences of security
breaches and are adequately trained to protect their own
environments, the attackers will find these loopholes to gain
access to the organizational networks.

According to Clause 8.4.6, the control port remains

unauthorized during and after the Authentication process.
However, the STA reaches the Authenticated state once PMK
is received by both AP and the STA or if the shared key is
installed.

G ((sTA = staAuthenticated) =>
 (((STA_PMK = stapmkInstalled)
 AND (AP_PMK = appmkInstalled))
 OR (PMK = PSK))

When both STA and the AP reach the Authenticated state

the AP begins the 4-way key handshake by sending the first
message of the handshake process.

The purposes of the 4-way handshake are:

• Confirm the existence of the PMK. The second
message transfer occurs only if the PMKIDs of STA
and AP match each other.

 G ((sTA_Key2 = K2Send) =>
 (STA_PMKID = AP_PMKID))

Figure 9. Malicious Association during Authentication
• Ensure that security association keys are fresh. If

both STA and AP derive the transient keys they will
eventually transit to RSN Associated state.

(8)
8.4.6

STA #1
< EapStart >

(8)
8.4.6

-
STA #1

[CONNECTING]

(8)
8.4.6

STA #1
? dot1xAuth Capable ?

(8)
8.4.6

+
STA #1

? NOT: dot1xAuth Capable ?

(8)
8.4.6

+
STA #1

PMK = Pre-Shared Key

(8)
8.4.6

-
AP #1

[CONNECTING]

278

12

 G ((sTA_PTK = staptkDerive) =>
 F (sTA = staRsnAssociated))
 G (((aP_PTK = apptkDerive)) =>
 F (aP = apRsnAssociated))

• Synchronize the installation of temporal keys. For
both STA and AP to reach RSN Associated state
transient keys must be installed.

 G (((aP = apRsnAssociated) AND
 (sTA = staRsnAssociated)) =>
 ((aP_PTK = apptkInstall) AND
 (sTA_PTK = staptkInstall)))

Other than the session hijack issue discussed earlier, the

IEEE 802.11i security mechanism has another weak point in
the key distribution process. In the earlier case we described
how the intruder could gain access to the PMK. Now, having
gained access to the PMK, we show in Fig. 10 how the
intruder can perform a session hijack. During the second and
third message exchanges both the STA and AP validate the
RSN IEs. They both compare the RSN IEs advertised during
the dot11 association with that of the RSN IEs transferred
during the second and third messages. If the RSN IEs do not
match they disassociate. Therefore, an intruder monitoring the
key exchanges can deliberately disassociate an STA by
issuing a third message with an invalid RSN IE as if it is sent
by the AP. Having disconnected the legitimate STA, the
intruder will now receive the correct third message from the
AP, installs the PTK and become RSN associated. As such,
the intruder is now in full control of the wireless network.

However, one could argue that the above security issues are

insignificant and with the strong authentication and key
distribution mechanisms proposed in IEEE 802.11i, they are
annulled. Yet, the point is that intruders one way or another
make use of such loopholes to gain some knowledge of the
participating hosts and eventually succeed in penetrating the
network. Therefore, it is our responsibility to take utmost
precaution in every perspective to protect the WLAN.

The above discussion shows the importance of a complete
and a consistent set of requirements together with a proven
analysis technique. Issues in requirements can lead to defects
in the final system. In this case such defects can lead to
significant wireless attacks that could endanger an entire
organization. However, merely conducting a rigorous analysis
is not ultimate. It is also necessary to ensure that issues
resolved during the analysis are effective and pertinent. The
GSE technique together with formal verification is effective
not only for requirements analysis and validation; but it also
provides a systematic approach to integrate the system
ensuring that all parts of the system corporate and coordinate
correctly with good traceability. The formal nature of the
Behavior Tree notation used within GSE requires all

ambiguities, incompleteness and inconsistencies are resolved
at the time of integration.

Figure 10. Session Hijack during Key Distribution

VII. CONCLUSION

From our use of the GSE methodology for modeling the

(10)
8.4.8

STA #1
?? > EapolKey #1 < ??

(10)
8.4.8

AP #1
[[Derive] Anonce]

(10)
8.4.8

+
STA #1

[[Derive] Snonce, PTK]

(10)
8.4.8

AP #1
> EapolKey #2 <

I3 InSTA #1
?? > EapolKey #3 < ??

(10)
8.4.8

+
AP #1

[[Derive] PTK, GTK]

(10)
8.4.8

AP #1
> EapolKeys #4 <

(10)
8.4.8

+
AP #1

[[Install] PTK]

(10)
8.4.8

-
AP #1

[RSN ASSOCIATED]

I3 InSTA #1
[RSN ASSOCIATED]

I3 InSTA #1
[[Install] PTK, GTK]

(10)
8.4.8

-
STA #1

[AUTHENTICATED]

(10)
8.4.8

AP #1
[[Validate] RSN IE #s2]

(10)
8.4.8

AP #1
? RSN IE #s1 = RSN IE #s2 ?

(10)
8.4.8

AP #1
? NOT: RSN IE #s1

= RSN IE #s2 ?

(8)
8.4.6

-
AP #1 ^

[DISCONNECTED]

I3 InSTA #1
[[Analyse] RSN IE #a2]

(10)
8.4.8

-
AP #1

[AUTHENTICATED]

I3 InSTA #1
> EapolKey #1 <

I3 InSTA #1
> EapolKey #2 <

(10)
8.4.8

STA #1
?? > EapolKey #3 < ??

(10)
8.4.8

STA #1
[[Validate] RSN IE #a2]

(10)
8.4.8

STA #1
? NOT: RSN IE #a1

= RSN IE #a2 ?

(8)
8.4.6

-
STA #1 ^

[DISCONNECTED]

I3 InSTA #1
< EapolKeys #4 / >

/ key_info
/ MIC

(10)
8.4.8

AP #1
< EapolKey #1 / >

/ key_info

/ Anonce

/ PMKID

(10)
8.4.8 STA #1

< EapolKey #2 / >
/ key_info
/ Snonce
/ MIC
/ RSN IE #s2

(10)
8.4.8

AP #1
< EapolKey #3 / >

/ key_info

/ Anonce

/ MIC

/ RSN IE #a2

I3 InSTA #1
< EapolKey #3 / >

/ key_info
/ Anonce
/ MIC
/ RSN IE #a2

278

13

security protocol we have found it to be a promising tool to
express the behavior of the system. It definitely helps in
getting the system complete and consistent. The systematic
approach enables designers to resolve ambiguities early with
reliability. Since requirements translation and integration
enables issues to be resolved early the resulting model is
guaranteed complete and consistent. With our wide experience
in applying this methodology to model communication
protocols we are confident that this technique is capable of
handling such applications and provides designers an
opportunity to develop cohesive and reliable systems with
good tracebility and control over complexity.

The systematic analysis performed in this study using the

GSE methodology identified a number of ambiguities and
defects in specifications. Many of the identified
incompleteness issues and ambiguities in the standard’s
requirements arise from semi-tacit and tacit knowledge not
being specified. This enabled us to acquire considerable
domain knowledge to analyze, design and implement a
complete and consistent security model. The formal
verification carried out using LTL formulas has proved that
GSE models developed are robust and consistent.

However, there were significant gaps in the verification

process mainly due to the limitations of SAL translation. The
symbolic code generated by SAL is generic and does not meet
the requirements of a communication/security protocol. SAL
does not provide support symbolic analysis of authentication
and key distribution mechanisms. Therefore, we are now
focusing on translating the BT models into protocol specific
symbolic code which will enable us to verify security
protocols more completely.

REFERENCES
[1] Stubblefield, A. Ioannidis, J, Rubin, A.D. A key recovery Attack on the

802.11b Wired Equivalent Privacy Protocol (WEP)", ACM Transactions
on Information and System Security, Vol. 7, No. 2, May 2004, pp. 319-
332.

[2] IEEE Std. 802.11i-2004, “Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications. Amendment
6: Medium Access Control (MAC) Security Enhancements”, July 2004.

[3] Wi-Fi Alliance. “Wi-Fi Protected Access”, October 2002. URL:
http://www.wi-fi.org/OpenSection/pdf/Wi-Fi Protected Access
Overview.pdf

[4] IEEE Std. 802.1X-2001, “Local and Metropolitan Area Networks – Port-
Based Network Access Control”, June 2001.

[5] Dromey, R.G. From Requirements to Design: formalizing the key steps,
Proc. 1st International Conference on Software Engineering and formal
methods, September 2003, pp. 2-11.

[6] Bensalem, S. Ganesh, V. Lakhnech, Y. Munoz, C. Owre, S. Rue, H.
Rushby, J. Rusu. V. Saidi, H. Shanker, N. Singerman, E. Tiwari, A. “An
Overview of SAL”, Proc. 5th NASA Langley Formal Methods
Workshop, June 2000, pp. 1-10.

[7] J. Hajek. Automatically verified data transfer protocols. In Proceedings
of the 4th ICCC, pages 749 - 756, 1978.

[8] C.H. West. General technique for communications protocol validation.
IBM Journal of Research and Development, 22(4), 1978.

[9] M.C. Edmund, and M.W. Jeannette, Formal methods: state of the art and
future directions. ACM Computing Surveys, 28(4):626{643, 1996.

[10] McMillan K. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[11] Gerard J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279 - 295, 1997.

[12] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang.
Protocol verification as a hardware design aid. In IEEE International
Conference on Computer Design: VLSI in Computers and Processors,
pages 522 -525, 1992.

[13] P. Godefroid. Model checking for programming languages using
VeriSoft. In Proceedings of the 24th ACM Symposium on Principles of
Programming Languages, 1997.

[14] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
Extended static checking, 1998.

[15] David Evans, John Guttag, James Horning, and Yang Meng Tan.
LCLint: A tool for using specifications to check code. In Proceedings of
the ACM SIGSOFT '94 Symposium on the Foundations of Software
Engineering, pages 87 - 96, 1994.

[16] D.R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
using System specific, programmer written compiler extensions. In
Proceedings of the Fourth Symposium on Operating Systems Design and
Implementation, October 2000.

[17] David Evans and David Larochelle. Improving Security Using
Lightweight Static Analysis, In Proceedings of IEEE Software, Jan/Feb
2002.

[18] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive
program verification in polynomial time. In Conference on Programming
Language Design and Implementation, 2002.

[19] J.W. Gray and J. McLean. Using temporal Logic to specify and verify
cryptographic protocols (progress report). In proceedings of the 8th IEEE
Computer Security Workshop, 1995.

[20] T.Y.C. Woo and S.S. Lam. A semantic model for authentication
protocols. In proceedings of the IEEE Symposium on Research in
Security and Privacy, 1993.

[21] D. Dolev and A. Yao. On the security of public key protocols. IEEE
transactions on Information Theory, 29(2):198-208, March 1989.

[22] C. Medows. Applying formal methods to the analysis of a key
management protocol. Journal of Computer Security. 1:5-53, 1992.

[23] Robert L. Glass, Is this a revolutionary idea, or not? Communications of
the ACM, 47(11):23 – 25, 2004

[24] Sithirasenan, E. Muthukkumarasamy, V. “IEEE 802.11i WLAN Security
Protocol – A Software Engineer’s Model”, to appear on the AusCERT
2005 Proceedings, May 2005.

[25] C. Smith, K. Winter, I. Hayes, R.G. Dromey, P. Lindsay, and D.
Carrington, "An Environment for Building a System Out of Its
Requirements," presented at Tools Track, 19th IEEE International
Conference on Automated Software Engineering, Linz, Austria, 2004.

[26] K. Winter, "Formalising Behavior Trees with CSP," presented at
International Conference on Integrated Formal Methods, IFM'04, 2004.

[27] L. Grunske, P. Lindsay, N. Yatapanage, and K. Winter, Unpublished
Results, ARC Centre for Complex Systems, 2005.

[28] Moura, L. d., SAL: Tutorial, SRI International, 2004
[29] Arbaugh, W.A. Shankar, N. Wan, J. “Your 802.11 Wireless Network

Has No Cloths”, IEEE Wireless Communications, Dec. 2002, pp. 44-51.
[30] Mishra, A. Arbaugh, W.A. “An Initial Security Analysis of the IEEE

802.1X Standard”, Critical Infrastructure Grant, National Institute of
Standards, February 2002.

