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Abstract—With the increasing dependence on wireless LANs
(WLANs), businesses, educational institutions and other
organizations are in need of a reliable security mechanism.
The latest security protocol, the IEEE 802.11i assures rigid
security for WLANs with the support of IEEE 802.1x
protocol for authentication, authorization and key distri-
bution. Nevertheless, fresh security threats are emerging
often to oust these new defense mechanisms. Further, many
organizations based on superficial vendor literature, be-
lieve their wireless security is sufficient enough to prevent
any unauthorized access. Having wide ranging options for
security configurations, users are camouflaged into deep
uncertainty. This volatile state of affairs has prevented many
organizations from fully deploying WLANs for their secure
communication needs, though WLANs may be cost effective
and flexible. In this paper, we present a novel mechanism
to detect and substantiate anomalies caused by both known
and unknown security threats in WLANs. We monitor the
wireless environment for timing and/or behavior anomalies
during the security association process and use outlier based
data association approaches to substantiate their legitimacy.
The proposed concept was tested on our experimental setup.
The results obtained from wireless hosts configured for
EAP-LEAP, PEAP and TLS security association show high
confidence for EAP group events.

Index Terms—anomaly detection, intrusion detection, wire-
less security, group outliers, IEEE 802.11, security threat
validation

I. INTRODUCTION

IEEE 802.11i [1] provides mutual authentication, key
management, and data confidentiality protocols that may
execute concurrently over a network in which other pro-
tocols are also used. On the assumption of upgrading
the hardware, 802.11i defines CCMP that provides strong
confidentiality, integrity, and replay protection. In addi-
tion, an authentication process, combining 802.1x port-
based authentication and key management procedures,
is performed to mutually authenticate the devices and
generate a fresh session key for data transmission. Since
802.11i promises to be in the right direction for wireless
security, it should be able to prevent an adversary from
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any attacks even if the adversary has powerful equipment
and techniques for breaking into the system. In other
words, an implementation of 802.11i protocol in a WLAN
should provide sufficient data confidentiality, integrity,
and mutual authentication.

Although this newly introduced security standard pro-
vides effective measures to protect the wireless networks
from confidentiality and integrity threats, their reliance on
authenticity and availability are still a major concern. Fur-
ther, there are many wireless installations, where appropri-
ate security mechanisms are neither used nor implemented
effectively [2]. Hence in addition to improving the exist-
ing security mechanisms we also need other protection
techniques to safeguard the wireless environment from
new security threats. Effective use of the wireless network
will only be possible if security threats are mitigated,
preventing any potential catastrophe. In this respect, track-
ing the management frames during IEEE 802.11i security
association and effectively analyzing them may reveal
vital information about impending threats to the wireless
environment.

In this regard our proposed system exploits the use of
management frame timings and the behavior of wireless
hosts, during the security association process. Unusual
timing values exhibited by wireless stations may be the
start of an intended security breach. Legitimate wireless
hosts attempting to connect to an authorized authentica-
tor usually demonstrates a particular practical behavior.
Tracking and profiling such behavior of all stations in
the wireless environment may present some useful in-
formation for detecting misbehaving stations. Therefore,
tracking the management frames and effectively analyzing
them for timing and/or behavior anomalies is expected to
enhance the ability of our proposed system to discover
security related issues in advance.

It is explicable that the behavior of a wireless access
point varies from one vendor to another and depends on
many factors. Hence, maintaining a behavior profile for
every participating wireless host - access point duo will
be more effective rather than having a generic profile for
the environment. Throughput and resistance to one single
node flooding depends on the actual implementation and
operative system of the access point. A variation in timing
during the association process for a given station depends
on factors such as type of transversing traffic (number of
packets and their sizes), UDP vs TCP traffic, number of
traffic flows etc. Therefore, maintaining dynamic profiles
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will be advantageous than having static profiles. Hence,
we employ an adaptive technique to update the timing
and behavioral profiles depending on the nature of the
operative environment.

Trying to model what is “normal” in a wireless en-
vironment is not an easy task, hidden nodes will trigger
retransmissions and heavy real-time UDP traffic will have
an impact on how packet queues are handled and hence
timing of management frames. Therefore, detecting a
security threat in the wireless environment, merely based
on timing profiles can lead to large number of false
positives. Hence, we explore the use of outlier based data
association techniques to substantiate the security threats
and thereby reducing the number of false positives.

The early warning system (EWS) [3] used in this
research includes a packet capturing module, an event
engine, an anomaly detection module and an intrusion
prevention module. The packet capturing module mon-
itors and captures the raw wireless traces. The event
engine extracts the management frames associated with
the IEEE 802.11i security association. The anomaly de-
tection module uses both timing and/or behavior analysis
to detect anomalies. The detected anomalies are validated
by the intrusion prevention module using outlier based
data association techniques. During IEEE 802.11i security
association there can be different types of events that can
be grouped depending on the authentication mechanism
used. Hence, based on our previous work reported in
[4], in this paper we propose a novel measure called
the group confidence level (GCL) for estimating the
cohesiveness of group events. The EWS uses the GCL
to substantiate anomalies in group events during EAP-
LEAP [5], PEAP [6] and TLS [7] authentication schemes.
The experimental results show that EAP group events
exhibiting high confidence than the IEEE 802.11 group
events in all three authentication mechanisms.

This paper is organized as follows. Section II gives a
brief overview of related work on intrusion and anomaly
detection. Section III introduces the RSN framework. In
Section IV the concept of OLAP and data views are
explained. The matrices used to substantiate the security
threats are derived in Section V. Details of our proposed
anomaly detection system is illustrated in Section VI.
Experimental results are presented in Section VII. The
results are discussed and analyzed in Section VIII. Finally,
Section IX concludes the paper.

II. RELATED WORK

Our EWS uses anomaly detection techniques to dis-
cover anomalies in IEEE 802.11i wireless environment
and thereafter uses outlier based techniques to substantiate
the detected anomalies. In this view we first studied
the reported security issues in IEEE 802.11i wireless
environment. We then examined the different techniques,
including anomaly based techniques used to detect se-
curity threats in both wired and wireless networking
environment. Finally, we reviewed a number of data

mining techniques that are used to detect outliers in large
data sets.

Analysis of IEEE 802.11i by Sithirasenan et al. [8]
identifies a number of weaknesses in the standard to-
gether with some solutions from the software implemen-
tation perspectives. A similar analysis by He et al. [9]
on IEEE 802.11i wireless networking further highlights
the weaknesses of the standard. They have discussed
the possibilities of several attacks on poorly configured
802.11i networks. Further, they state that although the
new security standard offers sufficient protection to the
wireless environment it is up to the implementer to ensure
that all issues are addressed and the appropriate security
measures are deployed. For instance, a single misconfig-
ured station could lead the way for a attack and expose
the organizational network. Lynn et al. [10] discuss that
if no authentication mechanisms are implemented an
adversary could establish two separate connections to the
supplicant and the authenticator to construct a Man-in-
the-Middle (MitM) attack. Furthermore, if mutual au-
thentication mechanism is not appropriately implemented
an adversary will be able to launch a MitM attack and
learn the Pairwise Master Key (PMK) as illustrated by
Asokan et al. [11]. Although these vulnerabilities are
not directly connected with 802.11i, any implementer
of 802.11i needs to consider these problems warily and
keep monitoring the wireless hosts to guarantee proper
integration of the security mechanisms.

Barbeau et al. have analyzed impersonation attacks in
future wireless and mobile networks [12]. They have
performed a risk analysis on the possible types of im-
personation attacks in wireless networks. Summing up
their findings they stress that the risk of impersonation
in wireless networks is critical since the threat can be
materialized into several forms of attacks. Hence they
highlight the need for effective countermeasures to ad-
dress the threats.

The countermeasure proposed by Barbeau et al. [12]
includes the use of Radio Frequency Fingerprinting (RFF)
and User Mobility Profiles (UMP) for Anomaly Based
Intrusion Detection (ABID). At the same time the use
of device and user profiles to detect anomalies has been
studied by Hall et al. [13]. They incorporate RFF into
an ABID system to associate a MAC-address of a device
with the corresponding transceiver profile. Hence, if an
observed transceiver print from a claimed MAC-address
matches the corresponding transceiver profile, then the
MAC-address has not been spoofed. They make use of
this idea to verify the credibility of their UMP based
ABID system. They discussed enhancing the capability of
their system by supplementing existing user and device-
based profiles, with those based on mobility. However,
this system is more suitable for addressing the problem
of stolen cell phones, given that the mobility behavior of
the thief and the user are likely to be different. In the case
of wireless networks the attacker needs to be in the same
domain as the user to carry out an attack. Therefore the
use of mobility profiles will not be suitable for intrusion
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detection in infrastructure WLANs.
Further enhancing their work, Gill et al. studied the

anomaly detection response using correlation techniques
in their later study [14]. Here, having detected an anomaly
from either mechanism; Round Trip Timing (RTT) or
Received Signal Strength (RSS), they wait for a confir-
mation from the other. For example, if the RSS detection
algorithm registers an abrupt spike in RSS value for a
particular MAC address, the correlation engine would
register this and wait for the next RTS-CTS event for
this MAC address and check the results of the RTT
detection algorithm. If both algorithms register an alert
for that MAC address, then an alarm would be raised.
From a number of experiments performed they claim nil
false negative and a low number of false positives. Hence
they claim anomaly detection systems could not rely
only on one observation and that multiple observations
is necessary together with effective correlation techniques
to verify the legitimacy of each alarms raised. However,
this technique is not suitable in every situation since the
legitimate user and the intruder can exhibit the same RSS
and RTT.

Maxion et al. [15] apply benchmarking to prove that
differences in data regularities influence anomaly detector
performance, and such differences are found in natural
environments. All anomaly-detection algorithms operate
on data captured from some kind of computing domain or
environment. Embedded in each type of environment is a
particular structuring of the data that is a function of the
environment itself. The researchers provide quantitative
results of running an anomaly detector on various data
sets containing different structure. The results on different
data regularities proved data consistency influences the
anomaly detector performance. Hence they emphasize
the need for anomaly detection systems that can handle
differences in data regularities effectively.

Most data mining based intrusion detection systems
detect unusual events or anomalous behavior in networks
effectively [16]–[19]. However, the major problem is
validating the legitimacy of abnormal events. Almost all
of the work found in the literature present techniques
to detect abnormal or rare events in networks. However,
having found an anomalous or rare event how to validate
it as legitimate or illegitimate is the major challenge yet to
be addressed. In this view, discovery of outliers to extract
a few data objects with abnormal behavior patterns, which
are more imperative than common patterns in some cases,
can be of practical significance in intrusion detection
systems, credit fraud detection, etc [20]. Hence, in this
study we investigate the use of outlier mining techniques
to address the problem of validating the legitimacy of
abnormal events.

III. ROBUST SECURITY NETWORK

The IEEE 802.11i standard [1] defines two classes
of security framework for IEEE 802.11 WLANs: RSN
(Robust Security Network) and pre-RSN. A station is
called RSN capable equipment if it is capable of creating
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Fig. 2. RSNA - Authentication Phase

RSN Associations (RSNA), otherwise, it is a pre-RSN
equipment. In an Extended Service Set (ESS), during the
RSNA a number of messages are exchanged between the
supplicant (STA) and the authenticator (AP). The network
that only allows RSNA with RSN-capable equipments is
called a RSN security framework. The major difference
between RSNA and pre-RSNA is the 4-way handshake. If
the 4-way handshake is not included in the authentication /
association procedures, stations are said to use pre-RSNA.

Figure 1 shows the first phase in RSNA - the discovery
phase. During this phase both the STA and the AP agree
on a common security policy. Flows 1-6 are the IEEE
802.11 [21] association process prior to attaching to the
AP. During this process, security information and capabil-
ities are negotiated using the RSN Information Element
(IE). The Authentication in flows 3 and 4 refer to the
IEEE 802.11 open system authentication. On successful
completion of the discovery phase the AP initiates the
authentication phase by starting the IEEE 802.1X [22]
authentication as shown in Figure 2. If the STA and the
authentication server authenticate each other successfully,
both of them independently generate a Pairwise Master
Key (PMK). Depending on the type of authentication
mutually agreed between the STA and the authentication
server, there could be several messages exchanged be-
tween them (flow 9) before the PMK is generated. The
authentication server then transmits the PMK to the AP
through a secure channel (for example, IPsec or TLS).

The next phase in the RSNA is the key distribution
phase as illustrated in Figure 3. The PMK generated
during the authentication phase is used to derive and
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verify a Pairwise Transient Key (PTK), guaranteeing fresh
session key between the STA and the AP. This is called
the 4-way handshake phase as shown by flows 11 - 14.
Next, the group key handshake is initiated. The group key
handshake is used to generate and refresh the Groupwise
Transient Key (GTK), which is shared between a group of
STAs and APs. Using this key, broadcast and multi-cast
messages are securely exchanged in the air.

The anomaly detection modules in our Early Waring
System (EWS) tracks all messages discussed above to
make an assessment on the level and nature of an anomaly.
The software model of the IEEE 802.11i security ar-
chitecture, which was developed and analyzed by [8] is
used as the prototype for detecting behavioral anomalies.
This model has been formally verified for consistency and
completeness [23]. In the next section we introduce partial
data cubes and the concept of surrogate views.

IV. OLAP AND DATA VIEWS

A popular model for Online Analytical Processing
(OLAP) applications is the multidimensional database
also known as the data cube [24]. A data cube consists of
two kinds of attributes: dimensions and measures. The set
of dimensions may consist of elements like IP addresses,
port addresses, event identities etc. that together form a
key. Measures are typically numeric elements like packet
size, duration etc. Data cube queries represent an impor-
tant class of OLAP queries in decision support systems.
The pre-computation of the different views of a data cube
(i.e., the forming of aggregates for every combination
of GROUP BY attributes) is critical to improving the
response time of the queries [25]. However, in many cases
not all views are needed for decision making, therefore it
is advantageous to use only selected views. Such cubes
with only selected views are referred to as partial data
cubes [26].

Figure 4 shows a data cube with thirty two views made
up of five attributes. In an actual application although the
number of attributes can be many, the required number of
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AB AC AE AF BC BE BF CE CF EF
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Fig. 4. Data Cube Views

TABLE I
DATA CUBE ATTRIBUTES

Reference Attribute Type
A Source ID Dimension
B Destination ID Dimension
C Event ID Dimension
D Time of Day Dimension
E Day of Week Dimension
F Protocol ID Dimension
G Cipher ID Dimension
- Event count Measure

views may be vary few depending on the requirements.
For example, if we assume that attribute “A” and “B”
represent the identities of APs and STAs respectively,
then for data association analysis between the APs and
STAs we will consider only those views that consists
of attributes “A” and “B”, i.e. views “ABCD”, “ABCE”,
“ABDE”, “ABC”, “ABD”, “ABE” and “AB”. Further-
more, in some cases we may also need to establish associ-
ations with child views to further strengthen our validation
(see views connected by dashed lines in Figure 4). In this
manner, for intrusion detection purposes, we selected the
appropriate attributes bearing in mind the various security
threats on the wireless networking environment.

Table I presents the list of attributes that are stored in
the data cube for our analysis. Since we are concerned
with wireless traces during RSNA, we store only those
attributes that are necessary for this purpose. In this
respect the identities (Source and Destination IDs) of the
two communicating hosts, the current message (event)
passed, the time during the message is passed, the day
on which the message is passed, the protocol used and
the cipher used are stored in the data cube.

The attribute “Event ID” can take values 0 to 56,
representing the 57 different messages exchanged dur-
ing an RSNA [5]–[7], [27]. The attribute Time of Day
represents one of twenty four time periods during the
day. It starts from value 0 (for time period midnight -
1.00 am) and continues up to value 23 (for time period
11.00 pm - midnight). Day of Week is from Monday to
Sunday. Protocol ID ranges from 0 to 5, representing the
six protocols; IEEE802.11, EAP, TLS, PEAP, LEAP and
EAPOL considered in our study. The Cipher ID is 0 for
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TABLE II
SELECTED VIEWS

ABCDFG BCDFG ABCFG BDF BDFG
ABDFG AF BF BEF ABDE
ADE BCFG AC ABEF ACE
AE ACDEFG ACD ABEG BDG
BCEFG AB BDEF ACEFG ABF
ABDEF ABCE ADG ACDE BDEG
ABC BE ABCDEFG AEF ABDEG
ABCEFG BEG BD ADF AD
AG ABD BCE AEG BC
ADEF ABDG ABDF ABG ACFG
BDE BG BCDEFG ABE ABCDE
ADEG A BCDE BCD B
ACDFG ABCD

TABLE III
VIEWS ASSOCIATED WITH SECURITY THREATS

No. Threat Attributes
1 Replay ABCDE, ABCE, ABCD, ABC,

attack ACD, ACE, BCD, BCE, AC, BC
2 Message same as above

deletion
3 Masquerading BCDEFG, BCFG, BCDF, BCDG,

and Malicious AP BCEF, BCEG, BCD, BCE, BCF,
BCG, BC, BD, BE, BF, BG

4 Session Hijack ABCFG, ABCF, ABCG, ABC
ABF, ABG, AB

5 Man-In-The-Middle same as above
(MitM)

6 Denial of Service ABC, AB
(DoS)

AES/CCMP, 1 for TKIP and 2 for WEP. In addition to
these attributes we can also store information related to
the network identities and traffic related information if
desired. The examples considered in our study are mainly
focusing on wireless networks that adopt IEEE 802.11i
security mechanism.

Having decided on the attributes, next, we established
the views that are necessary to substantiate the security
threats. Table II shows all of the views considered in our
analysis. As mentioned earlier, almost all of the views
selected include either one or both attributes A and B.
Using these views we can query the data cube on any
of the associations related to access points and/or hosts.
However, since we are interested in substantiating security
threats it is important to establish a relationship between
these views and security threats.

Table III shows the relationship between data cube
views and some common security threats. This table
was established considering each threat and identifying
the attributes that are associated with the threat. Having
identified the attributes we then categorized the views
that are vital for substantiating the security threat. For
example in the case of Threat 1 - Replay Attack, we need
to track the source and destination of every message in
addition to the event identity. Hence, attributes A, B and
C are important. However, attributes D (Time of Day)
and E (Protocol ID) can be used to further refine the
analysis. Therefore, to substantiate this threat we consider
all views that are associated with these attributes. These
same attributes will be sufficient to substantiate Threat 2
- Message Deletion as well.

In the case of Threat 3 - Masquerading and Malicious
AP, we considered attributes B (Destination ID) and C

(Event ID), since we need to track messages directed
towards the Malicious AP. For these type of threats
attributes F (Protocol ID) and G (Cipher ID) are also
significant. Hence, views BCFG, BCF and BCG, BF and
BG will be important.

Threat 4 - Session Hijack is a more advanced attack,
where the association between a legitimate station and
the access point is hijacked by an illegitimate user. In this
case the illegitimate user will force a channel change with
the access point/station and masquerade as a legitimate
access point/station. Hence, in this kind of a threat we
need to track the source, destination, event, protocol and
the cipher of the messages exchanged. By tracking the
protocol and cipher we can establish whether the illegit-
imate session establishes a different kind of association.
Therefore, for this type of a threat, views associated with
attributes A, B, C, F and G are are considered.

Threat 5 - Man-In-The-Middle attack is not very much
significant in the context of effective confidentiality mea-
sures. However, if a MitM attack turns into a session
hijack attack then our detection mechanism can be of
use. Hence, we can make use of the same attributes
as for session hijack attack. Furthermore, if a MitM is
actively participating in the communication between the
two legitimate hosts, then the timing anomaly detector
will be able to detect some form of timing anomaly. But,
it will again be the intrusion prevention module that will
substantiate the anomaly.

For Threat 6 - Denial-of-Service attack we consider
the events associated with the source and the destination.
Hence, attributes A, B and C will be considered to
substantiate this attack.

The rationale for using data cubes is (i) we can readily
utilize the advantages of OLAP, such as systematic stor-
age of historical data and fast querying (ii) by linking the
threat to the data cube views we can provide a suggestion
about the type of threat and the possible solutions and
(iii) the scaling of the entire system to meet ever growing
needs.

V. QUANTIFYING SECURITY THREATS

In order to substantiate the security threats (using the
data cube views) we established the notion of confidence
level using principles of information theory. The follow-
ing derivation describes how the frequency measure stored
in data cube views is used to establish the confidence level
of an anomaly.

Let A1, A2, . . . , Am be the m attributes considered
in our study, and D1, D2, . . . , Dm be their domains
respectively. Let xk = {B1, . . . , Bk} be a subset of
{A1, A2, . . . , Am} with dimension k, where k ≤ m. If
Ri(k) is the relative frequency for itemset xk with respect
to attribute Bi, then

Ri(k) =
freq (B1, B2, . . . , Bk)

freq (B1, . . . , Bi−1, Bi+1, . . . , Bk)
(1)

In the above equation freq (B1, B2, . . . , Bk) rep-
resents the frequency count of itemset xk and

6 JOURNAL OF NETWORKS, VOL. 3, NO. 8, NOVEMBER 2008

© 2008 ACADEMY PUBLISHER



TABLE IV
RISK VS CONFIDENCE

Risk Level Confidence Level
Trivial ≥ 95.00%
Low 85.00% - 94.99%
Moderate 75.00% - 84.99%
High 65.00% - 74.99%
Major ≤ 65.00%

freq (B1, . . . , Bi−1, Bi+1, . . . , Bk) represents the fre-
quency count of its parent. The relative frequency in this
context is said to be the support of the itemset with respect
to its parent view. We next define the normalized support
for itemset xk as follows

Ni(k) = −Ri(k) log[Ri(k)] (2)

Now, if itemset xk is assumed to cover n possible
disjoint events related to a specific security association,
such that

n∑
i=1

prob(Ri(k)) = 1 (3)

In equation 3, prob(Ri(k)) represents the probability
of the relative frequency for itemset xk with respect to
Bi. The task of measuring the confidence level involves
translating the apriori probabilities to a single real num-
ber representing the units of uncertainty, which we define
as the uncertainty level H(k).

H(k) = −
n∑

i=1

prob(Ri(k))log[prob(Ri(k))] (4)

From this equation we can deduce the group confidence
level for a normally behaving host with n disjoint events
as log(n). Once the uncertainty level is established, we
could compute the group confidence level (GCL) of the
security association represented by itemset xk. This is
defined as the ratio between the abnormal behavior and
the normal behavior during a similar security association
process. Hence, the group confidence level C(k) is given
by the following equation as a percentage.

C(k) =
[

H(k)
log(n)

]
∗ 100% (5)

The group confidence level C(k)), thus obtained could
be used as a scale to indicate the threat level of the
respective association.

Table IV classifies the risk levels, as an example,
in relation to the group confidence level values. This
classification was made on the assumption that the number
of abnormal events are significantly high. However, the
threshold levels at which we set the risk can vary from one
environment to another. Hence proper tuning procedures
needs to be adopted to fix the right confidence levels
for each environment. This method of establishing the
threat levels will be effective mainly when the number of
abnormal events are relatively high. Such situations can
normally arise during most common security breaches.

To be more specific, consider a wireless host that
always connects to a particular access point with a specific
protocol, during week days. Assuming that the credentials
of this wireless host have been compromised, an intruder
can use them to gain access to the network. If the intruder
connects to the network during weekends and/or any
other unusual times, analyzing the network traces in the
time domain will highlight the unusual behavior of the
host. Hence, the information that this wireless host is
connecting during unusual times will be of significance.
However, the legitimate user may also have seldom used
the network during weekends. Therefore, in such situa-
tions we need even more fine mechanism to differentiate
the legitimate user from the intruder.

In such a scenario, examining the association details of
this particular host in a different view may provide useful
indicators to differentiate the legitimate user from the
illegitimate user. For example, as an organizational policy
the legitimate users may always use a particular protocol
to communicate with the access point. Thus, analyzing
the network traces in the protocol domain may present
with abnormal conditions, if the intruder uses a different
protocol to communicate with the same access point. This
type of analysis is useful in session hijack attacks where
rouge access points forcing misconfigured legitimate hosts
to associate with them. In order to substantiate this type of
security breaches we propose the notion of mutual outliers
between different views of data.

VI. THE EARLY WARNING SYSTEM (EWS)

The EWS [3] includes a packet capturing module,
an event engine, a timing anomaly detection module,
a behavioral anomaly detection module, an intrusion
prevention module and a data mining engine. The in-
trusion prevention module is the main component of
our system with the ability of processing outlier based
data association requests in real time. Our system has
multiple levels of defense offering improved reliability
for anomaly detection. The first level of defense is the
detection of timing anomalies followed by the discovery
of behavioral anomalies. If an event is detected with either
one or both of the anomalies a third level of defense is
triggered to validate the legitimacy of the event based on
different views of data. Since our system needs to search
enormous amounts of historical data (in real time) we use
parallel processing techniques to query the database. In
the following section we describe the process of anomaly
detection in detail.

As shown in Figure 5 anomaly filters detect anomalies
that are outside the theoretical or practical behavior region
of a protocol. Anomalies in these regions result in a large
number of false positives in wireless networks due to the
inherent qualities of the wireless environment. Anomaly
detection systems that operate within this region do not
effectively detect anomalies that follow theoretical or
practical behavior of the protocol. Anomalies outside the
theoretical or practical behavior regions occur often and
hence are usually easy to detect and substantiate. On the
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Fig. 5. Anomaly Filter

other hand, anomalies within the theoretical or practical
behavior regions are rare and lead to false negative
reporting. Detecting these anomalies is challenging and
requires analyzing the protocol behavior from different
perspectives. Our proposed system detects such anomalies
using timing inconsistencies and then substantiates the
anomaly by analyzing its behavior from different view
points. A wireless host which behaves normally from
one view point can behave differently from another view
point.

The first stage in our anomaly detection process is
the examination of timing anomalies. This is achieved
by maintaining a timing profile for every participating
host in the wireless network. For example, we maintain
the mean and the standard deviation for each round
trip message transfer. A timing anomaly is triggered
when a host exhibits an abnormal timing value during
a message exchange. Further, a normally behaving host
has to traverse all of the legitimate states of the RSNA
process. If anomalies occur there can be situations where
hosts fall into illegitimate states and fail to match the
projected behavior. The EWS does not instantly classify
anomalies as illegitimate, instead, anomalous events are
forwarded to the intrusion prevention module for further
processing.

The important part of the EWS is the intrusion preven-
tion module. This module has to arrive at important deci-
sions to verify the legitimacy of the anomalies discovered
by the previous modules. The intrusion prevention module
executes a number of data association analysis to decide
whether anomalies detected by the anomaly modules
are legitimate or not. This is achieved by analyzing the
detected anomaly from different view points. Wireless
attacks such as ”Session Hijack“ or ”Man-In-The-Middle”
do exactly follow the protocol but can exhibit differences
in timings. Hence, such attacks cannot be substantiated
merely by looking at just one characteristic of the wire-
less environment. Instead, analyzing anomalies caused by
these attacks from different view points can reveal better
results.

VII. ANOMALY DETECTION

Our main data processing unit is made up of a small
Beowulf cluster. It is used to capture and analyze the
wireless traces. The cluster has four nodes including the
head node. The head node is a Pentium 4 machine with

AP1

STA2

STA3

Adversary

STA1

Monitor

Fig. 6. Test Wireless Environment

1GB internal memory and 120GB secondary storage. The
back nodes are all Pentium III machines with 512MB
internal memory and 40GB secondary storage. The head
node also includes a Dlink AG530 wireless adapter con-
figured to capture wireless network traffic in promiscuous
mode. The captured packets are passed to the event engine
for further processing. One of the back nodes runs the
RADIUS server software and acts as the authentication
server. Our present setup has only one monitoring device.
However, in a practical situation there may be a number
of monitors talking to the central intrusion prevention
module. Thus a distributed monitoring setup would further
enhance the capabilities of our EWS.

The advantage of using a Beowulf cluster in our system
is its scalability and performance. Depending on the size
of the networks and the amount of wireless traces to
be processed the Beowulf cluster could be expanded
from one node to many nodes without any additional
software changes. Further, querying of different views is
made faster, since individual views are held on a number
of different nodes enabling parallel processing. Thus,
delivering better response times.

Using this data processing unit we captured and an-
alyzed large number of wireless traces from our test
wireless environment shown in Figure 6. Here, STA1 and
STA2 are both Linux machines and STA3 is a Windows
XP machine. STA1 is configured for EAP-LEAP authenti-
cation, STA2 is configured for EAP-PEAP authentication
and STA3 for EAP-TLS authentication. The Monitor is
part of the data processing unit which captures wireless
network traffic in promiscuous mode. The Adversary is
capable of introducing various anomalies into the wireless
network. During the experiments were carried the test
setup was exposed to the normal wireless environment of
the university attracting traffic from various unspecified
sources.

Using this setup a number of experiments were car-
ried out to validate the proposed EWS. Two different
types of security threats; Denial-of-Service (DoS) attack
and Replay attack were executed in order to verify the
detection capabilities of Timing and Behavior Anomaly
modules. The proposed substantiating mechanism was
used to quantify the security threats.
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TABLE V
EAP-LEAP TIMING PROFILE

Event Min Max Mean StDev
(ms) (ms) (ms)

OPEN AUTHENTICATION 0.11 13.27 1.22 2.79
OPEN ASSOCIATION 0.09 14.37 2.93 4.48
EAP 1 0.06 17.45 4.15 5.87
EAP 2 (PEAP) 0.06 11.84 2.37 2.99
EAP 3 (LEAP) 0.08 26.42 6.00 8.32
EAP 4 (LEAP) 2.57 41.85 17.90 9.75
EAP Key Exchange 5.19 38.08 13.58 7.78

Overall 90.41 205.07 122.98 27.26

TABLE VI
EAP-PEAP TIMING PROFILE

Event Min Max Mean StDev
(ms) (ms) (ms)

OPEN AUTHENTICATION 0.38 1.39 0.62 0.29
OPEN ASSOCIATION 0.09 32.42 4.22 8.02
EAP 1 0.06 17.93 2.54 4.47
EAP 2 (PEAP) 0.08 13.04 3.26 3.78
EAP 3 (PEAP) 0.05 5.31 1.05 1.55
EAP 4 (PEAP) 0.06 32.56 6.55 7.78
EAP 5 (PEAP) 0.06 16.24 2.61 4.33
EAP 6 (PEAP) 0.05 17.79 3.19 5.43
EAP 7 (PEAP) 0.05 19.14 4.99 5.04
EAP 8 (PEAP) 0.07 19.74 2.44 4.61
EAP 9 (PEAP) 0.07 25.05 3.91 8.16
EAP Key Exchange 0.16 19.46 7.68 7.39

Overall 113.01 334.23 235.88 50.09

A. Timing Anomaly

In order to study the behavior of wireless hosts during
different EAP type specific authentication process, we col-
lected 802.11 management traces from different wireless
hosts configured to authenticate using LEAP, PEAP and
TLS authentication mechanisms. In this case the same
access point was used with the three different stations
ST1, STA2 and STA3.

Tables V and VI show the timing profiles for stations
STA1 and STA2 respectively. These results were obtained
from over forty five trials conducted on our experimental
setup. The timing profiles show the allowable timings to
complete a particular round trip event during different
type specific authentication processes: EAP-LEAP for
STA1 and EAP-PEAP for STA2. The round trip event
is considered to be the completion of two messages; a
request and the corresponding response. The Mean tim-
ing values together with the standard deviation (StDev)
is used to determine the range of timings allowed for
the round trip event during normal operation. We have
approximated the round trip timing values to a normal
distribution. Although, the wireless hosts demonstrate a
very small Min time and a very high Max time, the
timing anomaly module considers about 68% (within one
StDev away from the Mean) of values drawn from the
standard normal distribution as normal.

Table VII shows the timing profile for station STA3. In
this case the timing profile gives the allowable timings
during EAP-TLS authentication process. Experiments
show that out of the timing values for LEAP, PEAP and
TLS authentication, TLS method demonstrates a more
close to normal distribution with consistent timing values.
Hence, maintaining such profiles for every station and

TABLE VII
EAP-TLS TIMING PROFILE

Event Min Max Mean StDev
(ms) (ms) (ms)

OPEN AUTHENTICATION 0.33 0.47 0.41 0.03
OPEN ASSOCIATION 0.49 1.26 0.66 0.21
EAP 1 3.81 9.46 5.19 1.21
EAP 2 4.66 7.95 6.04 0.82
EAP 3 (PEAP) 0.10 8.39 2.30 2.11
EAP 4 (TLS) 6.51 16.37 9.76 2.79
EAP 5 (TLS) 0.06 6.47 2.32 2.66
EAP 6 (TLS) 7.64 17.04 14.82 2.33
EAP 7 (TLS) 0.08 12.30 5.67 4.52
EAP Key Exchange 13.92 21.13 16.80 1.74

Overall 147.94 220.25 176.75 19.23

TABLE VIII
EAP-LEAP TIMINGS DURING DOS ATTACK

Event Time (ms)
OPEN AUTHENTICATION 0.41
OPEN ASSOCIATION 0.16
EAP 1 5.65
EAP 2 (PEAP) 3.04
EAP 3 (LEAP) 2.29
EAP 4 (LEAP) 36.55
EAP Key Exchange 9.11

Overall 157.00

access point duo can reveal any timing anomalies that may
arise due to abnormal conditions between two wireless
host pairs.

Next, we injected some abnormal management frames
forcing the wireless hosts to deauthenticate and reas-
sociate frequently. This was done by injecting “Deau-
thentication” and “Association Request” frames using the
“airreplay” [28] tool.

The timing values shown in Table VIII is the minimum
of several RSNA associations during a DoS attack. Here
neither the access point nor the station was targeted.
However we injected several “Deauthentication” frames
with a fake MAC address jamming the medium. Dur-
ing this period we initiated a EAP-LEAP authentication
process and the timings were noted. To make sure the
timing anomaly module detects every possible anomaly,
we considered the minimum timings. From the timing
measurements in Table VIII it can be seen that although
the timings values for “EAP 1, 2 and 3” messages are
comparable to the normal timings, “EAP 4” and the
“Key Exchange” messages show significantly high timing
values resulting in high overall timing. Although, these
timing values fall within the Max timings, it will be
considered abnormal since they do not fall within the 68%
of the standard normal distribution.

The timings shown in Table IX were obtained during a
DoS attack. As in the above case while we injected sev-
eral “Deauthentication” frames with fake MAC addresses
we initiated EAP-PEAP authentication and recorded the
round trip times. Here, “EAP 7” and the “Key Exchange”
messages show very high timing values resulting in very
high overall timing.

The timings shown in Table X above were obtained
during a DoS attack. Here, like in the other cases we
injected some “Deauthentication” frames with a fake
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TABLE IX
EAP-PEAP TIMINGS DURING DOS ATTACK

Event Time (ms)
OPEN AUTHENTICATION 0.63
OPEN ASSOCIATION 5.36
EAP 1 0.27
EAP 2 (PEAP) 7.44
EAP 3 (PEAP) 2.52
EAP 4 (PEAP) 5.30
EAP 5 (PEAP) 0.45
EAP 6 (PEAP) 0.20
EAP 7 (PEAP) 37.63
EAP 8 (PEAP) 0.47
EAP 9 (PEAP) 4.56
EAP Key Exchange 79.07

Overall 426.70

TABLE X
EAP-TLS TIMINGS DURING DOS ATTACK

Event Time (ms)
OPEN AUTHENTICATION 0.43
OPEN ASSOCIATION 1.28
EAP 1 2.54
EAP 2 0.49
EAP 3 (PEAP) 4.73
EAP 4 (TLS) 58.01
EAP 5 (TLS) 0.36
EAP 6 (TLS) 14.51
EAP 7 (TLS) 4.87
EAP Key Exchange 85.87

Overall 276.97

MAC address jamming the medium. During this period
we initiated an EAP-TLS authentication process and the
timings were noted. From the timing measurements in
Table X it can be seen that the values shown for some
“EAP TLS Request/Response” messages are significantly
higher resulting in a high overall timing. Thus our Timing
Anomaly module detects that the hosts are experiencing
some abnormal condition.

Although the DoS attack did not affect the authentica-
tion process itself the timing anomaly detection module
detects a time delay in the authentication process. Such
delays could be due to other qualities of the wireless
environment as well, and hence, needs to be further
investigated. Therefore, without merely reporting this as
an anomaly we need to investigate the legitimacy of the
anomaly. Hence, our EWS passes this information to the
third phase - the intrusion prevention module, where the
anomaly is substantiated using our proposed outlier based
data association techniques.

B. Behavior Anomaly

The next stage in our anomaly detection process is
the behavioral analysis of the participating hosts. The
events shown in Table XI represent the normal behavior
of a station during an EAP-TLS association process.
Here the first four events represent 802.11 open system
authentication. The next event initiate the 802.1x mutual
authentication with the “EAP REQUEST IDENTITY
1” message. The 802.1x authentication begins with the
access point requesting the wireless station to identify
itself. The response from the wireless station is redirected
to the authentication server which in turn initiates the

TABLE XI
EAP-TLS EVENTS DURING NORMAL BEHAVIOR

ID Event
0 OPEN AUTHENTICATION
0 OPEN AUTHENTICATION
3 OPEN ASSOCIATION REQUEST
4 OPEN ASSOCIATION RESPONSE
6 EAP REQUEST 1 (IDENTITY)
7 EAP RESPONSE 1 (IDENTITY)
20 EAP REQUEST 2 (IDENTITY)
21 EAP RESPONSE 2 (IDENTITY)
40 EAP REQUEST 3 (PEAP)
41 EAP RESPONSE 3 (NAK)
42 EAP REQUEST 4 (TLS)
43 EAP RESPONSE 4 (TLS)
44 EAP REQUEST 5 (TLS)
45 EAP RESPONSE 5 (TLS)
47 EAP REQUEST 6 (TLS)
48 EAP RESPONSE 6 (TLS)
49 EAP REQUEST 7 (TLS)
50 EAP RESPONSE 7 (TLS)
51 EAP SUCCESS
52 EAPOL KEY
52 EAPOL KEY
52 EAPOL KEY
52 EAPOL KEY

TABLE XII
EAP-PEAP EVENTS DURING NORMAL BEHAVIOR

ID Event
0 OPEN AUTHENTICATION
0 OPEN AUTHENTICATION
3 OPEN ASSOCIATION REQUEST
4 OPEN ASSOCIATION RESPONSE
6 EAP REQUEST 1 (IDENTITY)
7 EAP RESPONSE 1 (IDENTITY)
20 EAP REQUEST 2 (PEAP)
22 EAP RESPONSE 2 (PEAP)
23 EAP REQUEST 3 (PEAP)
25 EAP RESPONSE 3 (PEAP)
26 EAP REQUEST 4 (PEAP)
27 EAP RESPONSE 4 (PEAP)
29 EAP REQUEST 5 (PEAP)
30 EAP RESPONSE 5 (PEAP)
31 EAP REQUEST 6 (PEAP)
32 EAP RESPONSE 6 (PEAP)
33 EAP REQUEST 7 (PEAP)
34 EAP RESPONSE 7 (PEAP)
35 EAP REQUEST 8 (PEAP)
36 EAP RESPONSE 8 (PEAP)
37 EAP REQUEST 9 (PEAP)
38 EAP RESPONSE 9 (PEAP)
39 EAP SUCCESS
52 EAPOL KEY
52 EAPOL KEY
52 EAPOL KEY
52 EAPOL KEY

EAP type specific authentication process. Depending on
the security configuration appropriate EAP type specific
authentication will commence. Table XI lists the ten
EAP-TLS authentication events (40-45, 47-50). Event
40 - “EAP REQUEST 3 (PEAP)” is initiated by the
authentication server since we have set the default EAP
type to PEAP in our RADIUS authentication server.

Table XII lists the EAP-PEAP authentication events.
Here also the association begins with open system au-
thentication followed by the 802.1x authentication. Un-
like EAP-TLS authentication EAP-PEAP authentication
consists of sixteen EAP type specific events (20, 22, 23,
25-27, 29-38). It can be noticed that this list does not
have event “EAP RESPONSE (NAK)”, since the wireless
station is configured for EAP-PEAP authentication itself.

Table XIII lists the EAP-LEAP authentication events.
Here again we have events 20 and 21 since the wireless
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TABLE XIII
EAP-LEAP EVENTS DURING NORMAL BEHAVIOR

ID Event
0 OPEN AUTHENTICATION
0 OPEN AUTHENTICATION
3 OPEN ASSOCIATION REQUEST
4 OPEN ASSOCIATION RESPONSE
6 EAP REQUEST 1 (IDENTITY)
7 EAP RESPONSE 1 (IDENTITY)
20 EAP REQUEST 2 (PEAP)
21 EAP RESPONSE 2 (NAK)
11 EAP REQUEST 3 (LEAP)
12 EAP RESPONSE 3 (LEAP)
13 EAP SUCCESS
14 EAP REQUEST 4 (LEAP)
18 EAP RESPONSE 4 (LEAP)
52 EAPOL KEY
52 EAPOL KEY
52 EAPOL KEY
52 EAPOL KEY

TABLE XIV
EAP-TLS EVENTS DURING REPLAY ATTACK

Raw Event ID
STA3 - AP1 444.803634 360 AUTHENTICATION 0
STA3 - AP1 444.805244 362 ASSOCIATION REQUEST 3
AP1 - STA3 444.873872 813 DEAUTHENTICATION 1
STA3 - AP1 444.888390 374 ASSOCIATION REQUEST 3
AP1 - STA3 444.888758 814 DEAUTHENTICATION 1
STA3 - AP1 444.902434 376 ASSOCIATION REQUEST 3
AP1 - STA3 444.902874 815 DEAUTHENTICATION 1
STA3 - AP1 447.425796 053 AUTHENTICATION 0
AP1 - STA3 447.426138 883 AUTHENTICATION 0
STA3 - AP1 447.427177 054 ASSOCIATION REQUEST 3
AP1 - STA3 447.427769 884 ASSOCIATION RESPONSE 4
AP1 - STA3 447.428256 490 EAP REQUEST IDENTITY 1 6
STA3 - AP1 447.435340 056 EAP RESPONSE IDENTITY 1 7
.... adopts normal behavior from here -

station is configured for EAP-LEAP authentication. On
all of the three types of authentication processes the last
four messages (52) represent the key distribution phase.
EAP-LEAP authentication process consists of five events
(11-14, 18) only.

Tables XI, XII and XIII all list the EAP type specific
events during normal behavior. However, when anomalies
arise this behavior can change. There can be situations
where the number of events are extraordinarily high or
low. There can also be situations where events can totally
disappear from the receptive range of the monitoring de-
vices. Therefore tracking these events and analyzing them
appropriately can reveal vital information regarding any
abnormality in the wireless environment. As discussed
before here again we hold behavior profiles for every
participating station - access point pair. Therefore, when
stations roam and re-associate via another access point we
will then be analyzing the behavior with a profile specific
to that access point.

In order to study the behavior of the wireless stations
during abnormal conditions, next, we injected some ab-
normal management frames forcing the wireless hosts
to deauthenticate and reassociate frequently. This was
done by injecting “Deauthentication” and “Association
Request” frames simulating a Replay attack.

Table XIV lists the traces obtained during EAP-TLS
authentication between station STA3 and the access point.
Each line of the table corresponds to a single message
passed between two wireless hosts, indicating the direc-

TABLE XV
EAP-PEAP EVENTS DURING REPLAY ATTACK

Raw Event ID
AP1 - STA2 85.025390 0509 AUTHENTICATION 0
STA2 - AP1 85.025936 0117 ASSOCIATION REQUEST 3
AP1 - STA2 85.026522 0510 ASSOCIATION RESPONSE 4
STA2 - AP1 85.027379 3694 ASSOCIATION REQUEST 3
AP1 - STA2 85.027884 1371 EAP REQUEST IDENTITY 1 6
STA2 - AP1 85.042119 3694 ASSOCIATION REQUEST 3
STA2 - AP1 85.042220 3694 ASSOCIATION REQUEST 3
AP1 - STA2 86.016005 0846 DEAUTHENTICATION 1
STA2 - AP1 90.743014 0216 AUTHENTICATION 0
AP1 - STA2 90.743440 0912 AUTHENTICATION 0
STA2 - AP1 90.744476 0217 ASSOCIATION REQUEST 3
AP1 - STA2 90.745070 0913 ASSOCIATION RESPONSE 4
AP1 - STA2 90.745531 1386 EAP REQUEST IDENTITY 1 6
STA2 - AP1 90.763463 0218 EAP RESPONSE IDENTITY 1 7
..... adopts normal behavior from here -

TABLE XVI
EAP-LEAP EVENTS DURING REPLAY ATTACK

Raw Event ID
AP1 - STA1 205.665782 1789 AUTHENTICATION 0
STA1 - AP1 205.666533 2725 ASSOCIATION REQUEST 3
AP1 - STA1 205.667928 1790 ASSOCIATION RESPONSE 4
AP1 - STA1 205.668035 1409 EAP REQUEST IDENTITY 1 6
AP1 - STA1 235.657322 2145 DEAUTHENTICATION 1
STA1 - AP1 241.369603 2824 AUTHENTICATION 0
AP1 - STA1 241.370002 2213 AUTHENTICATION 0
STA1 - AP1 241.370995 2825 ASSOCIATION REQUEST 3
AP1 - STA1 241.371589 2214 ASSOCIATION RESPONSE 4
AP1 - STA1 241.372046 1424 EAP REQUEST IDENTITY 1 6
STA1 - AP1 241.373288 2826 EAP RESPONSE IDENTITY 1 7
...... adopts normal behavior from here -

tion of message transfer, the time of transfer, the sequence
number and the event.

Tables XIV, XV and XV list the wireless traces ob-
tained from a number of RSNA during EAP-TLS, EAP-
PEAP and EAP-LEAP authentication process between
the access point and stations STA3, STA2 and STA1
respectively. In all three scenarios we see a behavioral
anomaly where the access point deauthenticate the station
without responding to the replayed messages sent by the
adversary. This is due to the adversary sending an Asso-
ciation Request message without the correct credentials
to meet the requirements of the access point.

However, although all three authentication mechanisms
do not demonstrate similar behavior, EAP-PEAP and
EAP-LEAP authentication mechanisms show similar be-
havior (Tables XV and XV) compared to the EAP-TLS
authentication process. This is because STA3 is a Win-
dows XP client, whereas the other two are Linux clients.
Since the adversary is also a Linux client the replayed
Association Request message is acknowledged and the
access point initiates EAP authentication with the EAP
REQUEST IDENTITY message, which the adversary
does not recognize and sends another Association Request
message. At this point the access point realizes foul play
and disconnects the station which results in the legitimate
station also getting disconnected.

The behavior anomaly detector will detect all three
scenarios as anomaly, but it will be up to the intrusion
prevention module to substantiate the legitimacy of the
anomalies. Hence, let us now see how the intrusion
prevention module will substantiate these anomalies.
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Fig. 7. Normal EAP-LEAP Authentication
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Fig. 8. Normal EAP-PEAP Authentication

VIII. SUBSTANTIATION

Figures 7, 8 and 9 show the normalized support (Equa-
tion 2) for EAP type specific events on wireless stations
configured for EAP-LEAP, EAP-PEAP and EAP-TLS
authentication respectively. These readings were obtained
from our experimental setup during normal operations.
Here, we use the term normal operation meaning that
there was no abnormal events introduced explicitly. How-
ever, the wireless environment was exposed to the regular
campus wide wireless traffic. The diagrams also indicate
the ideal normalized support (Table XVII) for both IEEE
802.11 and EAP events. The event numbers used in these
diagrams are serial values that correspond to the event
IDs in Tables XI, XII and XIII in the same order.

On the above diagrams that show the behavior of
wireless hosts under normal operations, the normalized
support values of most events have support values close to
the ideal normalized support. Although some EAP-LEAP
and EAP-PEAP events show larger deviation from the
ideal support values, the overall confidence is guaranteed
as shown in Table XVIII. The table lists the uncertainty
level (Equation 4) and the confidence levels (Equation 5)
of IEEE 802.11 and EAP group events under EAP-LEAP,
EAP-PEAP and EAP-TLS authentication.

To calculate these values, the outlier detection process
made at most two drill-down queries on the data cube
and the average time taken to execute a single result
was approximately 0.0324 ms. We made use of the
frequency measure stored on each cell to calculate the
individual frequencies of the events and their aggregate
frequencies. In many data warehousing applications the
measure values stored in cells are fixed. In our case since
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Fig. 9. Normal EAP-TLS Authentication
TABLE XVII

IDEAL NORMALIZED SUPPORT

EAP-LEAP EAP-PEAP EAP-TLS
802.11 EAP 802.11 EAP 802.11 EAP

0.43 0.37 0.46 0.24 0.50 0.27

we need real time response the measure values need to
be incremented on-the-fly when new legitimate states are
identified.

From these results it is evident that all three authentica-
tion schemes demonstrate high confidence during normal
operations irrespective of those events deviating from
ideal support values. This is due to the fact that all
IEEE 802.11 and EAP events, as a group, behave in a
predictable manner under normal conditions. However,
under abnormal conditions their group behavior cannot be
guaranteed. To further emphasize our claim we consider
two abnormal situations in the wireless environment and
discuss their results.

Figures 10, 11 and 12 show the normalized support for
EAP type specific events on wireless stations configured
for EAP-LEAP, EAP-PEAP and EAP-TLS authentication
respectively, during a DoS attack. In all three cases the
support values of IEEE 802.11 events deviate consid-
erably from the ideal support values. This is because
of the “Deauthentication” frames injected. Consequently,
this demonstrates the unreliable nature of 802.11 open
system association.

During the DoS attack, events “ASSOCIATION RE-
QUEST” (5) and “ASSOCIATION RESPONSE” (6) have
almost equal support in both EAP-LEAP and EAP-PEAP
authentication. This is due to the legitimate reassociation
after a deauthentication. Similarly, the “DEAUTHENTI-
CATION” (3,4) and “AUTHENTICATION” (1,2) events
also have almost equal frequencies. However, “DEAU-
THENTICATION” events have high frequency because
of the injected “Deauthentication” frames. Furthermore,
the EAP events on all three stations show less support
compared to the 802.11 events, particularly the “DEAU-
THENTICATION” events. This is because of the large
number of “DEAUTHENTICATION” events injected and
the corresponding response. However, reassociation does
not take place at the same frequency, since the channel
is busy with “DEAUTHENTICATION” events. In some
cases when 802.11 open system authentication is in
progress there has been interruptions due to the injected
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TABLE XVIII
QUANTIFYING NORMAL OPERATION

Parameter Authentication Type
EAP-LEAP EAP-PEAP EAP-TLS

802.11 EAP 802.11 EAP 802.11 EAP
H(k) 2.51 2.91 1.95 3.85 1.93 3.74
C(k) 97.02 97.07 97.39 98.45 96.57 98.11
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Fig. 10. DoS Attack during EAP-LEAP Authentication

“DEAUTHENTICATION” events resulting in fresh reas-
sociation.

On the other hand, if we look at the EAP events,
except for the first “EAP REQUEST IDENTITY 1” event
all other EAP events have support values close to ideal.
This is because “EAP REQUEST IDENTITY 1” event is
triggered by the access point and at this point the actual
EAP authentication has not commenced. Therefore, a
bogus “DEAUTHENTICATION” event can still interrupt
the association process resulting in fresh reassociation.

As discussed above, Figures 10, 11 and 12 all demon-
strate the behavior of RSNA events during the DoS
attack. It shows that 802.11 events are vulnerable to the
attack. To further investigate this behavior we calculated
the uncertainty level and the confidence level for each
case. As shown in Table XIX, the confidence levels for
IEEE 802.11 events are comparatively low for all three
stations. Whereas, the confidence level for EAP events
are high. However, station STA3 configured for EAP-
TLS authentication demonstrates very high confidence
(90.53) for EAP events and very low confidence (40.36)
for 802.11 events.

[t]
Figures 13, 14 and 15 show the normalized support for

EAP type specific events on wireless stations configured
for EAP-LEAP, EAP-PEAP and EAP-TLS authentication
respectively, during a Replay attack. Here again, the sup-
port for 802.11 events are considerably high. This is be-
cause of the “Authentication” and “Association Request”
frames injected. Consequently, as in the case of DoS
attack this demonstrates the unreliable nature of 802.11
open system association. In this case the events “AU-
THENTICATION” (1) and ”ASSOCIATION REQUEST”
(4), both replayed messages, have very high frequency
indicating the Replay attack. It can also be noted that in
these figures we have six 802.11 events compared to the
five events found during the DoS attack. The additional
event found here is the “DISASSOCIATION” (3) message
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Fig. 11. DoS Attack during EAP-PEAP Authentication
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Fig. 12. DoS Attack during EAP-TLS Authentication

fired by the access point. The access point rejects the
adversary when it does not respond favorably to the “EAP
REQUEST IDENTITY 1” message. Hence, it is evident
that the behavior of the EAP configured stations differ
depending on the type of attack they experience.

Further, it can be noticed that in both attack scenarios
the support for “EAP REQUEST IDENTITY 1” event is
high compared to the other EAP events. This is because
at this stage the authentication server has still not come
into action. It is only after the authentication server issues
the “EAP REQUEST PEAP 2” (since default EAP type
is set to PEAP on the authentication server) message the
EAP events become stable. In this study the “Replay” or
the “DoS” attack executed do not interfere with the EAP
encapsulated messages, however, a rogue access point can
replay the first “EAP REQUEST IDENTITY 1” message.

Next, let us consider the EAP type specific events. The
support values of the type specific events are almost con-
stant in both attack scenarios confirming the effectiveness
of the EAP authentication process. As soon as the EAP
type specific authentication begins the association process
becomes very reliable. Although, the DoS attack can
jam the authentication process delaying certain message
exchange (as seen in Table VIII), the process itself is
robust due to the effectiveness of the EAP.

As discussed above, Figures 10, 11 and 12 all demon-
strate the behavior of RSNA events during the Replay
attack. It confirms that 802.11 events are vulnerable to the
attack. To further investigate, as in the case of DoS attack,
we calculated the uncertainty level and the confidence
level for each case. Table XX shows these values. Here
again the confidence levels for 802.11 events are low for
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TABLE XIX
QUANTIFYING A DOS ATTACK

Parameter Authentication Type
EAP-LEAP EAP-PEAP EAP-TLS

802.11 EAP 802.11 EAP 802.11 EAP
H(k) 1.68 2.51 1.82 3.38 1.04 3.91
C(k) 65.17 79.33 70.57 79.56 40.36 90.53
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Fig. 13. Replay Attack during EAP-LEAP Authentication

all three stations (71.52 - 80.52). The confidence level for
EAP events are comparatively high (94.03 - 94.77).

The above examples show promising results for our
proposed concept of using timing and/or behavioral anal-
ysis with outlier based confidence measure for detecting
and substantiating abnormal conditions. Although in our
experiments we have not tested the vulnerabilities of the
EAP authentication process, the same concept can be used
to detect future exploits on the EAP process. Further,
in most attack scenarios the attacker needs to inject
many messages before he could actually compromise the
credentials of a legitimate station. Therefore, as soon
as we detect an abnormal condition we can continue to
monitor the suspicious stations and once sufficient traces
are collected we can substantiate the abnormality using
outlier based data association techniques. In this manner
we can either raise an alarm that a security breach is on
the verge or give an indication of the level of threat for
the exposed station.

In the foregoing paragraphs we have discussed the
vulnerabilities of the various protocols and how they
affect the overall confidence of the RSNA. However, in
the case of RSN, it is important to note, that although
IEEE 802.11 and EAP protocols may demonstrate low
confidence levels, it is up to the security policy maker to
substantiate it appropriately depending on user privileges.
Because in the two attack scenarios discussed even though
the behavior indicates that the RSN is unstable during
the 802.11 and EAP protocol phases, it only affects the
“availability” of the stations and does not compromise the
“authenticity” of the participating stations. Hence, when
formulating the security threat levels one has to consider
a range of factors, mainly the user priorities, level of
sensitivity of the network etc. and make appropriate
decisions.

The data cube results discussed above are obtained in
an offline mode. We believe that this system is scalable
and can be extended for any type and size of networks
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Fig. 14. Replay Attack during EAP-PEAP Authentication
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Fig. 15. Replay Attack during EAP-TLS Authentication

in Online mode since the capabilities of the data cube
algorithms were rigorously tested [29]. The timing results
obtained from our small test cluster is also encouraging.

IX. CONCLUSIONS

In this paper, we have discussed the use of timing
and/or behavioral analysis for detecting anomalies in
the wireless environment. Further, we have reported the
results obtained from our novel substantiation mechanism
(GCL) in validating the abnormal conditions. The exper-
imental results obtained with the 802.11i based network
are promising and confirming the concept of the proposed
detection mechanism. The GCLs obtained for EAP-LEAP,
PEAP and TLS show that the EAP events as a group
demonstrate high confidence than the IEEE 802.11 events.
This confirms the effectiveness of IEEE 802.1x based
authorization, authentication and key distribution adapted
by the IEEE 802.11i security mechanism.

The analysis of the test results demonstrate the ef-
fectiveness of our proposed system in detecting various
anomalies including security threats. Substantiation of the
detected anomalies using normalized support values and
GCL has been tested on real data. Nevertheless, we have
not tested our system with abnormalities that can directly
interfere with the EAP authentication process. As of to
date EAP vulnerabilities on the wireless environment has
not been reported. However, the results presented here
shows that our concept is capable of detecting even future
exploits on EAP vulnerabilities. Furthermore, although
this technique is expected to provide very promising re-
sults in cooperate networks, their applicability on smaller
networks may be limited due to resource requirements.
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TABLE XX
QUANTIFYING REPLAY ATTACK

Parameter Authentication Type
EAP-LEAP EAP-PEAP EAP-TLS

802.11 EAP 802.11 EAP 802.11 EAP
H(k) 1.87 2.98 1.66 4.03 1.71 3.85
C(k) 80.52 94.03 71.52 94.77 73.60 94.29
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