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Abstract—The linear discriminant analysis (LDA) technique is very popular in pattern recognition for dimensionality reduction. It is a

supervised learning technique that finds a linear transformation such that the overlap between the classes is minimum for the projected

feature vectors in the reduced feature space. This overlap, if present, adversely affects the classification performance. In this paper,

we introduce prior to dimensionality-reduction transformation an additional rotational transform that rotates the feature vectors in the

original feature space around their respective class centroids in such a way that the overlap between the classes in the reduced feature

space is further minimized. As a result, the classification performance significantly improves, which is demonstrated using several data

corpuses.

Index Terms—Rotational linear discriminant analysis, dimensionality reduction, classification error, fixed-point algorithm, probability of

error.

Ç

1 INTRODUCTION

IN a typical pattern recognition application, some char-

acteristic properties (or features) of an object are
measured, and the resulting feature vector is classified into

one of the finite number of classes. When the number of

features is relatively large, it becomes difficult to train a

classifier using a finite amount of training data. In addition,

the complexity of a classifier increases with the number of

features used. In such situations, it becomes important to

reduce the dimensionality of the feature space. There are a

number of techniques proposed in the literature for
dimensionality reduction [3], [7], [9]; the linear discriminant

analysis (LDA) technique [7] is perhaps the most popular

among them. LDA is a supervised learning technique that

uses a linear transformation to project the feature vectors

from the original feature space to a subspace in such a way

that the overlap between the classes is minimized in the

reduced feature space.
In order to provide an illustration, consider a two-

dimensional feature space with three classes, as shown in

Fig. 1a. When we use LDA to reduce the dimensionality to
one, we get the orientation W along which the overlap
between the classes is minimum. Note that the overlap

between classes (though minimum) is still finite, and as a
result, we get a finite amount of classification error. In order
to reduce this classification error, we propose in this paper

to use a (rotational) transform �� prior to LDA. The

transform �� rotates the scatter (or spread) of each class
around its own centroid; it is chosen in such a way that the
overlap between the classes in the resulting LDA orienta-
tion is minimum (see Fig. 1b). It can be observed that
classification error in Fig. 1b is less than that seen in Fig. 1a.
Since we are using here the rotational transform with LDA,
we call it the rotational LDA technique.

This paper is organized as follows: The conventional
LDA method is described in Section 2. It provides a
platform on which the rotational LDA method proposed
in this paper is developed. Section 3 describes rotational
LDA in detail. Section 4 describes experimental results
where the rotational LDA method is evaluated with respect
to its pattern classification performance on a number of data
corpuses. A practical application of rotational LDA on a
speaker identification task is described in Section 5. Con-
clusions are provided in Section 6.

2 LINEAR DISCRIMINANT ANALYSIS

LDA is a well-known technique for dimensionality reduc-
tion. It finds an orientation W that reduces high-dimensional
feature vectors belonging to different classes to a lower
dimensional feature space such that the projected feature
vectors of a class on this lower dimensional space are well
separated from the feature vectors of other classes. If the
dimensionality reduction is from a d-dimensional ðRdÞ space
to an h-dimensional ðRhÞ space (where h < d), then the size of
the orientation matrix W is d� h, and W has h column
vectors known as the basis vectors. The orientation W is
obtained by maximizing the Fisher’s criterion function
JðWÞ. This criterion function depends on three factors:
orientation W, within-class scatter matrix ðSW Þ, and
between-class scatter matrix ðSBÞ. For a c-class problem, the
value of h will be c� 1 or less, a constraint due to SB.

To define the LDA explicitly, let us consider a multiclass
pattern classification problem with c classes. Let � ¼ f!i :
i ¼ 1; 2; . . . ; cg be the finite set of c class labels, where !i
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denotes the ith class label. Let �� ¼ fxj 2 Rd; j ¼ 1; . . . ; ng
denote the set of n training samples (or feature vectors) in

a d-dimensional space. The set �� can be subdivided into

c subsets ��1; ��2; . . . ; ��c, where each subset ��i belongs to !i
and consists of ni feature vectors such that n ¼

Pc
i¼1 ni and

��1 [ ��2[; . . . ;[��c ¼ ��.
Let ��j be the centroid of ��j and �� be the centroid of ��,

then the between-class scatter matrix ðSBÞ is given as

SB ¼
Xc
j¼1

njð��j � ��Þð��j � ��Þ
T:

The within-class scatter matrix ðSW Þ, which is the sum of c

scatter matrices, is defined as

SW ¼
Xc
i¼1

Mi;

where Mi ¼
P

x2�iðx� ��iÞðx� ��iÞ
T.

Fisher’s criterion as a function of W can be given as [7]

JðWÞ ¼ jW
TSBWj

jWTSWWj
;

where j � j is the determinant. The orientation W is taken so
that the Fisher’s criterion function JðWÞ is maximum. In a
c-class problem, the LDA projects from a d-dimensional
space to an h-dimensional space; i.e., W : x! y, or
y ¼WTx, where x 2 Rd and y 2 Rh such that 1 � h �
c� 1. The orientation W is a rectangular matrix of size
d� h, which is the solution of the eigenvalue problem:

S�1
W SBwi ¼ �iwi;

where wi are the column vectors of W that correspond to
the largest eigenvalues ð�iÞ.

In the conventional LDA technique, the Gaussian
assumption is not required. However, the within-class
scatter matrix ðSW Þ needs to be nonsingular. When the
number of training samples is not adequate, this scatter
matrix becomes singular. This occurs especially when the
original feature space is very high. This drawback is
considered to be the main problem of LDA and is known
as the small sample size (SSS) problem [9]. The SSS problem
has generated widespread interest among researchers, and
a number of computational methods have been proposed in
the literature to overcome this problem.

A simple and direct way to avoid the singularity problem
is to replace the inverse of the within-class matrix by its
pseudoinverse [19], [25]. However, this does not guarantee
the optimality of Fisher’s criterion. Another way to overcome
the singularity problem is through the regularized LDA
method [8], [11], [16], which adds a small positive constant to
the diagonal elements of SW to make it nonsingular. This
method is also suboptimal as Fisher’s criterion is not exactly
maximized. Swets and Weng [24] and Belhumeur et al. [2]
have proposed a two-stage method (known as the Fisherface
method) to avoid the singularity problem. In the first stage,
the principal component analysis (PCA) is used for
dimensionality reduction in such a way that the within-class
matrix in the reduced dimensional subspace becomes
nonsingular. In the second stage, the classical LDA is used
to reduce the dimensionality further. The two-stage Fisher-
face method (also known as the PCA+LDA method) is
suboptimal as the PCA used in the first-stage loses some
discriminative information. In order to avoid this loss in
discriminative information, two other recently proposed
two-stage methods to overcome the SSS problem are the null
space method [6] and the direct LDA method [28]. In the null
space method, the first stage transforms the training data
vectors to the null space of the within-class scatter matrix SW
(i.e., it discards the range space of SW ). In the second stage,
the dimensionality is reduced by choosing h eigenvectors of
the transformed between-class scatter matrix corresponding
to the highest eigenvalues. In the direct LDA method, the
first stage discards the null space of the between-class scatter
matrix SB (i.e., the training data vectors are transformed into
the range space of SB), and the second stage reduces the
dimensionality to h by choosing h eigenvectors of the
transformed within-class scatter matrix corresponding to
the lowest eigenvalues. Though these two-stage methods
(the null space method and the direct LDA method) provide
better classification performance than the PCAþLDA
method, these are still suboptimum as they optimize Fisher’s
criterion sequentially in two stages.
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Fig. 1. A comparison between basic LDA and rotational LDA techniques.



Here, we have provided a brief overview of some of the
LDA methods to overcome the SSS problem; for other
methods, see [5], [17], [18], [23], and [27]. It is important to
note that though these methods overcome the SSS problem,
they do not ensure the optimality of Fisher’s criterion as done
in the conventional LDA method and hence are suboptimal.

3 ROTATIONAL LINEAR DISCRIMINANT ANALYSIS

3.1 Theory

This section provides the mathematical details of the
rotational LDA method. Let us consider a multiclass pattern
classification problem with c classes. Let � ¼ f!i : i ¼
1; 2; . . . ; cg be the finite set of c class labels. Let �� ¼ fxj 2
Rd; j ¼ 1; . . . ; ng denote the set of n training samples (or
feature vectors) in d-dimensional space.

Let �Yj 2 Rh (where h < d) be the reduced h-dimensional
feature vector obtained from ��j 2 !j using LDA transfor-
mation and denote the set of reduced dimensional
feature vectors by �Y ¼ fy1;y2; . . . ;yng. Thus, �Yj � �Y ,
and �Y1 [ �Y2 [ � � � [ �Yc ¼ �Y .

For illustration, consider a two-class problem ðc ¼ 2Þ as
shown in Fig. 2, where ��1 and ��2 are the two subsets of
feature vectors in the original two-dimensional space
ðx 2 R2Þ. The class labels of these subsets are represented
as !1 and !2, respectively. This original space is transformed
to a lower one-dimensional subspace ðy 2 R1Þ, producing
transformed sample sets�Y1 and�Y2, which belong to the class
labels !1 and !2, respectively. The transformation is con-
ducted using an LDA transformation W of size d� h (in this
illustration, h ¼ 1); i.e., W : x! y, or yj ¼WTxj for
j ¼ 1; . . . ; n. The respective probability distributions of �Y1

and �Y2 are also shown in Fig. 2. The classifier divides the
one-dimensional subspace into two regionsR��1 andR��2. There
are two possibilities in which a classification error could
occur; either observation yðW : x! yÞ falls in the region R��1

and the true class is !2 or y falls in the regionR��2 and the true
class is !1. Since these events are mutually exclusive and
exhaustive [7], we can define probability of error as

Perror ¼ P ðy 2 !2; R��1Þ þ P ðy 2 !1; R��2Þ
¼ P ðy 2 R��1j!2ÞP ð!2Þ þ P ðy 2 R��2j!1ÞP ð!1Þ

¼
Z

y2R�1

pðyj!2ÞP ð!2Þdyþ
Z

y2R�2

pðyj!1ÞP ð!1Þdy;

where P ð!jÞ is the a priori probability of �Yj. In a multiclass
case, it would be easier to find the probability of being
correct [7]. Therefore

Pcorrect ¼
Xc
j¼1

Z
y2R�j

pðyj!jÞP ð!jÞdy:

We can also compute the total probability of �Y by
evaluating the probability densities separately for each of
�Yj and finally adding the computed densities; i.e.

Ptotal ¼
Xc
j¼1

Z
y2�Yj

pðyj!jÞpð!jÞdy:

The Ptotal function is independent of regions R��j; therefore,
it will remain unchanged with respect to the values of R��j. It
can be observed that Pcorrect and Perror add up together to
give Ptotal; i.e.

Ptotal ¼ Pcorrectþ Perror:

Therefore, the probability error function can be written as

Perror ¼ b� Pcorrect

¼ b�
Xc
j¼1

Z
y2R�j

pðyj!jÞP ð!jÞdy; ð1Þ

where b is a constant and is equal to Ptotal. In practice, we
have to compute the integral in (1) using the data in the
training set. Therefore, we approximate the integration
operation by a summation operation as follows [1]:

A ¼
Z
fðxÞdx ¼ lim

n!1

Xn
k¼1

fðxkÞ�x �
Xn
k¼1

fðxkÞ�x: ð2Þ

Using this approximation (2), (1) can be rewritten as

Perror ¼ b�
Xc
j¼1

X
y2R�j

pðyj!jÞP ð!jÞ�V ; ð3Þ

where �V is a volume of a tiny hypercube. This �V is a
scalar quantity and depends upon the transformed
sample set �Y . Equation (3) is a probability error function
for a scalar y, which can be extended to vector y simply
by replacing a vector in place of scalar y.

Constant �V is independent of any class and therefore is
taken outside from the summations of (3). The value of a
priori probability P ð!jÞ ¼ nj=n is substituted in (3); this
yields Perror as

Perror ¼ b� k
Xc
j¼1

nj
X
y2R�j

pðyj!jÞ; ð4Þ

where k ¼ �V =n is a constant.
The basic LDA transformation ðy ¼WTxÞ has to be

changed to account for the rotation of the original space. We
introduce a rotational transform �� prior to LDA and trans-
form the feature vector x belonging to class !j as follows:

y ¼WT ��Tðx� ��xj
Þ þ ��xj

h i
; ð5Þ

where ��xj
is the mean of ��j.
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Fig. 2. Probability error for the two-class problem.



At the beginning when no rotation has taken place, the
transformation �� would be a d� d identity matrix, and (5)
would reduce to the basic LDA transformation. To find
the optimum rotation ��, it is required to differentiate the
scalar function (4) with respect to the transformation
matrix ��. The value of �� that corresponds to the
minimum of Perror would be the optimum rotation ��.
From (4), we get

@

@��
Perror ¼ �k

Xc
j¼1

nj
X
y2R�j

@

@��
pðyj!jÞ; ð6Þ

where y is from (5). The next thing is to find the
probability distribution pðyj!jÞ before differentiating it
with respect to ��. One way to estimate pðyj!jÞ is to use a
parametric technique where we assume a functional form
of the distribution characterized by a few parameters.
Here, we assume y to be distributed as multidimensional
Gaussian.1 Differentiating the resulting pðyj!jÞ, we get

@

@��
pðyj!jÞ ¼

@

@��

(
1

ð2�Þh=2 �yj

��� ���1=2

exp � 1

2
y� ��yj

� �T
��1

yj
y� ��yj

� �� �)
;

ð7Þ

where ��yj
and ��yj are the mean and the covariance of �Yj.

Substituting (5) in (7), we get

@

@�
pðyj!jÞ

¼ @

@�
pðx; ��;Wj!jÞ

¼ @

@��

(
1

ð2�Þh=2 �yj

��� ���1=2

exp � 1

2
x���xj

� �T
��W��1

yj
WT��T x���xj

� �� �)
;

ð8Þ

where x is the corresponding vector of y 2 R��j; i.e., vectors
x 2 ��j are used to compute y 2 R��j (using (5)) in (8). Let us
represent this correspondence relation by xðy 2 R��jÞ. The
following lemma would help in solving (8).

Lemma 1. Let the scalar function expð� 1
2uÞ be a differentiable

function of a d� d square matrix ��. Suppose

u ¼ ��T��WBWT��T��;

where �� is any vector of size d� 1, B is a square matrix
of size h� h, and W is a rectangular matrix of size d� h
such that h < d. It can be assumed that both the matrices
(B and W) and the vector ð��Þ are independent of ��.
Then, the gradient of expð� 1

2uÞ is defined as
r��expð� 1

2uÞ ¼ � 1
2 expð� 1

2 uÞ����T��WðBþBTÞWT.

Proof 1. The derivative of scalar expð� 1
2 uÞ with respect to

matrix �� can be given as

@ exp � 1

2
u

� �

¼ � 1

2
exp � 1

2
u

� �
trace @ð��T��WBWT��T��Þ

� �
¼ � 1

2
exp � 1

2
u

� �n
trace½��T@ ��WBWT��T��Þ	

þ trace½��T��WBWT@ ��T��	
o

¼ � 1

2
exp � 1

2
u

� �n
trace½��T�� WBTWT@ ��T��Þ	

þ trace½��T��WBWT@ ��T��	
o

� �
� trðAT Þ ¼ trðAÞ

� �
¼ � 1

2
exp � 1

2
u

� �
trace ��T��WðBþBTÞWT@ ��T��Þ

� �	 

¼ � 1

2
exp � 1

2
u

� �
trace ����T��WðBþBTÞWT@ ��TÞ

� �	 

� �
� trðADÞ ¼ trðDAÞ

� �
�
� � r��exp � 1

2
u

� �
¼ � 1

2
exp � 1

2
u

� �
����T��WðBþBTÞWT:

tu

Using Lemma 1, we can rewrite (8) as

@

@��
pðyj!jÞ ¼ � 1

2ð2�Þh=2j�yj j
1=2

exp � 1

2
u

� �" #

� x� ��xj

� �
x� ��xj

� �T
��W ��1

yj
þ��1

yj

T
� �

WT

� �
;

ð9Þ

where u ¼ ðx� ��xj
ÞT��W��1

yj
WT��Tðx� ��xj

Þ. Substituting

(9) in (6), we get

@

@��
Perror ¼ k0

Xc
j¼1

nj

j�yj j
1=2

X
xðy2R�jÞ

exp � 1

2
u

� �

� x���xj

� �
x���xj

� �T
��W ��1

yj
þ��1

yj

T
� �

WT

� �
;

ð10Þ

where k0 ¼ k=ð2ð2�Þh=2Þ. Equation (10) can also be written in

the expectation form as

@

@��
Perror ¼ k0

Xc
j¼1

n2
j

�yj

��� ���1=2 E
xðy2R�jÞ

F x; ��;W; ��xj
;�yj

� �h i
;

where

F x; ��;W; ��xj
;�yj

� �
¼ exp � 1

2
u

� �� �

�
�

x� �xj

� �
x� ��xj

� �T
��W

� ��1
yj
þ��1

yj

T
� �

WT

�
;

and E½F ð�Þ	 is the expectation of Fð�Þ with respect to x.
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1. It should be noted that the class-conditional probability density
function pðyj!jÞ is assumed here to be a multidimensional Gaussian
function for analytical simplicity purposes. But this choice is justifiable from
the central limit theorem as y is computed from x through a linear
transformation (see (5)).



Since the topography of the original data should remain
unchanged during rotation ��, the column vectors of ��

should be orthonormal. This means that the square matrix ��
is orthonormal; i.e., ��T�� ¼ Id�d. This allows us to use a fixed-
point algorithm [14], which is known to be faster and more
reliable than the gradient algorithms. The fixed-point
algorithm for rotation �� is written as follows:

�� /
Xc
j¼1

n2
j

�yj

��� ���1=2
E

xðy2R�jÞ
F x; ��;W; ��xj

;�yj

� �h i
; ð11Þ

�� ��ð��T��Þ�1=2: ð12Þ

The values of W and �yj will be changing depending upon
the rotation of the original feature space, whereas the class
centroid ��xj

will remain invariant for any such rotation
since the rotation of the training vectors of a class is always
with respect to its centroid ��xj

. The matrices W and ��yj

should be updated for every iteration of �� for (11). The
inverse of ��T�� in (12) is computed using eigenvalue

decomposition. There are iterative methods for orthonor-
malization that avoid the matrix inverse and eigendecom-
position. In that case, the rotation matrix �� can be
orthonormalized by using a symmetric orthonormalization
procedure starting from a nonorthogonal matrix and
continuing the iterative process until ��T�� � Id�d [13].

The value of Perror can be estimated more economically
also for each of the iteration of (11) and (12) by applying the
following equation instead of applying (1):

Perror ¼ 1�

Pc
j¼1

number of samples belongs to R��j given !j

total number of samples in ��

¼ 1�

Pc
j¼1

ðnjjR��j; !jÞ

n
;

ð13Þ

where ðnjjR��j; !jÞ denotes the number of samples that
belong to the jth region ðR��jÞ given class label !j. Region R��j
of the training samples can be obtained by several methods.
We have used the nearest neighbor classifier (with squared
euclidean distance measure) for finding the regions.

3.2 Training Phase of Rotational LDA

The previous section has provided a mathematical descrip-
tion of the rotational LDA method. In this section, we
provide its algorithmic description. As mentioned earlier,
the rotational LDA algorithm is iterative in nature. It is
given in Table 1. This algorithm computes parameters ��, W,
and ��yj

ðj ¼ 1; . . . ; cÞ (listed in Table 2) from the training
data as follows:

Prior to the iterative process, compute ��xj
2 Rd ðj ¼

1; . . . ; cÞ from the training data and initialize the rotation ��
by a d� d identity matrix. In the first iteration, the first
step is to find the orientation W (using �� to be the identity
matrix from the initialization step) by applying the basic
LDA procedure. The obtained orientation W will be such
that the overlap between classes is minimum in the
reduced dimensional space (i.e., W maximizes Fisher’s
criterion). This transformation may produce overlapping
of samples in the reduced dimensional space between
adjacent classes that cannot be reduced any further by
moving the direction (orientation) W around the origin in
the reduced dimensional feature space. Let P1 be the error
with computed W and �� from the previous iteration. In
the second step, compute the rotation �� in the original
feature space using the fixed-point algorithm. By applying
this rotation �� in the original feature space, we get a
reduced dimensional feature space with much less over-
lapping between the adjacent classes. With this ��, we go
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TABLE 1
The Rotational LDA Algorithm

TABLE 2
List of Parameters Computed during the Training Phase

Which Will Be Required in the Testing Phase



to the second iteration and compute W in the first step
(which gives error P2 < P1) and �� in the second step. This
iterative process is continued as long as the reduction in
error between successive iterations is significant. For the
data sets used in this paper, we have observed that this
algorithm needs only a few iterations (typically two to
four) to converge.

We know that the rotational LDA algorithm is an

iterative algorithm, and it rotates the original feature
vectors with respect to the centroid of their own class

separately, until the minimum overlapping error is ob-

tained. It would be interesting to see what happens to the
original feature vectors x 2 ��j 2 Rd after the mth iteration

of the algorithm. Let us denote the rotated feature vectors

after the first iteration as x1. It can then be expressed in
terms of the original feature vectors x as

Iteration 1 : x1 ¼ ��T
1 x� ��xj

� �
þ ��xj

: ð14Þ

After the second iteration, the feature vectors would be

Iteration 2 : x2 ¼ ��T
2 x1 � ��xj

� �
þ ��xj

: ð15Þ

Similarly, after the mth iteration, feature vectors can be

given as

Iteration m : xm ¼ ��T
m xm�1 � ��xj

� �
þ ��xj

: ð16Þ

It should be noted that the location of the centroid of a class
is not changing since the rotation of feature vectors is

always with respect to the centroid of their own class.
Substituting (14) in (15), we get

x2 ¼ ��T
2 ��

T
1 x� ��xj

� �
þ ��xj

:

Similarly, we can say that

xm ¼ ��T
m . . . ��T

2 ��
T
1 x� ��xj

� �
þ ��xj

;

or

xm ¼ ��Tðx� ��xj
Þ þ ��xj

;

where �� ¼ ��1; ��2; . . . ; ��m. Some issues related to the compu-
tational complexity of the training phase are discussed in
the Appendix.

3.3 An Example of the Training Phase of
Rotational LDA

This section provides an example that illustrates the
training phase of the rotational LDA algorithm. For this
purpose, the Sat-Image data set from the UCI repository [4]
is used. The Sat-Image data set consists of six distinct
classes with 36 features. It consists of 4,435 feature vectors
for training purposes and 2,000 feature vectors for testing
purposes. However, in this example, we have used only the
first three classes (with 600 training vectors from Class 1,
400 from Class 2, and 800 from Class 3) and consider only
the first two features. Thus, we have here 1,800 feature
vectors in two-dimensional space for training. The rota-
tional LDA algorithm is applied to these training vectors,
and the values of the resulting parameters (W, �� and
centroid of each class ��yj

2 Rh) are given in Table 3.
In this example, the dimensionality of the original

feature space is two, and it is reduced to one for recognition
and/or classification purposes. It can be seen in Table 3 that
the algorithm converged at the third iteration. At the first
iteration, there is no rotation of the original feature space,
only the conventional LDA method is applied to compute
the value of orientation W. The overlapping error is noted
to be 21.17 percent at the first iteration (without any
rotation). When the first rotation is applied at the second
iteration, the error reduces to 18.72 percent and to only
0.67 percent at the third iteration (on the application of
second rotation). This example is also illustrated in Figs. 3a,
3b, and 3c for iterations 1, 2, and 3, respectively. In all the
three figures, the projection of feature vectors is illustrated
from a two-dimensional space onto a one-dimensional
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TABLE 3
List of the Values of Parameters during an Example Run



subspace for all the three classes. Fig. 3a depicts the
projection when only the basic LDA method is applied
(i.e., iteration 1). Thereafter, rotation is applied, which is
depicted in Figs. 3b and 3c. It is quite clear from all the three
figures that the rotation does help in minimizing the
overlapping error significantly in the transformed space,
which is not possible by the LDA method.

3.4 Classification Phase of Rotational LDA

The strategy of classifying or testing a test vector using the
rotational LDA algorithm is slightly different from the basic
LDA algorithm. In rotational LDA, each feature vector in
the original d-dimensional space is rotated by the d� d
rotational matrix �� around its own class centroid (see (5)). It
is possible to carry out this rotational transform on each
feature vector in the training data set as the class labels of all
the training feature vectors are known (since the rotational
LDA method is a supervised learning method). But it is not
possible to do it for a test vector because we do not know its
class label (and, thus, its class centroid). However, this
problem can be solved if we can get an estimate of this

centroid. For this, we take L test vectors that belong to the
same class as the test vector and use their mean value as an
estimate of the class centroid. We will discuss this issue
further in Section 5, where we use the rotational LDA
method in a practical application. The procedure followed
in the classification phase is outlined in Table 4.

In Table 4, we are using the nearest centroid classifier
(with squared euclidean distance measure) to classify the
test vectors. If we want, we can also use a Bayesian classifier
for this purpose. In that case, step 4 in Table 4 will be
replaced by a Bayes decision rule as

k ¼ arg max
c

j¼1
pðyj!jÞP ð!jÞ
� �

;

where pðyj!jÞ is the class-conditional probability density
function of y and P ð!jÞ is the a priori probability of class !j,
as described in Section 3.

The computational complexity of the classification phase
is measured here in terms of flop counts, where each
floating-point arithmetic operation (addition, subtraction,
multiplication, or division) is counted as one flop unit. It is
listed in Table 5. Here, the computational complexity of
step 2 is dominating the other steps. Thus, the total
computational complexity of the classification phase is
estimated to be Oð2d2 þ dLþ dÞ flop counts.

4 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we conduct experiments where we apply the
proposed rotational LDA algorithm on a number of publicly
available data corpuses and compare it with the conven-
tional LDA method in terms of classification performance.
We use here a nearest centroid classifier (with squared
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Fig. 3. Illustration of the transformation from a two-dimensional feature space to a one-dimensional feature plane using the rotational LDA method on

a three-class problem.

TABLE 4
Classification Phase of the Rotational LDA Algorithm

TABLE 5
Computational Complexity of the Classification Phase

of the Rotational LDA Algorithm



euclidean distance measure) to find the class label of a test
vector. For evaluating the performance of the proposed
LDA method, we use here the following seven data
corpuses: Sat-Image data set [4], Waveform data set [4],
TIMIT2 data set [10], and multiple features (Mfeat) data sets
for Karhunen-Loéve coefficients, Fourier coefficients,
Zernike moments, and pixel averages [4], [15]. The relevant
details of these data sets useful for defining the experi-
mental setup are listed in Table 6.

To conduct the experimentation, original feature vectors
are reduced from a d-dimensional space to an h-dimensional
space, where h ¼ 1; 2; . . . ; c� 1 since d > c for all the
databases. The “classification error in percentage” ð"Þ is
reported for all the h dimensions. The lesser is the
classification error, the better is the performance of the
algorithm. For rotational LDA, L ¼ 10 vectors belonging to
the same class as the test vector to estimate the class
centroid around which the test vector is rotated by ��
(using (5)). Perror is also reported for each of the iterations
until convergence is reached. The results are provided in
Table 7 for all the databases. We also report in this table
results when no LDA method is used (i.e., no dimension-
ality reduction is done) and the nearest centroid classifier
(with squared euclidean distance measure) is applied in
the original d-dimensional space to get the classification
performance. These results are reported in the last row of
this table (below the dotted line) for each data set. In
Table 7, there are some blank spaces (marked as “�”)
under iteration-III columns; this means that the rotational
LDA algorithm converged prior to iteration III (i.e., at
iteration II).

In Table 7, it is evident that the rotational LDA method is
performing far better than the LDA technique in terms of
reducing the classification error for all the data corpuses.
We also observe from this table that the rotational algorithm
also performs much better than the case when no
dimensionality reduction is done, even though the former
case uses a much smaller number of features than the later
case (i.e., h � c� 1 < d).

The minimum classification error for the Sat-Image
data set produced by LDA is 19.2 percent, whereas it is
only 1.1 percent by the rotational LDA algorithm.
Similarly, for Mfeat-Fourier coefficients, Mfeat-Zernike
moments, Mfeat-pixel averages, Mfeat-Karhunen-Loéve
coefficients, TIMIT, and Waveform databases, the mini-
mum classification error produced by LDA are 19.0 percent,
19.8 percent, 4.2 percent, 5.0 percent, 11.2 percent, and
17.8 percent, respectively, whereas that by the rotational
LDA are 3.8 percent, 12.0 percent, 0.0 percent, 0.2 percent,
5.7 percent, and 4.1 percent, respectively. Thus, the
minimum classification error rates are better for the
rotational LDA for all the data sets used in the paper. It
can also be observed that rotational LDA is producing a
better classification error rate at very low-dimensional
space (one or two) for all the data sets except for the TIMIT
data set. Nonetheless, the classification error for TIMIT
reduces gradually and becomes better than the LDA
algorithm when dimension h is increased. In general, we
expect the error rate to decrease with an increase in the
value of h, but it is possible that after a certain value of h,
the error may start increasing. This is due to the “curse of
dimensionality” occurring in pattern recognition due to the
limited size of the training data [7]. This effect has been
observed in Mfeat data. If we could make the size of the
training data to be arbitrarily large, we would expect the
error rate to decrease with an increase in the value of h.

Thus, we can conclude that the rotational LDA method
performs better than the conventional LDA method.
However, it is important to note here that the rotational
LDA technique assumes the class-conditional probability
density function pðyj!jÞ to be multidimensional Gaussian
for analytical simplicity purposes. Though this is justifiable
from the central limit theorem as y is computed from x
through a linear transformation (see (5)) and the perfor-
mance of the rotational LDA method is good (as seen from
Table 7) with this Gaussian assumption, one may wonder
that we get this good performance with the relatively large
training sizes of databases (as shown in Table 6). A natural
question that comes to mind at this stage is how will the
rotational LDA method perform when the training size (i.e.,
the number of vectors used for training) is reduced; i.e., we
want to know how the Gaussian assumption affects the
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2. From the TIMIT corpus, a set of 10 distinct vowels are extracted; then,
each vowel is divided into three segments, and each segment is used in
getting mel-frequency cepstral coefficients with energy-delta-acceleration
(MFCC_E_D_A) feature vectors [26].

TABLE 6
Details of the Data Sets Used for the Experimentation



performance when the training data size is small. In order
to answer this question, we use the Sat-Image data corpus
and investigate the classification performance for different
sizes of training data. The results are shown in Fig. 4, where
we show the classification error as a function of the training
data size (i.e., the number of vectors in the training data set).
We can see in this figure that the classification performance
of the rotational LDA method does not deteriorate as the
training data size decreases by a factor of 
50 (from 4,435
to 89 training vectors). We also observe in this figure that
the rotational LDA method is resulting in better classifica-
tion performance than the conventional LDA method. Thus,
we can say that the Gaussian assumption made in the
rotational LDA method holds for small training data sizes
as well.
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TABLE 7
A Comparison of Algorithms Using Classification Error in Percentage ð"Þ as a Prototype

Fig. 4. Effect of training data size on the classification error of LDA and

rotational LDA.



5 A PRACTICAL APPLICATION OF ROTATIONAL

LDA: SPEAKER IDENTIFICATION

In this section, we illustrate the practical application of the
rotational LDA method in text-dependent speaker identifi-
cation. A speaker identification system [12] uses the speech
utterance of a person (who speaks a prespecified keyword
or sentence) to find his/her identity from a group of
prerecorded persons. The speech utterance is analyzed
framewise, and an acoustic front end is used to measure a
few characteristic properties (or features) from the signal of
each frame. In the current state-of-the-art speaker identifi-
cation systems, the mel frequency cepstral coefficients
(MFCCs) are commonly used as features [12], [20]. Thus, a
frame is represented by a d-dimensional feature vector with
d MFCCs as its components. In the experiment reported in
this section, the speaker identification system makes a
decision about the speaker’s identity for each frame.

In the rotational LDA method, a test vector that we want
to classify is rotated around the centroid of its own class.
Since the information about the class centroid is not known
(as we do not know to which class the test vector belongs),
we try to estimate the class centroid. The speaker identifica-
tion application studied in this section allows us to get a
reasonable estimate of the class centroid. Here, we assume
that a test frame (that we are trying to classify) and its
neighboring frames from a given utterance belong to the
same class. We use the mean of the L neighboring frames as
an estimate of the class centroid. Note that a similar
situation occurs in face recognition applications [21], where
one can find the class-centroid information by dividing a
given image of a face into blocks, representing each block
by its local features and using the neighboring blocks to
estimate the class centroid.

In order to carry out the speaker identification experi-
ment, we record a database from six speakers, where each
speaker utters the prespecified word “money” 25 times. We
manually remove the silence portions at the beginning and
the end of each utterance. For each speaker, we use
15 utterances for training the speaker identification system
and 10 utterances for testing. The speech signal is processed
framewise, where the frames are updated every
25 ms. For
each frame, 12 MFCCs are computed from the speech signal.
The relevant details of the experiment are listed in Table 8.

As mentioned earlier, we make a decision about the
speaker identity using each frame; i.e., we classify each frame
represented by a d-dimensional MFCC feature vector (with
d ¼ 12) into one of the cð¼ 10Þ classes. The speaker
identification system is trained and tested using the same
procedure as described earlier in Section 3 (see Tables 1
and 4). During the testing (classification) phase, we use
Lneighboring frames around the test frame ðL=2 precedingþ
L=2 following framesÞ for estimating its class centroid used in
Table 4. The speaker identification results from the LDA and
rotational LDA methods in terms of classification error are
listed in Table 9. We also provide in this table the values of
Perror at different iterations for the rotational LDA method
to illustrate the convergence of the method. It is evident from
this table that the rotational LDA method converges in three
to four iterations. Also, it provides better speaker identifica-
tion performance than the LDA method.

6 CONCLUSIONS

The LDA method has been commonly used in the pattern
recognition literature for dimensionality reduction. It finds
a linear transformation that reduces the dimensionality of
the original feature space such that the overlap between the
classes is minimized for the projected vectors in the reduced
dimensional space. In this paper, we introduce a rotational
transform prior to the dimensionality reduction transforma-
tion step and call the resulting procedure as the rotational
LDA method. The rotational transform rotates the feature
vectors in the original feature space around their respective
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TABLE 8
Relevant Details of the Speaker Identification Experiment

TABLE 9
Speaker Identification Results as a Function of

Reduced Dimension for LDA and Rotational LDA



class centroids. We have mathematically derived a proce-
dure that finds the rotational transform, as well as the
dimensionality-reduction transform, such that the overlap
between the classes is minimized in the reduced feature
space. We have provided illustrative examples that demon-
strate that the rotational LDA method is more effective in
reducing this overlap between the classes than the LDA
method. By introducing rotational transform in the original
feature space, the rotational LDA method can be envisioned
as a more generalized version of the LDA method.

We have conducted experiments on a number of publicly
available data corpuses to evaluate the pattern classification
performance of the rotational LDA method. We have reported
results that demonstrate that the rotational LDA method
outperforms the LDA method on all the data corpuses.

APPENDIX

SOME COMPUTATIONAL ISSUES RELATED TO THE

TRAINING PHASE OF ROTATIONAL LDA

We have seen that the rotational LDA method is more
effective in reducing the overlap between classes in the
reduced-dimensional space than the conventional LDA
method and hence results in better classification perfor-
mance. However, this improvement in performance comes
with some additional computational cost during the
training phase of the rotational LDA method. Some of
these computational issues are listed as follows:

1. The rotational LDA algorithm (Table 1) computes
the basic (conventional) LDA at each stage of
iteration. This means that the algorithm is comput-
ing the within-class scatter matrix ðSW Þ and the
between class-scatter matrix ðSbÞ for each iteration.

2. It can also be observed in Table 1 that the training
feature vectors are updated at each iteration.

3. The use of an expectation operator in (11) (or step 9
in Table 1) increases the computational cost.

We provide here some suggestions to address these
computational issues. For the first computational issue, the
procedure can be modified such that it will not compute SW
and Sb for each step of the iteration process. We can modify
these matrices by investigating how SW and Sb alter during
the iteration process. It is known that SW is the sum of
scatter matrices Mj [7], i.e.

SW ¼
Xc
j¼1

Mj;

where Mj ¼
P

x2��j
ðx� ��xj

Þðx� ��xj
ÞT.

After rotation �̂�, feature vector x will change according to
(16); this would change the scatter matrix as

M̂j ¼ �̂�T
X
x 2 ��j

x� ��xj

� �
x� ��xj

� �T

2
4

3
5�̂� ¼ �̂�TMj�̂�:

Therefore, the modified within-class scatter matrix will
become

ŜW ¼ �̂�TSW�̂�:

On the other hand, Sb depends on the class centroids and
the total mean vector [7], which would not change during
the rotation. Therefore, Sb will remain unchanged with
respect to rotation. Thus, the new value of orientation W

can be computed directly from rotation �̂� and the previous
value of SW using eigenvalue decomposition; i.e.

SW  �̂�TSW�̂�;

Sbwi ¼ �iSSWwi;

where wi are the column vectors of W corresponding to �i.
This would save processing time in computing these
matrices for each of the iterations. It should be noted here
that though we have used orientation W from the LDA
technique, one could apply some other techniques instead
of LDA [22] together with the rotational method for the
improvement of recognition and/or classification. In that
case, the optimization criteria will be different, depending
upon the technique then used.

The second computational issue can be addressed by
introducing some kind of weighting coefficients that would
update the parameters depending upon the rotation and
their previous values.

For the third computational issue, the expectation
operation can be omitted by introducing an online or
adaptive version of the algorithm, where parameters may
be updated for every feature vector x instead of taking the
class average of feature vectors.
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