
Abstract 
This paper presents the results of a project investigating the 
use of Discrete-Cosine transform (DCT) to represent facial 
images of an identity recognition system.  The objective was to 
address the problem of sensitivity to variation in illumination, 
faced by commercially available systems.  The proposed 
method uses local, block-wise DCT to extract the features of 
the image. Results show that this appearance based method 
gives high identification rates, improved tolerance to variation 
in illumination, and simple implementation. 
 

I. INTRODUCTION 
Biometric signatures, which characterize a person 

with respect to their body features, cannot be lost, stolen, or 
shared with others [1], unlike commonly used access cards 
and passwords.  Consequently, there has been an increasing 
motivation to development identification systems based on 
these signatures.  Applications for such systems include 
person identification for use by law enforcement agencies 
[1], facilitation of human-machine interactions in robotics, 
and identification for access to secure areas or sensitive 
information.  While a range of commercial systems are 
currently available, they are documented to demonstrate 
poor performance under extreme variations in environment 
[2], and therefore there is a need for further development of 
these systems.  Additionally, for applications such as smart 
cards for ATMs, training needs to be able to be done over 
the life of the system.  Therefore independence from the 
larger database is preferable. 

Principle Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA) are baseline methods often 
used for comparison.  They are based on the Karhunen-
Loeve Transform (KLT), which was first used for 
representing faces by Kirby and Sirovich (1990).  In 
PCA[3], Turk and Pentland reduced the calculation 
complexity of their approach by only selecting the most 
significant coefficients to represent the face.  In LDA[4], 
the Fisher’s linear discriminant was applied to the feature 
vector space found via KLT to find the most discriminating 
faces (rather than the most expressive ones).  The KLT 
minimizes the mean squared error for data compression, 
and has the most information in the fewest number of 
transform coefficients, however it is sensitive to variations 
in face pose, position, and illumination.  It also has the 
added disadvantage that its basis set is data-dependent, with 
determination of this set requiring knowledge of the 
complete reference database.  As a result, training is also 
computationally expensive.   

As an alternative to KLT for representing the feature 
space, the Discrete-Cosine Transform (DCT) has found 
popularity due to its comparative concentration of 
information in a small number of coefficients, and 
increased tolerance to variation of illumination.  The DCT-
based approach offers other advantages over KLT-based 
methods including improved processing time, potential 
dimensionality reduction and compatibility with data 
already encoded via DCT coefficients such as jpeg 
compressed digital video and images.  Unlike KLT-based 
methods, the DCT basis vectors are data independent, 
making it much more suitable for systems where the 
reference database is dynamic over the life of the system.  

A number of different implementations using DCTs 
to represent facial images have been developed in recent 
years.  In Hafed and Levine [5] the DCT of the entire, 
normalized image is extracted.  A subset of the most 
significant coefficients were retained as the feature vector, 
with nearest-neighbour classification then used to identify 
the face.  Using the first 64 coefficients, which have low to 
mid range frequencies and the most variance, a very high 
recognition rate was reported. 

The 2-D DCT method described in Sanderson [6] 
uses a block-by-block approach.  The image is broken into 
8x8 pixel blocks, overlapping by 50%. The first 15 2D DCT 
coefficients (ordered in a zigzag pattern –see Figure 1) were 
found and combined at the decision level.  Variations also 
proposed in Sanderson [6] included discarding of the first 
three DCT coefficients used to represent each block; and 
the use of delta functions to replace the first three, 
illumination sensitive coefficients in each block. 

In an alternative method, Ekenel and Stiefelhagen 
[7] used DCTs for localized appearance-based feature 
representations, where the detection of face features such as 
eyes, etc. is not required.  In their method, the image was 
broken into 8x8 pixel non-overlapping blocks, which were 
then represented by their DCT coefficients.  The first 
coefficient (DC coefficient) was discarded and of the 
remaining coefficients, only the most significant were kept.   

In this paper, results from a project implementing a 
facial recognition system using local appearance DCT 
feature extraction are presented.  It is shown that the 
approach used provides improved tolerance to variation in 
illumination, with a good identification rate using nearest-
neighbour classification.   In section II, the proposed local-
DCT feature extraction method is described. Section III 
shows results of testing, and finally in section IV, 
conclusions and recommendations for future work are 
given. 
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II. METHODS 
Discrete-Cosine Transform 

The main features of the DCT which make it 
attractive for face recognition are: 

1. data compression (energy compaction) property, 
commonly used in image/video compression, and 

2. efficient computation, due to its relationship to the 
Fourier transform. 

The DCT was first introduced by Ahmed, Natarajan, and 
Rao in 1974, with categorization into 4 variations by Wang 
(1984). This invertible transform represents a finite signal 
as a sum of sinusoids of varying magnitudes and 
frequencies.  For images, the 2-dimensional DCT is used, 
with the most visually significant information being 
concentrated in the first few DCT coefficients (ordered in a 
zigzag pattern from the top left corner - see Figure 1). 
 
 
 
 
 
 
 
 
 

Figure 1: Labelling of DCT coefficients 
of  5x5 image block. 

 
Information concentration in the top left corner is 

due to the correlation between image and DCT properties. 
For images, the most visually significant frequencies are of 
low-mid range, with higher frequencies giving finer details 
of the image.  For the 2-D DCT, coefficients correspond to 
sinusoids of frequencies increasing from left to right and 
top to bottom.  Therefore those in the upper corner are the 
coefficients associated with the lowest frequencies.  The 
first coefficient, known as the DC coefficient, represents the 
average intensity of the block, and is the most affected by 
variation in illumination. 

 
For the DCT, any image block Am,n , of size MxN, 

can be written as the sum of the MN functions of the form: 
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         for 1-Mp0 ≤≤    ,     10 −≤≤ Nq . 

These are the basis functions of the DCT.   

The DCT coefficients Bp,q are the weights applied to 
each basis function for reconstruction of the block.  The 
coefficients are calculated as: 
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and      Amn is the MxN input matrix.   

The result is MN 2-D DCT coefficients. 
 
 
Proposed Local-DCT method: 

The proposed feature extraction method uses a local 
appearance based approach.  This provides a number of 
advantages.  Firstly, the use of local features allows spatial 
information about the image to be retained.  Secondly, for 
an appropriately selected block size, illumination affecting 
the block can be assumed quasi-stationary.  Consequently, 
the resulting recognition system can be designed for 
improved performance in environments where variation in 
illumination occurs across images. 

The local-DCT method operates on normalized 
images where faces are aligned (e.g. by eyes) and of the 
same size.  To extract the features of the image, blocks of 
size bxb are used.  Neighbouring blocks overlap by          
(b-1)×(b-1) pixels, scanning the image from left to right and 
top to bottom.  The number of blocks processed is then: 

))1(( ))1(( −−−− bNbM . 
For each block, the 2-dimensional DCT is then found and  
cf coefficients are retained.  The coefficients found for each 
block are then concatenated to construct the feature vector 
representing the image.  For cf retained coefficients and 
square image, the dimensionality of this feature vector is 
then: 
 d = fcbN ×−− 2))1((  
where  d = feature vector dimensionality 

NxN = original image resolution  
            (D = original image dimensionality = N2), 
            bxb = block size,  and 
            cf = number of coefficients retained  
                   from each block. 

The retained coefficients from each block are those which 
contain the most significant information about the image.    
Since the first coefficient is the most affected by variation 
in illumination, it is excluded.  Coefficient selection, choice 
of block size, and number of coefficients retained is 
discussed in part III.  
 

A brief description of other methods used for comparison is 
given below. 
 
Whole Image method 
The image intensities themselves can be used to construct a 
feature vector by concatenating the columns of the image.  

0 1 5 6 14 

2 4 7 13 15 

3 8 12 16 21 

9 11 17 20 22 
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The resulting vector has dimensionality MN for image 
resolution MxN. 
 

PCA Eigenfaces 

For a reference database of R images, each of size NxN, the 
columns of each image are concatenated to form column 
vectors  if

�
 , for i=1,2,…,R.  The average face  mf

�
 is then 

calculated, and subtracted from each of the training faces in 
the database to give zero-mean vectors  ig� = if

�
 - mf
�

  ,  for 
i = 1,2,…,R.  The mean training set is then represented as 
the matrix G = [ Rggg

���
 ...  21 ], and the covariance matrix is 

then  C = G GT .  For reduced computation, the eigenvectors 
of C can be equivalently found by multiplying G by the 
eigenvectors of   GTG.    For a feature space with d 
dimensions, the d most significant eigenvectors (with the 
largest eigenvalues) are selected and describes the feature 
space  ] ...  [ 21 duuuU ���= , where iu�   are the eigenfaces.  
Finally, the zero-mean vectors of each face are projected 
onto this feature space to find their feature vectors 

i
T

i gU ��
=β  ,  i = 1,2,…,R.   

 

LDA Fisherfaces 

For a database of R images, comprising P different people, 
and image dimensionality of N2, the LDA method requires 
that R ≥ N2 for the within-class scatter matrix to be 
singular.  For smaller databases,  PCA must first be applied 
to reduce the dimensionality of each face to R, then the 
LDA method can be applied as follows.  

For a database of faces represented in column 
vectors if

�
 , for i=1,2,…,R, the average of all faces mf

�
, 

and the average face for each person jp� , j = 1,2,…,P, 
training faces are represented as the difference from their 
average face jii pfh ���

−= . The scatter matrices for each 
person (or class) can then be constructed as  

  T
iij hhS
��

�= , for each image vector ih
�

of person j.  
The within-class scatter matrix SW and the between-class 
scatter matrix SB can then be found: 

 �=
j

jW SS  ,  for j = 1,2,…,P.   

T
mj

j
mjB fpfpS )( )( 2

���� −−= � ,  for j = 1,2,..,P. 

The matrix W which maximizes                                       has 
columns which are the eigenvectors of .1

BW SS −   Since the 
columns of W are eigenvectors satisfying :  

iwiiB wSwS λ= , the eigenvalues iλ are found by solving 

0=− wiB SS λ  and the eigenvectors are found by solving  
( ) .0=− iwiB wSS λ   Matrix W then defines the LDA-
space.  The feature vector for each person in this space is 
then found by projecting faces onto it.  

III. EXPERIMENTS & DISCUSSION 
The Purdue AR Face database [8], contains 100 individuals, 
each with 14 images (excluding those with occlusions such 
as sunglasses and scarves) of various illuminations and 
facial expressions.  For each person, 7 of these are used for 
training and 7 for testing.  The original images have a 
resolution of 165x120 pixels.  Before testing, each has its 
illumination normalized via histogram equalization, and is 
then resized to an asymmetrical resolution of 80x80 pixels 
(or other required testing size).  Figure 2 shows a sample 
image set from the database.   
 

 

             

     
Example training set 

         

     
Example testing set 

 
Figure 2: Example image set of one person in the AR 

database.   
 
Experiments performed on this database implement the 
identified feature extraction method, then nearest-neighbour 
classification with the Euclidean distance measure to 
identify the class of each test image.  The identification 
rate, which gives the percentage of test images correctly 
identified, is then calculated. 
 
 
Coefficients of Significance 

The local-DCT method uses a selection of the 2-
dimensional DCT coefficients from each block to construct 
the feature vector for an image.  For the best identification 
rates, the coefficients selected should be the most 
significant in representing important and distinguishing 
image details.  Using one coefficient to represent each 
block, all images of the database were represented as 



feature vectors, and then the recognition rates were 
determined.  Table 1 shows the results for each possible 
choice of DCT coefficient using a block size of 10x10 and 
image size of 80x80 pixels.  

Coefficients in the upper left corner are confirmed to 
be the most significant, as indicated by their higher 
recognition rates.  These correspond to the low frequency 
coefficients of the transform in horizontal and vertical 
directions.   

Table 1 also shows a lower recognition rate for 
coefficient B(0,1) (coefficient 1 in figure 1) compared with 
B(1,0) (coefficient 2).  The difference observed here is 
attributed to the reshaping of the original image to make it 
asymmetrical.  Further investigation of this difference will 
be considered in future work. 
           
              

Table 1: Identification rates (%) using the DCT coefficient 
B(p,q) to represent each block in the feature vector.  Results 
shown correspond to a block size of 10x10 pixels, and image 
dimensionality D=6400.  
 
Block size  

Each block is a subset of the image, with the number of 
identity distinguishing details (such as edges) contained in 
each block, related to the fraction of the image it includes.  
Where block size is too small (compared to the whole 
image), the likelihood of it containing details of 
significance is reduced.  If too large, it may contain too 
many details which are smoothed by use of low frequency 
DCT basis functions.   

To determine the best block size for use with an 
80x80 pixel image, identification rates where again 
determined using one DCT coefficient to represent each 
block. Rates were found over a range of block sizes.  As 
shown by Figure 3(a), a block size of 10x10 pixels gives the 
best recognition rate.   

Figure 3(b) shows identification rates where 
experiments were repeated using different image sizes.  
Again we find better performance for an 80x80 image size 
when using a 10x10 pixel block size.  Similar results occur 
for other image sizes, as shown in Figure 3(c).   

  

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: (a) Identification rates (%) using images 
resized to 80x80 pixels, for different block sizes;           
(b) Identification rates using a block size of 10x10 pixels, 
for different image sizes; (c) Image size giving the 
highest identification rates for each block size. 
 
 
Multiple coefficients 

By use of additional coefficients to represent each pixel, 
more details are retained. Again using 80x80 pixel images, 
with a 10x10 pixel block size, feature vectors for each 
image were found using two, three and four coefficients to 

 0 1 2 3   4 5 6 7 8 9 
0 70.9 75.1 69.9 60.3  47.7 36.1 25.4 15.7 11.0 7.1
1 85.0 81.3 72.3 56.4  43.9 31.6 19.9 11.9 8.3 3.9
2 76.6 79.3 73.1 58.0  43.0 29.1 18.6 11.9 8.1 4.6
3 63.4 71.0 66.4 50.6  37.1 25.7 16.6 9.3 6.6 4.4
4 53.0 59.7 58.9 44.4   30.4 22.3 12.7 7.7 4.7 3.3
5 48.4 51.3 45.0 34.1  22.6 15.3 9.7 6.0 4.3 2.7
6 40.4 39.4 37.3 24.9  18.3 12.1 6.9 4.7 3.9 1.9
7 32.9 31.3 28.1 18.9  12.6 8.7 5.1 3.6 3.0 1.1
8 24.3 23.6 21.0 12.3  10.1 5.7 3.1 2.1 1.3 1.9
9 11.6 14.9 12.1 9.4   7.4 4.4 2.3 1.6 1.6 1.7
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Block size vs Image Size for best identification rate.



Original Image Delta = 50 Delta = 80 Delta = 100

represent each block.  Table 2 (original images) shows a 
selection of the results recorded.  

Using one coefficient to represent each block, 
coefficient 2 gave the best identification rate of 85%.  Two 
coefficient combinations which included coefficient 2, 
generally showed an increase in identification rate to 
around 86%.  Three coefficient combinations which 
included coefficients 2 and 4 showed identification rates as 
high as 87.4%.   

Results in table 2 also show that the use of more 
than three coefficients actually reduces the identification 
rate, with percentages consistent with those achieved using 
just two coefficients, with the achievable identification rate 
being limited by the significance of the coefficients 
retained.   

 
1 coefficient / block: 

Coef. 
Number 0 1 2 3 4 5 6 7 8 

Original 
Images 70.9 75.1 85.0 76.6 81.3 69.9 60.3 72.3 79.3

Illum.added 
�=80 31.6 60.1 70.1 62.3 70.3 58.6 44.1 55.7 68.7

 
2 coefficients / block: 

Coef. 
Number 0,1 0,2 1,2 1,3 1,4 2,3 2,4 2,5 2,8

Original 
Images 73.9 75.0 85.1 81.0 79.0 82.7 86.1 86.4 86.3

Illum.added 
�=80 40.3 44.0 78.3 76.6 70.3 70.6 74.4 76.9 73.7

 
3 coefficients / block: 

Coef. 
Number 0,2,4 1,2,3 1,2,4 1,2,5 1,3,4 2,3,4 2,4,5 2,4,8

Original 
Images 76.6  84.1 85.9 84.9 82.0 84.4 87.4 86.3 

Illum.added 
�=80 47.7 78.9 79.6 79.6 78.3 74.3 76.7 75.7 

 
4 coefficients / block: 

Coef. 
Number 1,2,4,5 1,2,4,6 1,2,4,8 

Original 
Images   85.3   85.9   85.9 

Illum.added 
�=80   80.0   80.3   80.0    

Table 2: Identification rates (%) using the labelled 
combinations of DCT coefficients to represent each block in 
the feature vector.  Rates where variation in illumination is 
added to test images (�=80) are also shown.  Results shown are 
a selection of those for an image size of 80x80 pixels 
(dimensionality D=6400), and 10x10 pixel block size.   
 

Effect of variation of illumination 

To simulate the problems associated with testing in 
different environments, illumination (varying across the 

image) was added to the test images of the AR database.  
This was done by changing the intensity of the image’s 
pixels proportionally to their column displacement from the 
image centre.  An example of the effect of this transform 
(for different �) on an image is shown in Figure 4.  
 
 
 
 
 

Figure 4 : Images where illumination across the image has 
been varied.  

 
For variation of illumination from left to right [6]: 
            New Image (y,x) = Old Image (y,x) + m x + � 

where  
2/)1( −

−=
XN

m δ , 

 1,...,1,0 −= XNx ,  
and 1,...,1,0 −= YNy .                     
 
Identification rates using different DCT coefficients (and 
coefficient combinations) to represent each block for delta 
factor �=80 are shown in Table 2.  Table 3 shows the effect 
of increasing delta on identification rates using the 
indicated coefficients to represent each block.     
 

Level of Illum. 
variation added �=0 �=20 �=40 �=60 �=80 �=100

Using coef. 2 85.0 83.6 82.3 79.0 70.1 52.4 

Using coef. 1,2 85.1 85.1 85.1 82.7 78.3 66.4 

Using coef. 2,4 85.9 85.7 84.3 80.9 74.3 57.6 

Using coef. 1,2,4 85.9 85.9 85.1 82.9 79.6 68.9 

Table 3: Identification rates (%) using the indicated 
coefficients and level of illumination variation added to test 
images (�). An image size of 80x80 pixels and 10x10 pixel 
block size was used. 
 
These results show that use of the DC coefficient 0 is 
unreliable for practical implementations, with significantly 
reduced performance for testing of non-uniformly 
illuminated images.  While the identification rate found 
using the coefficient combination (2,4,5) was the highest 
using the original images,  once varying illumination was 
added across the test images, performance dropped to 
76.7%.  Coefficient combinations (1,2) or (1,2,4), on the 
other hand, showed much less sensitivity to illumination 
variation, with the three coefficient combination still having 
a 79.6% recognition rate. 
 
 
Comparison to other methods 

The local-DCT method was then compared to baseline 
methods, including whole image (where image intensities 



form the feature vector), PCA Eigenfaces [3] and LDA 
Fisherface [4] methods.  Nearest-neighbour classification 
with the Euclidean distance measure was again used to 
determine the recognition rate of each method, both with 
and without illumination variation across the test images.  
 

 Feature 
Extraction 
method : 

Whole 
Image 

(d=6400)

PCA 
(d=99) 

LDA 
(d=600) 

Local- 
DCT 

Coef:1,2 
(d=9940) 

Local-
DCT 

Coef:1,2,4 
(d=14910) 

 For D=6400, 
�=0: 78.0% 73.7% 82.0% 85.1% 85.9% 

For D=6400, 
�=80: 63.0% 58.6% 67.7% 78.3% 79.6% 

Table 4: Recognition rates using different methods for the 
same AR database for image size of 80x80 pixels.  Local-DCT 
results shown use a 10x10 pixel block size and the indicated 
coefficients.  Testing of the sensitivity to variation of 
illumination is indicated by �=80. 
 

From the results of Table 4, the local-DCT method 
shows a higher identification rate than other methods tested.  
In particular, there is a significant improvement where test 
images are affected by illumination variation, with an 
increase of more than 10% over LDA and 20% over PCA 
methods.  

Improvements are acknowledged to be at the 
expense of feature vector size. While this method increases 
the memory requirements, this is inexpensive for most 
current computing systems.  Implementation is also very 
simple compared to other methods.  The method also offers 
the advantage of data independence, with changes to a 
database (such as the addition of new persons), having no 
affect on the basis vectors used for feature extraction. As 
opposed to this, PCA and LDA methods require 
recomputation of basis vectors then recalculation of 
features across the entire database, as and when any new 
person is added to it.  As a result, the cost of larger feature 
length is offset by other implementation and performance 
advantages.   
 

IV. CONCLUSIONS 
The local-DCT method presented showed identification 
rates of up to 85.0% using only 1 coefficient, compared to 
82% for LDA on the same database.  Those coefficients 
which were most significant in representing the details of 
an image block were identified as the low frequency 
coefficients 1, 2, and 4.  Using multiple significant 
coefficients, the detection rate could be increased to over 
86% on a 80x80 pixel image.   Evaluation of this feature 
extraction method also showed a relationship between the 
size of the block used and the size of the image for the best 
recognition rate. For an image size of 80x80 pixels, a 10x10 
was identified to give the best rate.  While this method does 
not reduce the dimensionality of the resulting feature 
vector, it is shown to be much less sensitive to variation in 
illumination across images than other methods tested.  

Future work will compare the local-DCT method presented 
here to other DCT-based approaches, using a number of 
facial image databases. 
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