Verification of Key Establishment Protocols for a
Home Health Care System

Kalvinder Singh 2, Vallipuram Muthukkumarasamy 2
Y Australia Development Lab, IBM
kalsingh@au.ibm.com
2 School of Information and Communication Technology, Griffith University
Gold Coast, v.muthu@griffith.edu.au

Abstract

A Body Sensor Network can be used in a home health care
system to monitor the elderly or patients with chronic diseases.
The security and requirements of the home health care system
is complex. We show how genetic design methodology models
the requirements of the health care system. In our system,
physiological data can be used to establish keys amongst body
sensors, where the sensors have no other prior secret. We show
how the requirements of the key establishment protocol can be
placed into a Requirement Behaviour Tree. A model is gener-
ated from the behaviour tree, and a model checker is used to
formally verify the protocol within our system. Implementation
of the salient features of each of the protocols is provided. The
salient features of the protocols were implemented in TinyOS
and run on mica2 motes. The time elapsed, complexity of the
code, and memory requirements are analysed in detail.

1. INTRODUCTION

The aging population and the increase of chronic diseases
have placed an immense financial burden on health services.
Body sensors can be used to help reduce their costs. Sensors
can be used to remotely monitor elderly patients suffering
from chronic diseases and allow them to have relatively
independent lives. The uses of body sensor networks are
inherently complex. For instance, blood pressure increasing
due to exercise is normal. However, blood pressure increasing
while at rest could mean a serious medical condition. Sensors
may not just measure physiological values, but also body
motions, which can lead to a number of different sensors
needing to communicate with each other. As the number of
heterogeneous sensors increases, so will the complexity of
interactions between the sensors.

Figure 1 gives a diagrammatic representation of a proposed
home health care system [1]. The diagram shows a patient at
home with a number of body sensors that can communicate
with a camera sensor, the health controller, and a mobile
phone. The cameras may only start recording if the body
sensors detect that there may be a medical emergency, such
as the patient lying horizontal in the kitchen. Surveillance
software, such as S3 [2], can be used to detect if the patient
is cleaning the kitchen, or getting something from the ground,
or there is actually an emergency. If the software does detect

978-1-4244-2957-8/08/$25.00 © 2008 IEEE

363

Wireles@' z
Camera J

*A !

-

Internet

Health ‘
Controller Patient

Staff Desktop

Fig. 1: Home Health Care System

an emergency, the hospital staff is notified; they examine
the information, and decide on the best course of action.
The mobile phone gives feedback to the patient about the
condition of their body, as well as the status of the sensors. The
mobile phone can notify the patient of any detected emergency,
allowing the patient to report back a false alarm if one has
occurred. The mobile phone can be replaced with a PDA or
any other hand-held communication device.

Health information collected from sensors needs to be
secured and in some countries (for example the USA) security
is mandated [3]. Securing a home health care system becomes
more difficult mainly because of the different requirements
for various components. For instance, the sensors have dra-
matically more resource constraints than the constraints found
in mobile phones, cameras or desktop computers. With dif-
ferences in computing power, as well as differences in com-
munication costs, different security protocols may be required
throughout the entire system. For instance, an efficient key
establishment mechanism specifically for body sensors was
created using physiological data [1]. However, the home health
system may send physiological data to medical staff, or to an
analytics engine [4]. The physiological data may also be sent
to an actuator to release medicine into the body [4].

When the same physiological data is used for more than
one purpose (as well as the complexity of a heterogeneous
environment), it becomes important from a security or infor-
mation assurance point of view to have a formal methodology.
A formal methodology is also important to insure that the

ISSNIP 2008

information sent to medical staff and actuators to dispense
medicine is accurate, and the correct actions are taken. The
formal methodology has a requirement that it can model both
the security and privacy aspects as well as the application
correctness. In this paper, we show that Behaviour Trees can
be used as a formal methodology to verify both the system
and the security.

2. NOTATION

This paper will use the notations shown in Table 1 to describe
security protocols and cryptographic operations.

TABLE 1: NOTATIONS

Notation Description
A, B The two nodes who wish to share a new session
key
S A trusted server
Na, Np Random numbers generated by nodes A and B
respectively
[[M]]k Encryption of message M with key K to pro-
vide confidentiality
M)k One-way transformation of message M with
key K to provide integrity
Kap, Ky | The long-term key initially shared by A and B
and the new session key respectively
Kas, Kps | Long—term keys initially shared by A and S,
and B and S respectively
XY The concatenation of data strings X and Y
A — B:m | A sends a message m to B
, Another way to define sending of message m
&3} Exclusive—or function

3. PROBLEMS AND LIMITATIONS

A sensor network can consist of many different computing
devices. Some have more computational power (and memory)
than others. A Body Sensor Network (BSN) is a network of
wearable heterogeneous sensors [5]. The sensors are spread
over the entire body, and monitor and communicate a range
of health-related data. BSNs are used in the health industry
to monitor a patient’s physical and biochemical parameters
continuously, in different environments and locations wherever
the patient needs to go. BSNs can also be used by athletes to
measure their performance. Another use for BSNs is control-
ling characters in video games [5].

Key establishment protocols are used to set up shared se-
crets between sensor nodes, especially between neighbouring
nodes. When using symmetric keys, we can classify the key
establishment protocols in Wireless Sensor Networks (WSN5s)
into three main categories: Pair—wise schemes; Random key
predistribution schemes; Key Distribution Center (KDC). The
Pair—wise schemes and Random key predistribution schemes
are designed for open environments, where there can be many
individual sensors [6]. A difficulty with the above schemes is
that updating the keys between the nodes is still an unsolved
problem. Another drawback is that, when using the random
key predistribution schemes, the shared keys cannot be used
for entity authentication, since the same keys can be shared by
more than a single pair of nodes [7]. The KDC mechanisms

by themselves are not suitable for large—scale WSN environ-
ments, although combinations of a KDC mechanism and the
previously mentioned schemes have created hybrid protocols
[8]. Some of the limitations with using a sensor node as a
KDC mechanism are:

o The KDC scheme relies upon other schemes to create the
trusted intermediary.

e The key sizes in sensor nodes are not large enough,
so over a period the key between the sensor and the
trusted intermediary may become compromised. If the
KDC protocol messages were captured and saved by an
adversary, then the adversary may calculate the new keys
created.

o Some sensor networks may not need an encryption al-
gorithm, although KDC protocols require an encryption
algorithm to encrypt the new key.

A password has been proposed as a way to initiate key es-
tablishment [9]. However, the use of a PIN code or a password
is not applicable to BSNs since many of the sensors do not
have a user-interface. Sensors also may be placed in hard—to—
reach places, with some of the sensors implanted into the body.
To complicate matters, the sensors may harvest energy directly
from the body [10], thus allowing the sensors to exist for long
periods. Updating keys is therefore an important function.

This paper uses the generic name Secure Environmental
Value (SEV) referring to sensed data that can be obtained
by sensors in an environment. The SEV is usually hard to
obtain through other means. Examples of an environment
where SEVs may be found include:

o Human body, where it is difficult to attach a device on

the body without the knowledge of the person.

o A secured location, for instance a military base or
unmanned vehicle, such as UAVs, or a secure home
environment.

o Hard to reach places, for instance a satellite in orbit.
The example environment used in this paper is the human
body, where BSNs have been developed to measure the
physiological values found in individuals [5]. Health sensors
can use Inter—Pulse—Interval (IPI) [11] or Heart Rate Variance
(HRV) [12] as good sources for cryptographically random
numbers and the physiological values can be used as a one—
time pad. Recently, the EKE password protocol was used in
BSNs to increase the number of physiological values that can
be used [1]. The physiological data replaced the password, in
the EKE password protocol. A major limitation to the adoption
of the above methodologies is the lack of formal verification.

4. FORMAL VERIFICATION

To our knowledge, there has not been an extensive formal
analysis of sensor security protocols. However, formal analysis
of communication protocols for traditional networks has been
used since at least 1978 [13], with significant improvements
in recent decades [14]. Sithirasenan et al. [15] have compared
different modeling techniques, and listed advantages for each
of the techniques. One of the techniques is the genetic de-
sign methodology. One of the major advantages is that the

364

genetic design methodology produces graphical models that
are derived and integrated from the original requirements. The
models can be used to verify that security protocols correctly
work in a complex system.

A home health care system is a complex system, where it is
difficult to track how sensed data is used in the system. When
the sensed data is also used in security protocols, tracking the
use of sensed data becomes even more important. For example,
some key establishment protocols require the sensed data never
to be sent in the clear or to an untrusted third party, whereas
other protocols do not need such restrictions.

The genetic design methodology creates behaviour trees,
which in turn can generate SAL code [15]. A model checker
can then be used to verify the SAL code and thus verify
the protocol in the sensor environment. The main steps with
the genetic methodology are: translation of requirements to
behaviour trees; integration of behaviour trees; architecture
transformation; component behaviour projection; component
design. When modelling the entire system, genetic design
has significant advantages over UML, state charts or other
methods. The advantages include:

o Allows designers to focus on the complexity and design
of individual requirements while not having to worry
about the detail in other requirements. The requirements
can be dealt with one at a time (for both translation and
integration).

o The component architecture and the component behaviour
designs of the individual components are emergent prop-
erties of the design behaviour tree.

o The methodology concentrates on discovery behaviour
gaps, which in turn discovers requirement gaps. The focus
of direct translation of requirements to design makes it
easier to see and find gaps.

e An automated method of mapping changes in require-
ments to changes in design.

An important part of the genetic design methodology is
the behaviour trees. Dormey [16] defined Behaviour Trees
as: a formal, tree—like graphical form that represents behaviour
of individual or networks of entities which realize or change
states, make decisions, respond—to/cause events, and interact by
exchanging information an/or passing control.

Each requirement can be represented as a behaviour tree;
this representation is specifically called a Requirement Be-
haviour Tree.

5. KEY ESTABLISHMENT PROTOCOLS

We will investigate two different key establishment protocols:
Venkatasubramanian and Gupta[17]; EKE[18]. The Venkata-
subramanian and Gupta protocol has a requirement that the
sensed data should never be sent in the clear or to an untrusted
third party. Whereas the EKE protocol has the requirement
that the sensed data should not be sent in the clear or to an
untrusted third party, while the protocol has not completed.
However, once the protocol is completed the sensed data that
the protocol used can be made available.

Venkatasubramanian and Gupta[17] used a single message
to send a new key to the neighbouring sensor node, as shown
in Protocol 1.

Protocol 1 Venkatasubramanian BSN protocol
A— B:]VA7 [NA]RANDKEY; RANDKEY ©® SEV

The new key RANDKEY is encrypted with the physi-
ological value SEV, which is only known to sensors on a
particular person. Sensor node B validates that RANDKEY
is correct by verifying the MAC of N4.

Only cryptographically strong physiological values, such
as IPI and HRV, can be used. In addition, modern wireless
technology (ultra wideband — UWB, radar) may be used to
capture the heart rate remotely. It may encounter security risks
when only using IPI and HRV to secure the communication.
Other cryptographically weaker physiological values, such as
blood pressure, and iron count, are less susceptible to those
remote attacks.

The next protocol is the EKE protocol, which is an RSA-
based password protocol where the exponent only needs to
be 160 bits [18]. The EKE protocol is chosen because other
variants of password protocols require exponents of size 1024
bits. The EKE protocol is diagrammatically shown in Protocol
2. A drawback of the EKE protocol is that it cannot use ECC

[1].

Protocol 2 Diffie-Hellman—based EKE protocol
Shared Information: Generator g of G where p — 1 = ¢r
B

A
A €R 2y
A, 1
ta=g9"" M s €r Lp
Kap = thB
tp=g""
Kap =t} [tellseve (nellx,p
% Verify np
. [[nallkap
Verify na -

The EKE protocol contains four messages. Node A sends
the first message to node B, the message contains the location
of A (the location value is in the clear), and the first part of
Diffie-Hellman, ¢ 4, is encrypted by the weak key SEV;. After
the first message is sent, node B will calculate the second part
of the Diffie-Hellman scheme and hence be able to calculate
the session key K 4p. Node B then sends the second part of
the Diffie-Hellman scheme encrypted by the weak key SEV,
to node A. The nonce np is also sent, encrypted by the session
key K ap. The last two messages authenticate both A and B,
as well as confirming that they have the session key K 4. The
encryption of t4, tp, na, and np can be implemented with
an exclusive—or function, as originally described by Bellovin
[18].

365

Depending on which environmental value is measured, and
how long the protocol will run, different SEVs may be used for
the request and response. However, if the SEV stays constant
throughout the running of the protocol, then both SEV; and
SEV, will be the same. The EKE protocol is designed for
a constant password throughout the running of the protocol,
so similar or same data for both SEV; and SEV5 will not
adversely affect the protocol.

The EKE protocol was originally designed to handle small
entropy secrets, so that off-line and on—line dictionary attacks
are infeasible for an adversary. Another useful feature is
that even if the secrets SEV; or SEV; are compromised
or available freely after the running of the key establishment
protocol, the session key K 4p will remain secure and safe.

Both nonces n4 and np are cryptographically strong ran-
dom numbers, allowing the exclusive—or function to be used
for encryption. If any nonce was not cryptographically strong
then either ng @ Kap or np & K 4p operation would allow
an adversary to significantly reduce the number of valid K 4p
values. A characteristic of the EKE protocol is that the nonces
are never sent out in the clear, since the nonces are used to
encrypt the new key K 4p.

The value of p should be chosen wisely [18].The value of p
should be as close to 2"V — 1 as possible for the best security.

A. Modelling

In order to verify the BSN system, the Behaviour Tree
technique is used to represent the home health care system.
The modelling was completed after several stages. The initial
stages involved obtaining the requirements of the Venkatasub-
ramanian and Gupta protocol and EKE password protocol. The
major requirement is to establish a cryptographic key between
two nodes. The Venkatasubramanian and Gupta protocol prop-
erties include that SEV needs to be cryptographically strong,
and the SEV should never be sent in the clear. The EKE
protocol does not have as many restrictions because of the
following properties:

o Sensor nodes only possess a secret of small entropy,

o Off-line dictionary attacks are not feasible,

o On-line dictionary attacks are not feasible, and

o The key must have forward secrecy.

From the properties of the key establishment protocols, we
developed the Requirement Behaviour Trees (RBTs). While
developing the RBTs, we found that the previous definitions
and properties of the protocols did not have a consistent
method to define the need for the sensor to sense the physio-
logical data. The RBT is designed for, and has built-in syntax
for, external events, so this requirement was easily added to our
RBTSs. The feature for quickly adding external events makes
RBTs suitable for a sensor environment. The RBTs were then
placed into an Integrated Behaviour Tree (IBT) to display the
entire system. The IBT was then used to create other models
for us to investigate and analyse. The Component Interaction
Network (CIN) was used to show the relationship between
the components in the system and gave a representation of
the component architecture. The Component Behaviour Trees

(CBTs) and Component Interface Diagrams (CIDs) gave us
views of each of the individual components. The final RBT
for the EKE protocol is shown in Figure 2. The RBT for
the Venkatasubramanian and Gupta protocol has a similar

structure.
R1
A
RI | >5Sense Data<<

s

B
RT | >>Sense Data<<

C
>>Sense Data<<

R1 <MI>

R1 SM1<

R1 <M2>

R1 SM2<

Fig. 2: EKE password protocol for Sensors

The RBT has four major components, the first three compo-
nents belong to Requirement 1 (R1), whereas Sensor C sensing
data belongs to Requirement 2 (R2):

o Sensor A sensing data every 10 seconds

o Sensor B sensing data every 10 seconds

o Sensors A and B Establishing a key

o Sensor C sensing data every 10 seconds

In the above diagram, establishment of the key is initiated
by Sensor A. It will create t4 and then send it to Sensor B.
In our RBT we have made the sending of the message from
Sensor A to Sensor B non—deterministic. In this case, Sensor
B could have received a malicious message from another
node. Verification of the key is the last step. We have this
as a separate RBT, since it overcomplicates the diagram. The
verification of the key involves the key confirmation steps
described in the protocol.

By using behaviour trees, we were quickly able to find all of
the possible inputs and outputs that a sensor can obtain, either
through wireless communication or through their sensing
devices. This also helps us to verify that each component
that we are developing has the needed features to run in our
environment. When there are a large number of sensors, this
requirement becomes difficult to track. The next step is to
generate SAL code from this behaviour trees, and verify the
protocol in a sensor environment.

6. SPECIFICATION OF SAL

Before we could test our requirements on the key establish-
ment protocol, we first needed to specify the network and

366

body into SAL code. To specify the network in SAL, we
were able to utilize previous SAL libraries [19]. However, we
found no existing SAL libraries to specify obtaining SEVs
from the body. We defined the body within SAL as having
two operations: getSEV; changeSEV. Sensors can obtain a
SEV by calling getSEV and afterwards a changeSEV can be
called to create a new SEV.

We then generated the SAL code from the RBTs. The
first SAL code generated is for the Venkatasubramanian and
Gupta protocol. Due to limitations in the SAL generation, we
modified the SAL code to read the physiological data from our
body SAL code. We have a requirement R2 where a sensor
sends physiological data to an external third party system. We
want to show that requirement R2 will break requirement R1,
since for the protocol to be secure we needed to ensure that the
sensed data is never sent in the clear. The following theorem
is used to verify that no other sensor reads the same sensed
data as the pair that is establishing the new session key.

prop_no_delay: THEOREM system |—
G(NOT((FORALL (x,y: principals):
(buffer.l.1=buffer.2))));

SAL code was also generated for the EKE protocol. We
modified the SAL code to read the physiological data from our
body SAL code. We have a requirement R2 where a sensor
sends physiological data to an external third party system.
We want to show that the requirement R2 will not break
the requirement R1, since we also placed a delay into the
sensors in requirement R1, where the sensor will wait 30
seconds before sending out the physiological data. It should be
noted that the Venkatasubramanian and Gupta protocol still is
broken if the physiological data is sent out with a delay. The
following theorem is used to verify that another sensor delays
its send when reading the same sensed data as the pair that is
establishing the new session key.

prop_delay : THEOREM system |—
G(NOT((FORALL (x,y: principals):
(buffer.l.1=buffer.2 AND
delayed.2=true))));

7. IMPLEMENTATION

We implemented and compared different cryptographic prim-
itives that can be used in body sensor security protocols on a
Crossbow mica2 MPR2600 mote [20].

Before comparing the different cryptographic primitives,
and the benefits that one implementation has over another,
we created skeleton code based on TinyOS 2.x [21]. The
skeleton code initializes the sensor node, and after the sensor
is initialized, we obtained the initial time in milliseconds. We
then run a cryptographic primitive in a loop for 2000 iterations,
before obtaining a new time. We subtracted the new time from
the initial time to obtain the elapsed time in milliseconds to
run our cryptographic primitive for 2000 attempts. The elapsed
time was then sent via the serial connection, to a PC running
a Linux® distribution where we have a Java® application

reading the TinyOS packet from the serial port, and report
that data to the user.

The key establishment protocols uses exclusive—or (xor)
to encrypt the new session key. We compare this method
with other methods of encrypting the new session key for
body sensor networks. Singh et al. [22], [1] have shown
how RCS5, SKIPJACK, HMAC-MDS5, RSA, and ECC crypto-
graphic primitives can be used in BSNs, however, their work
and comparisons were based on simulations, and on TinyOS
1.x. We have implemented these cryptographic primitives on
real hardware, and for TinyOS 2.x. To our knowledge these
cryptographic primitives have not (until now) been ported
to the latest version of TinyOS. Previously, Singh et al.
did not separate the square root function from the elliptic
curve cryptography. However, in our comparison we found
significant information when separating them.

Table 2 shows the time it takes to run 2000 iterations of
each of the algorithms. We have ordered the algorithms on
the time elapsed. The Lines of Code indicates the complexity
for the coder to implement the algorithm. The Size (bytes)
indicates the size in bytes of the application.

TABLE 2: TIME MEASUREMENTS FOR DIFFERENT ALGORITHMS

Algorithm Time Lines of Code | Size (bytes)
xor 2 milliseconds 80 6340

RC5 500 milliseconds | 506 7168
SKIPJACK 700 milliseconds | 697 8138
HMAC-MD5 | 20 seconds 507 19054
RSA 43 seconds 1456 7814
SQRT 80 seconds 3366 8610

ECC 78 minutes 5038 16328

The RCS5 application took considerable more effort than the
exclusive—or (xor) application. We found an RC5 implemen-
tation for TinyOS 1.x in the TinySEC library [23], however,
it has yet to be ported to TinyOS 2.x. Most of our effort was
spent porting the code to the new platform.

The SKIPJACK application had similar problems as the
RCS5 application. Where there was an implementation for
TinyOS 1.x in the TinySEC library but there was not one for
TinyOS 2.x. Once again, most of our effort was spent porting
the code to the platform.

For HMAC-MD)5 application we could not find any pre-
vious implementations of HMAC-MD5 in any version of
TinyOS. In this case we obtained code from RFC1321 [24] and
RFC2104 [25] and ported the code to first the nesc language
and then to the TinyOS application. This was considerably
more effort then either RC5 or SKIPJACK implementations.

The RSA application also had similar problems as the RC5
and SKIPJACK implementations. We found code in the Deluge
System [26], however, the RSA code was based off TinyOS
1.x. Effort was required to port this code to TinyOS 2.x. We
used a 160 bit exponent as required by the EKE protocol.

The SQRT application had the most difficulties since we
implemented it from pseudo—code rather than porting any
code. We used Newton’s Method [27] for finding square roots
to implement the SQRT application.

367

The ECC application also had similar problems to the RSA,
RC5 and SKIPJACK implementations. We ported an ECC
library [28] developed for TinyOS 1.x to TinyOS 2.x. The ECC
application used a 160 bit points, since password protocols that
could be converted to use ECC require stronger keys [1].

The xor application is the quickest by several orders of
magnitude compared to the other cryptographic primitives.
The size of the application is smaller, and the number of
lines is less then the other applications. The xor application
is the quickest, whereas the ECC application is the slowest.
This verifies existing research into the differences in speed
for password protocols of RSA and ECC implementations in
TinyOS simulators [1]. The HMAC-MDS5 application is the
largest, however the application was a straight port from the
RFCs, where the code was not intended for sensors.

8. CONCLUSIONS AND FUTURE WORK

Genetic design methodology is used to gather the requirements
of the health care system. We examined two existing key
establishment protocols that use physiological data to establish
keys between body sensors, where the sensors have no other
prior secret. We showed how the requirements of the EKE
protocol can be placed into a Requirement Behaviour Tree.
SAL code is generated from the behaviour tree, as well as
SAL code created to model the events from the body. A
SAL model checker is used to verify the protocol formally
within our system. Implementation of the protocols involved
either porting libraries or creating new libraries in TinyOS
2.x. The time elapsed, complexity of the code, and memory
requirements are analysed in detail on mica2 sensors. The
password protocols that use ECC had a larger computational
overhead than the EKE protocol, confirming existing work
performed using simulations. Future work will include the full
implementation and analysis of both the RBTs and code for
each of the key establishment protocols on our sensor network.

ACKNOWLEDGMENTS

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both. Java and all Java-based
trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both. Other
company, product, or service names may be trademarks or
service marks of others.

REFERENCES

[1] K. Singh and V. Muthukkumarasamy, “Authenticated key establishment
protocols for a home health care system,” in Proceedings of the
Third International Conference on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), Melbourne, Australia, December
2007.

[2] A. Hampapur, L. Brown, J. Connell, N. Haas, M. Lu, H. Merkl,
S. Pankanti, A. Senior, C.-F. Shu, and Y. Tian, “S3-rl: the ibm smart
surveillance system-release 1,” in ETP '04: Proceedings of the 2004
ACM SIGMM workshop on Effective telepresence. ~New York, NY,
USA: ACM Press, 2004, pp. 59-62.

[3] USA, “Summary of hipaa health insurance probability and accountability
act,” US Department of Health and Human Service, May 2003.

[4] J. Espina, T. Falck, and O. Miilhens, “Network topologies, communi-
cation protocols, and standards,” in Body Sensor Networks, G.-Z. Yang,
Ed. Springer—Verlag, 2006.

[5]
[6

—

[7

—

[8

[t}

[9

[r}

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

368

0. Aziz, B. Lo, A. Darzi, and G.-Z. Yang, “Introduction,” in Body Sensor
Networks, G.-Z. Yang, Ed. Springer—Verlag, 2006.

D. Liu and P. Ning, Security for Wireless Sensor Networks, S. Jajodia,
Ed. Springer Berlin / Heidelberg, 2007.

P. Hamaéldinen, M. Kuorilehto, T. Alho, M. Hénnikdinen, and T. D.
Hémildinen, “Security in wireless sensor networks: Considerations and
experiments.” in SAMOS, 2006, pp. 167-177.

H. Chan and A. Perrig, “PIKE: Peer intermediaries for key establishment
in sensor networks,” in Proceedings of IEEE Infocom. 1EEE Computer
Society Press, Mar. 2005.

K. Singh, K. Bhatt, and V. Muthukkumarasamy, ‘“Protecting small keys
in authentication protocols for wireless sensor networks,” in Proceed-
ings of the Australian Telecommunication Networks and Applications
Conference, Melbourne, Australia, December 2006, pp. 31-35.

A. Kansal and M. Srivastava, “Energy—harvesting—aware power manage-
ment,” in Wireless Sensor Networks: A Systems Perspective, N. Bulusu
and S. Jha, Eds. Artech House, 2005.

C. C. Y. Poon, Y.-T. Zhang, and S.-D. Bao, “A novel biometrics method
to secure wireless body area sensor networks for telemedicine and m—
health,” IEEE Communications Magazine, vol. 44, pp. 73-81, April
2006.

S.-D. Bao, Y.-T. Zhang, and L.-F. Shen, “Physiological signal based en-
tity authentication for body area sensor networks and mobile healthcare
systems,” in 27th Annual International Conference of the Engineering in
Medicine and Biology Society, 2005. 1EEE Press, 2005, pp. 2455-2458.
C. West, “General technique for communications protocol validation,”
IBM Journal of Research and Development, vol. 22, no. 4, 1978.

E. M. Clarke and J. M. Wing, “Formal methods: state of the art and
future directions,” ACM Comput. Surv., vol. 28, no. 4, pp. 626—643,
1996.

E. Sithirasenan, S. Zafar, and V. Muthukkumarasamy, ‘“Formal verifica-
tion of the ieee 802.11i wlan security protocol,” in Australian Software
Engineering Conference (ASWEC '06), Sydney, Australia, 2006.

R. Dromey, “From requirements to design: Formalizing the key steps,”
sefim, vol. 00, p. 2, 2003.

K. K. Venkatasubramanian and S. K. S. Gupta, “Security for pervasive
health monitoring sensor applications,” in ICISIP ’'06: Proceedings of
the 4th International Conference on Intelligent Sensing and Information
Processing. Bangalore, India: IEEE Press, December 2006, pp. 197—
202.

S. M. Bellovin and M. Merritt, “Encrypted key exchange: Password-
based protocols secure against dictionary attacks,” in IEEE Symposium
on Research in Security and Privacy. 1EEE Computer Society Press,
1992, pp. 72-84.

J. Rushby, “The needham-schroeder protocol in sal,” October 2003, http:
//www.csl.sri.com/users/rushby/abstracts/needham03.

Crossbow, “Crossbow,” http://www.xbow.com/, 2006.

TinyOS, “An operating system for sensor motes,” http://www.tinyos.net/,
2007.

K. Singh and V. Muthukkumarasamy, “Performance analysis of proposed
key establishment protocols in multi-tiered sensor networks,” Journal of
Networks, vol. 3, no. 6, 2008.

C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link layer security
architecture for wireless sensor networks,” in SenSys '04: Proceedings
of the 2nd international conference on Embedded networked sensor
systems. New York, NY, USA: ACM Press, 2004, pp. 162-175.

R. Rivest, “The md5S message-digest algorithm,” April 1992, http://tools.
ietf.org/html/rfc1321.

H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-hashing
for message authentication,” February 1997, http://tools.ietf.org/html/
rfc2104.

P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler, “Securing the deluge
network programming system,” In the Fifth International Conference on
Information Processing in Sensor Networks (IPSN’06), April 2006.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Root
finding and nonlinear sets of equation,” in Numerical Recipes: The Art
of Scientific Computing, W. H. Press, Ed. Cambridge University Press,
2007.

A. Liu, P. Kampanakis, and P. Ning, “Tinyecc: Elliptic curve cryptogra-
phy for sensor networks (version 0.3),” February 2007, http://discovery.
csc.ncsu.edu/software/TinyECC/.

