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Abstract 

 
With an increasing complexity of business 

processes, self-healing capability is becoming an 
important issue in order to support robust service flow 
execution. In this paper, a dynamic self-healing 
mechanism is proposed, which can dynamically 
identify suitable alternatives and replace faulty 
services such that a service flow can be performed 
successfully despite of unexpected exceptions. This 
mechanism explicitly utilizes Semantic Web services 
for service matching and selection of a composite 
service in business service flow, and Semantic web 
services are equipped with rich business rules in a 
domain-dependent manner. We explore the self-healing 
mechanism for supporting self-healable service flow 
execution which is modeled in BPEL4WS. A demo 
system of self-healing capable Service Flow Execution 
is built to validate its effectiveness by a concrete 
scenario, PC manufacturing application.  

   
1. Introduction 
 
Today, increasing number of organizations expose 
their business functions as Web Services. As the use of 
Web services grows, more and more organizations are 
choosing Business Process Execution Language 
(BPEL) [1] for modeling business processes within the 
Service Oriented Architecture (SOA). In order to 
support robust service flow execution, self-healing in 
service flow is becoming prominent. In general, self-
healing includes faults detection and recovery. BPEL 
provides a set of standard faults detection and recovery 
mechanisms, such as Fault handler, Compensation 
handler, and Event handler which are automatically 
executed by the BPEL execution engine. However, 

these basic recovery mechanisms are quite simple and 
scopes-oriented. The recovery is only to compensate 
all effects of a faulted scope and to continue the service 
flow execution without any results obtained from this 
scope, and do not support sophisticated recovery 
actions [3] such as service replacement. Furthermore, 
the standard recovery mechanisms provided by BPEL 
language are static in a sense that they are defined in 
the service flow design phase.  

In this paper, we define the "self-healing service 
flow" as a service flow which can be locally recovered 
from the faults detected during service flow execution. 
Generally, there are two approaches to self-healing of a 
service flow: static and dynamic. In a static approach, 
self-healing is addressed at the design time, that is, for 
every possible faulty in a service flow, a fault handler 
is constructed at the design time which specifically 
handles the anticipated fault. If the fault encountered is 
not expected during the design of the service flow, the 
service flow is unable to handle it as there is no pre-
designed handler available. On the other hand, in a 
dynamic approach, any fault that occurs at the run time 
is handled by dynamically constructing, at the run 
time, a replacement of services which sufficiently 
matches the faulty one based on some criteria. In this 
paper, we focus on the dynamic self-healing 
mechanism for service flows. 

In order to support self-healable service flow 
execution, a self-healing mechanism is proposed to 
replace the faulty service dynamically. The mechanism 
has been utilized to build Self-healing Service Flow 
Generator (SSFG) which addresses the issue at the two 
different levels. At high level, having semantic 
support, OWL-S [5] is used in dynamic service 
discovery and composition. At the concrete level, 
industry-based BPEL is exploited in service execution. 
The SSFG bridges the gap between OWL-S and BPEL. 
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It embeds the self-healing mechanism into BPEL 
service flow which achieves dynamic Web service 
replacement.  

Dynamic Web service replacement during self-
healing procedure involves service discovery and 
selection. To improve the effectiveness of service 
discovery, we exploit the Semantic Web service 
technology. The inputs and outputs of a service will be 
marked with domain ontologies. In addition, to 
facilitate policy based service selection, the description 
of each atomic Semantic Web service is enhanced with 
local business rules which capture the essential 
business logic behind the service interface; and each 
composite service is enhanced with global business 
rules which set the selection criteria for alternative 
service. 

The remaining part of this paper is organized as 
follows. Section 2 provides a literature review of 
related research works. Section 3 introduces Service 
Flow Execution System with self-healing capability. 
The details of self-healing mechanism are presented in 
Section 4. The self-healing procedure is illustrated 
using a PC manufacturing scenario in Section 5. 
Finally Section 6 concludes the paper. 

 
2. Related work 
 

As systems increase in complexity, self-healing 
systems are attracting a number of researcher's 
attention. However, only a few research efforts focus 
on self-healing in Service Oriented Architecture (SOA) 
have been reported. Web Services - DIAgnosability, 
Monitoring and Diagnosis (WS-DIAMOND) [8] is a 
European research project which has two aims: (1) to 
develop a framework for self-healing Web Services; 
(2) to devise guidelines for designing services in such a 
way that they can be easily diagnosed and recovered 
during their execution. 

Kunal and Amit propose a framework to elevate 
automatic computing from infrastructure level to 
process level to create Autonomic Web Processes 
(AWPs) [9]. AWPs are Web service based processes 
that support the autonomic computing properties. The 
behavior of AWPs is controlled by policies defined by 
users. However, they didn't give technical details about 
the policy. Our global business rules which determine 
the alternative plan during the healing process are 
conceptually similar to the AWPs' policies. 

In [3], a self-healing plug-in for BPEL engine is 
presented to enhance the ability of a standard engine to 
provide process-based recovery actions. This approach 
is different from ours in the following aspects: (1) it 
uses API from activeBPEL engine [2] and therefore it 
is an implementation dependent solution; (2) its 

recovery mechanism is annotated in the BPEL service 
flow which can not be executed directly by any BPEL 
engine; while the output of our SSFG is a standard 
BPEL service flow; (3) Semantic Web service 
discovery technology is exploited in the our self-
healing process; (4) our final service selection is based 
on rule evaluation results. 

  
3. Self-healing capable service flow 
execution system 
 

Figure 1 shows the architecture of our Service Flow 
Execution System with self-healing capability. It 
includes the following components: Service Composer, 
SSFG, BPEL Execution Engine, Service Repository 
and Knowledge Base.  

The user inputs of Service Composer are the 
requested service capability which refers primarily to 
the required outputs of a service given the available 
inputs. By leveraging Semantic Web service 
technology, the service composer based on the 
forward-chaining algorithm will aggressively chain a 
group of Semantic Web services together in order to 
satisfy the specific requirements [16]. The output from 
Service Composer is a list of composite service which 
consists of one or more atomic services described in 
OWL-S with Input/Output/Precondition/Effect (IOPE). 

 

 
 

Figure 1. Self-healing capable service flow 
execution system 

 
The inputs and outputs of a service are marked with 

domain ontologies to facilitate Semantic Web service 
discovery. To achieve rule based service selection, the 
description of each atomic Semantic Web service is 
enhanced with local business rules; and the 
description of each composite service is enhanced with 
global business rules. The local business rules contain 
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domain specific information suitable for subsequent 
service selection, such as completion time and 
estimated cost. Global business rules define a set of 
selection criteria (i.e. one may favor the service which 
has minimum cost, while the other favors minimum 
completion time) to choose one service among a list of 
alternatives based on the local business rules 
evaluation results. Therefore, the Global Business Rule 
plays a determinant role in service selection. Both local 
and global business rules are identified by Rule URI 
which can be referred by their Semantic Web service 
description. 

SSFG is comprised of two parts: (1) self-healing 
mechanism; (2) a mapper which can translate OWL-S 
process to BPEL process by converting data, data flow 
and control flow into BPEL counterparts. Existing 
works on the mapper can be found in [4, 15]. However, 
to our knowledge, no mapper ever addresses self-
healing issue as studied in this paper. 

 
4. Self-healing mechanism 
 

In this paper, we propose a self-healing mechanism 
to support self-healable service flow execution. It is 
built in the component SSFG. A sample of script 
generated by SSFG is shown in Figure 2.  As shown in 
Figure 2, the BPEL Fault handlers is used to catch 
faults and provide exception handling. In order to deal 
with exceptional situations more locally to the place 
where they occurred, the fault handlers can associate 
with a scope. A scope provides the behavior context 
for each activity which represents an invocation of a 
Web service operation. When a fault happens within a 
scope, a local fault handler can deal with it before the 
scope’s processing ends. Figure 2 shows the scoped 
fault handling. We utilize catchAll element instead of 
catch to house all the error handling activities. This is 
due to the matching fault handler can not be found if 
the operation of a Web service doesn't define the 
correspondent error messages as its outputs. 

Once Fault hander catches a fault, the self-healing 
mechanism will be started. It is comprised of the 
following major steps as shown in Figure 5: 

1. Find a list of alternative services 
2. Update knowledge base to record the information 

on matched services 
3. Apply both global and local business rules & 

update knowledge base & select one service 
4. Invoke the selected service 
 
The 4-steps self-healing procedure is realized 

through four well designed Web services. If an error 
occurs during a service invocation such as the service 
is currently unavailable, the self-healing mechanism 

will discover alternative services first given the 
semantic description of the faulty service as inputs. 
And their related information e.g. the URL of a 
service, the URL of local business rules, etc will be 
updated in the knowledge base. Thereafter, the local 
business rules of each discovered service will be 
evaluated. Based on the evaluation results, the global 
business rule will determine the final service. Last, the 
selected service will be invoked. The following sub-
sections will give more details on each step of our self-
healing mechanism. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Scoped fault handling 
 

4.1. Service discovery 
 

In order to find an alternative service to replace the 
faulty service for self-healing purpose, the Semantic 
Web service discovery technology is exploited. There 
are various types of semantic matches. While exact 
match between services (or between service and 
requirements) appears to be the best choice, many 
flavors of relaxed match may also serve the purpose. 
The characterization of matches requires the semantic 
description of web services in OWL-S. Two aspects of 
service behavior described in OWL-S are of particular 
interests to services matching: (1) the information 
transformation represented by inputs and outputs, and 
(2) the state change produced by service execution in 
the form of preconditions and effects. This together is 
known as IOPE representing service capability. Inputs 
and outputs of a service are named and typed using 
either OWL-S ontologies or data types that XML 
Schema provides. They together constitute the main 
interface for the purpose of interacting with the service. 
In our previous research, we have characterized 14 
different matches derived from IOPE [10]. 
Nevertheless, in this paper we will only highlight 
several matches that are explicitly utilized by our 
current implementation of the Service Discovery WS. 

<process> 
 ...    
   <scope> 
      <sequence> 
         <invoke> Operation of Web Service 1 </invoke> 
      </sequence> 
      <faultHandlers> 
         <catch faultName="..."  faultMessageType="..." /> 
         <catchAll> 
 ...<!-- Self-healing activities -->  
         </catchAll>     
      </faultHandlers> 
   </scope> 
 … 
</process> 
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Definition 1 (Relax-Input-Match): 
( ) inputsinputsinputr BABAmatch ⊇=− ,      

Service A is said Relax-input-matched with service 
B if and only if inputs of service A are the superset of 
inputs of service B. 

Definition 2 (Subsume-Output-Match): 
( ) outputsoutputsoutputs BABAmatch ⊆=− ,      

Service A is said Subsume-Output-matched with 
service B if and only if outputs of service A are the 
subset of outputs of service B. 

Definition 3 (Relax-IO-Match):  
( ) ( ) ( )BAmatchBAmatchBAmatch OutputsInputrRIO ,,, −− ∧=

Service A is said RIO-matched with service B if and 
only if inputs of service A are the superset of inputs of 
service B and outputs of service A are the subset of 
outputs of service B. 

 When the Fault handlers catch a faulty service, its 
service capability will be served as input of Service 
Discovery WS. The requested service (the faulty 
service) will be matched against all the advertisements 
stored in the service repository. Based on the concept 
subsumption relations in the corresponding ontology, 
our Service Discovery WS can determine a list of 
services that semantically match with the given faulty 
service. The matching algorithm based on the above 
definition is shown in Figure 3. When there is no exact 
matched service, the relax matched service can also 
work. 

 
 
 
 
 

 
 

Figure 3. Matching algorithm 
 

4.2. Knowledge base update 
 
Knowledge is presented by ontology which is a 

specification of formally described, machine-readable 
collection of concepts and their relationships within a 
domain. The concept of ontology enables description 
of explicit semantics. In order to record the discovered 
services for further service selection purpose, the 
ontology for self-healing procedure should be built in 
addition to the domain ontology. During service flow 
execution, the knowledge base serves as a semantics 
container to store all the dynamic execution 
information. A web standard-based way for 
representing ontology is the use of Web Ontology 
Language (OWL) [11]. 

Figure 4 shows the ontology for self-healing. The 
two OWL classes, namely, CompositeWS and 
AtomicWS are subclass of the root class Thing. An 
instance of CompositeWS will be created for each of 
the outputs of Service Composer. Global business rules 
will be associated to each instance of CompositeWS. 
The faulty service and discovered services are 
instances of AtomicWS. CompositeWS has one 
object property hasFaultyService which has a range 
class AtomicWS. AtomicWS has one object property 
hasReplaceableSerivce whose domain and range 
classes are itself. Each class has their correspondent 
datatype properties, such as service Name, service 
URL, etc. During the knowledge base updating phase, 
an instance of the faulty service will be created first 
followed by each matched service in the matching list. 
The relationship between the CompositeWS and the 
faulty AtomicWS, the faulty AtomicWS and matched 
services are also established accordingly.   

 
 

Figure 4. Ontology for self-healing 
 

4.3. Rule evaluation and rule driven service 
selection 
 

In this research work, Semantic Query-Enhanced 
Web Rule Language (SQWRL; pronounced squirrel) 
[12] is utilized for both local and global business rules. 
SQWRL is a SWRL [6] based query language that can 
be used to query OWL ontologies. SQWRL provides 
SQL-like operations to format knowledge retrieved 
from an OWL ontology. The SQWRLQueryAPI 
offered by Protégé is used to retrieve the result of 
SQWRL queries. It provides a JDBC-like Java 
interface. An SQWRL description can be found in the 
next section. 

To our knowledge, the actual use of SWRL in 
OWL-S specification is to use SWRL-based expression 
to model precondition and effect. It does not support 
full rule specification. In this research, both local and 
global business rules are used to purely support service 
selection. Due to conceptually different from 
precondition and effect according to OWL-S 
specification, we put their URL into ServiceParameter 
of OWL-S profile. 

For each advertised service in the service repository  
   if (  match ( adv.inputs, req.inputs ) is Relax-Input-match ) and 
      ( match ( adv.outputs, req.outputs ) is Subsume-Output-Match )  
       match-list.add ( adv ); 
 
 return match-list; 
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Figure 5. Generated self-healing service flow 

 
Two open-source projects, Protégé [13] and Jess 

Rules Engine [14] are exploited in the rule evaluation. 
Using SQWRL Query Engine bundled with the 
Protégé distribution, both local and global business 
rules can be processed by the backend Jess Rules 
Engine. Based on these tools, we develop the Rule 
Evaluation WS [7]. 

 
4.4. Service invocation 

 
Based on the rules evaluation results and selection 

criteria, the final service will be selected. Given the 
selected service URL and the input variable of the 
faulty service as inputs, the Service Invocation WS will 
invoke the selected service. The output of the Service 
Invocation WS is the output of the faulty service.  

 
The generated self-healing service flow is depicted 

in Figure 5. The input and output ontology of the faulty 
service will be fed into the Service Discovery WS. The 
Service Discovery WS will perform the semantic 
matching and return a list of matched service URL. 
Upon knowledge base update and business rules 
evaluation, the substitution service will be selected. 
The selected service URL and the inputs of original 
faulty service together will be assigned to a new 
variable which will be subsequently consumed by the 
Service Invocation WS. The output will be assigned to 
the original faulty service output variable which will be 
served as input of next Web service in the service flow. 
In such a way, the self-healing procedure merged with 
the original service flow seamlessly. 

 
5. PC manufacturing prototyping system 
 

In order to respond to the dynamic market demand 
for computers, business service flows for PC 
manufacturing need to be dynamically formulated and 
executed to share their functionalities and resources in 
a collaborative manner. Figure 6 shows a sub-service 
flow formulated in a Collaborative PC manufacturing 
Virtual Enterprise. After processing customer order, a 
monitor purchase order is issued to the MonitorSupply 
Web service which produces a delivery order. For 
computer assembly purpose, HardwareShipping Web 
service has to ship monitors to the company which can 
assemble the computers. Our self-healing capable 
service flow execution system will be evaluated based 
on this scenario.  

 
 

Figure 6. Sub service flow in PC manufacturing 
CVE 

<partnerLinks> 
    <partnerLink name=”SrvDiscover” /> 
    <partnerLink name=”KBUpdate” /> 
    <partnerLink name=”Evaluate&Select” /> 
    <partnerLink name=”SrvInvoke” /> 
</partnerLinks> 
 
<variables> 
    <variable name=”FaultySrv” /> 
    <variable name=”MatchedList” /> 
    <variable name=”SelectedSrvURL” /> 
    <variable name=”SelectedSrv” /> 
    <variable name=”FaultySrvInputValue” /> 
    <variable name=”FaultySrvOutputValue” /> 
</variables> 
 
<sequence> 
    <invoke partnerLink=”SrvDiscover” 
                 inputVariable=”FaultySrv” 
     outputVariable=”MatchedList” /> 
    <invoke partnerLink=”KBUpdate” 
                 inputVariable=”MatchedList” /> 
    <invoke partnerLink=”Evaluate&Select” 
                 outputVariable=”SelectedSrvURI” /> 
    <assign> <copy><from> 
              $SelectedSrvURL and $FaultySrvInputValue 
          <to>$SelectedSrv 
    </assign> 
    <invoke partnerLink=”SrvInvoke” 
                  inputVariable=”SelectedSrv” 
   outputVariable=”FaultySrvOutputValue” /> 
</sequence> 
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5.1. Service discovery 

 
In this section, we will illustrate the self-healing 

procedure once a fault is caught by the Fault handler 
due to the MonitorSupply service is currently not 
available. Suppose the input of MonitorSupply service 
is LCDMonitorPurchaseOrder and its output is 
MonitorDeliveryOrder. The input and output represent 
the service capability which will be exploited in 
semantic service discovery. While exact match 
between services appears to be the best choice, very 
often, this kind of match can not be found. In such a 
case, many flavors of relaxed match may also serve the 
purpose. For example, if we have an ontology that 
defines "LCDMonitorPurchaseOrder is-subclass-of 
MonitorPurchaseOrder", and 
"LCDMonitorDeliveryOrder is-subclass-of 
MonitorDeliveryOrder", we may find a list of Web 
services that serve our needs. 

 
5.2. Knowledge base update 

 
Next, the searched results will be updated in 

knowledge base. Suppose we discover two 
MonitorSupply services from company C1 and 
company C2 respectively which are matched with the 
faulty service. Based on the ontology designed in 
Figure 4, the services instances are created 
correspondently in knowledge base as shown in Figure 
7. The PCmanufacturing composite service has a 
faulty service MonitorSupplyWS which has two 
replaceable services MonitorSupply_C1 and 
MonitorSupply_C2.  

 

 
 

Figure 7. Created instances in knowledge base 
 
5.3. Rule evaluation and rule driven service 
selection 

 
Each of these replaceable services is associated with 

local business rules. Suppose the following business 
rule models the estimated cost of MonitorSupply_C1 

service. Using natural English, this local business rule 
can be described with rule R1 below. 

R1. IF (c1) the monitor size is 17 inch; and (c2) 
the quantity of monitors to be purchased (?q) is less 
than 500; THEN the estimated service cost incurred is 
(?qX250) dollars. 

The rule R1 contains two conditions c1 and c2. 
Assume that a client issues a request to this service for 
purchasing four 17-inch monitors. This request 
satisfies both conditions c1 and c2. According to R1, if 
the service call can be finished successfully, the 
estimated cost will be (4X250) dollars. This result is 
reflected on the estimated cost property of 
MonitorSupply_C1 service instance contained in the 
OWL knowledge base as shown in Figure 7. 

One prerequisite for specifying R1 using SWRL is 
to design a proper group of OWL ontologies. In the 
context of R1, two ontology concepts can be identified, 
namely, Monitor and MonitorSupply_C1. These two 
concepts are implemented via OWL classes as shown 
in Figure 7. For the Monitor class, it contains two 
properties: monitorSize and quantity. Meanwhile, we 
can create another property, namely estimated cost, for 
the MonitorSupply_C1 class.  

After local business rules evaluation for these two 
replaceable services MonitorSupply_C1 and 
MonitorSupply_C2, the results such as the completion 
time and estimated cost will be updated in the 
knowledge base as shown in red in Figure 7. 

In order to select one service among the several 
alternatives, SQWRL is utilized for specifying the 
selection rules (the global business rules) for 
alternative service. Using natural English, this global 
business rule can be described with rule R2 below. 

R2. Select the substitution service with minimum 
completion time for MonitorSupply Web service. 

Based on the identified OWL classes and properties, 
Figure 8 shows the SQWRL description for R2. Seven 
atomic conditions are involved in defining the 
antecedent of R2. The first three atomic conditions 
identify the faulty service MonitorSupplyWS. The 
fourth atomic condition selects all the replaceable 
services for MonitorSupplyWS. The fifth, sixth and 
seventh atomic conditions together identify the 
properties of the replaceable services. The SQWRL 
query in the consequent of R2 will return a service 
with minimum completion time based on the local 
business rules evaluation results. In this scenario, the 
MonitorSupply_C1 service from company C1 will be 
selected because it takes 2 days to get the monitors 
which is faster than the service from the company C2. 
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5.4. Service invocation 
 
Finally, the selected MonitorSupply_C1 service 

URL and its input will be fed into Service Invocation 
WS and be invoked to replace the faulty MonitorSupply 
service. The output will be assigned to the output 
variable of the faulty service which subsequently 
serves as the input variable of the following Web 
service. 

 
 
 
 
 
 
 
 
 

 
Figure 8. SQWRL description for Global 

Business Rule R2 
 
6. Conclusion 
 

In this paper, we focused on self-healing capability 
in robust service flow execution. The self-healing 
mechanism has been proposed to dynamically replace 
the faulty service with suitable alternatives such that 
the service flow can be performed smoothly. In order 
to realize the service substitution, our self-healing 
mechanism can be divided into four major steps: (1) 
find a list of alternative services; (2) update knowledge 
base to record the information on matched services; (3) 
apply both global and local business rules & update 
knowledge base & select one service; (4) invoke the 
selected service. The mechanism has been specifically 
explored in this paper to support self-healable service 
flow execution. Its effectiveness has also been 
demonstrated by a concrete scenario (PC 
manufacturing application) using a self-healing capable 
Service Flow Execution System.  
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CompositeWS (?cs) ∧ hasFaultyService (?cs, ?fs)  
∧ name (?fs, "MonitorSupplyWS") 
∧ hasReplaceableService (?fs, ?rs )  
∧ completionTime (?rs, ?time)   
∧ estimatedCost (?rs, ?cost) ∧ uri (?rs, ?u) 
→ sqwrl:select (?rs, ?u, ?time, ?cost )  
     ∧ sqwrl:min (?time) 
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