
Dynamic Self-Healing for Service Flows with Semantic Web Services

Wei Ren1, Gang Chen1, Haifeng Shen4,
Zhonghua Yang1,

1School of Electrical and Electronics

Engineering, 4School of Computer
Engineering,

Nanyang Technological University,
Singapore 639798

Jing Bing Zhang2, Chor Ping Low1,
David Chen3, Chengzheng Sun4

2Singapore Institute of Manufacturing
Technology (SIMTech), Singapore 638075

3School of Computing & Information
Technology, Griffith University, Australia

4111

Abstract

With an increasing complexity of business

processes, self-healing capability is becoming an
important issue in order to support robust service flow
execution. In this paper, a dynamic self-healing
mechanism is proposed, which can dynamically
identify suitable alternatives and replace faulty
services such that a service flow can be performed
successfully despite of unexpected exceptions. This
mechanism explicitly utilizes Semantic Web services
for service matching and selection of a composite
service in business service flow, and Semantic web
services are equipped with rich business rules in a
domain-dependent manner. We explore the self-healing
mechanism for supporting self-healable service flow
execution which is modeled in BPEL4WS. A demo
system of self-healing capable Service Flow Execution
is built to validate its effectiveness by a concrete
scenario, PC manufacturing application.

1. Introduction

Today, increasing number of organizations expose
their business functions as Web Services. As the use of
Web services grows, more and more organizations are
choosing Business Process Execution Language
(BPEL) [1] for modeling business processes within the
Service Oriented Architecture (SOA). In order to
support robust service flow execution, self-healing in
service flow is becoming prominent. In general, self-
healing includes faults detection and recovery. BPEL
provides a set of standard faults detection and recovery
mechanisms, such as Fault handler, Compensation
handler, and Event handler which are automatically
executed by the BPEL execution engine. However,

these basic recovery mechanisms are quite simple and
scopes-oriented. The recovery is only to compensate
all effects of a faulted scope and to continue the service
flow execution without any results obtained from this
scope, and do not support sophisticated recovery
actions [3] such as service replacement. Furthermore,
the standard recovery mechanisms provided by BPEL
language are static in a sense that they are defined in
the service flow design phase.

In this paper, we define the "self-healing service
flow" as a service flow which can be locally recovered
from the faults detected during service flow execution.
Generally, there are two approaches to self-healing of a
service flow: static and dynamic. In a static approach,
self-healing is addressed at the design time, that is, for
every possible faulty in a service flow, a fault handler
is constructed at the design time which specifically
handles the anticipated fault. If the fault encountered is
not expected during the design of the service flow, the
service flow is unable to handle it as there is no pre-
designed handler available. On the other hand, in a
dynamic approach, any fault that occurs at the run time
is handled by dynamically constructing, at the run
time, a replacement of services which sufficiently
matches the faulty one based on some criteria. In this
paper, we focus on the dynamic self-healing
mechanism for service flows.

In order to support self-healable service flow
execution, a self-healing mechanism is proposed to
replace the faulty service dynamically. The mechanism
has been utilized to build Self-healing Service Flow
Generator (SSFG) which addresses the issue at the two
different levels. At high level, having semantic
support, OWL-S [5] is used in dynamic service
discovery and composition. At the concrete level,
industry-based BPEL is exploited in service execution.
The SSFG bridges the gap between OWL-S and BPEL.

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.111

594

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.111

598

It embeds the self-healing mechanism into BPEL
service flow which achieves dynamic Web service
replacement.

Dynamic Web service replacement during self-
healing procedure involves service discovery and
selection. To improve the effectiveness of service
discovery, we exploit the Semantic Web service
technology. The inputs and outputs of a service will be
marked with domain ontologies. In addition, to
facilitate policy based service selection, the description
of each atomic Semantic Web service is enhanced with
local business rules which capture the essential
business logic behind the service interface; and each
composite service is enhanced with global business
rules which set the selection criteria for alternative
service.

The remaining part of this paper is organized as
follows. Section 2 provides a literature review of
related research works. Section 3 introduces Service
Flow Execution System with self-healing capability.
The details of self-healing mechanism are presented in
Section 4. The self-healing procedure is illustrated
using a PC manufacturing scenario in Section 5.
Finally Section 6 concludes the paper.

2. Related work

As systems increase in complexity, self-healing
systems are attracting a number of researcher's
attention. However, only a few research efforts focus
on self-healing in Service Oriented Architecture (SOA)
have been reported. Web Services - DIAgnosability,
Monitoring and Diagnosis (WS-DIAMOND) [8] is a
European research project which has two aims: (1) to
develop a framework for self-healing Web Services;
(2) to devise guidelines for designing services in such a
way that they can be easily diagnosed and recovered
during their execution.

Kunal and Amit propose a framework to elevate
automatic computing from infrastructure level to
process level to create Autonomic Web Processes
(AWPs) [9]. AWPs are Web service based processes
that support the autonomic computing properties. The
behavior of AWPs is controlled by policies defined by
users. However, they didn't give technical details about
the policy. Our global business rules which determine
the alternative plan during the healing process are
conceptually similar to the AWPs' policies.

In [3], a self-healing plug-in for BPEL engine is
presented to enhance the ability of a standard engine to
provide process-based recovery actions. This approach
is different from ours in the following aspects: (1) it
uses API from activeBPEL engine [2] and therefore it
is an implementation dependent solution; (2) its

recovery mechanism is annotated in the BPEL service
flow which can not be executed directly by any BPEL
engine; while the output of our SSFG is a standard
BPEL service flow; (3) Semantic Web service
discovery technology is exploited in the our self-
healing process; (4) our final service selection is based
on rule evaluation results.

3. Self-healing capable service flow
execution system

Figure 1 shows the architecture of our Service Flow
Execution System with self-healing capability. It
includes the following components: Service Composer,
SSFG, BPEL Execution Engine, Service Repository
and Knowledge Base.

The user inputs of Service Composer are the
requested service capability which refers primarily to
the required outputs of a service given the available
inputs. By leveraging Semantic Web service
technology, the service composer based on the
forward-chaining algorithm will aggressively chain a
group of Semantic Web services together in order to
satisfy the specific requirements [16]. The output from
Service Composer is a list of composite service which
consists of one or more atomic services described in
OWL-S with Input/Output/Precondition/Effect (IOPE).

Figure 1. Self-healing capable service flow
execution system

The inputs and outputs of a service are marked with

domain ontologies to facilitate Semantic Web service
discovery. To achieve rule based service selection, the
description of each atomic Semantic Web service is
enhanced with local business rules; and the
description of each composite service is enhanced with
global business rules. The local business rules contain

595599

domain specific information suitable for subsequent
service selection, such as completion time and
estimated cost. Global business rules define a set of
selection criteria (i.e. one may favor the service which
has minimum cost, while the other favors minimum
completion time) to choose one service among a list of
alternatives based on the local business rules
evaluation results. Therefore, the Global Business Rule
plays a determinant role in service selection. Both local
and global business rules are identified by Rule URI
which can be referred by their Semantic Web service
description.

SSFG is comprised of two parts: (1) self-healing
mechanism; (2) a mapper which can translate OWL-S
process to BPEL process by converting data, data flow
and control flow into BPEL counterparts. Existing
works on the mapper can be found in [4, 15]. However,
to our knowledge, no mapper ever addresses self-
healing issue as studied in this paper.

4. Self-healing mechanism

In this paper, we propose a self-healing mechanism
to support self-healable service flow execution. It is
built in the component SSFG. A sample of script
generated by SSFG is shown in Figure 2. As shown in
Figure 2, the BPEL Fault handlers is used to catch
faults and provide exception handling. In order to deal
with exceptional situations more locally to the place
where they occurred, the fault handlers can associate
with a scope. A scope provides the behavior context
for each activity which represents an invocation of a
Web service operation. When a fault happens within a
scope, a local fault handler can deal with it before the
scope’s processing ends. Figure 2 shows the scoped
fault handling. We utilize catchAll element instead of
catch to house all the error handling activities. This is
due to the matching fault handler can not be found if
the operation of a Web service doesn't define the
correspondent error messages as its outputs.

Once Fault hander catches a fault, the self-healing
mechanism will be started. It is comprised of the
following major steps as shown in Figure 5:

1. Find a list of alternative services
2. Update knowledge base to record the information

on matched services
3. Apply both global and local business rules &

update knowledge base & select one service
4. Invoke the selected service

The 4-steps self-healing procedure is realized

through four well designed Web services. If an error
occurs during a service invocation such as the service
is currently unavailable, the self-healing mechanism

will discover alternative services first given the
semantic description of the faulty service as inputs.
And their related information e.g. the URL of a
service, the URL of local business rules, etc will be
updated in the knowledge base. Thereafter, the local
business rules of each discovered service will be
evaluated. Based on the evaluation results, the global
business rule will determine the final service. Last, the
selected service will be invoked. The following sub-
sections will give more details on each step of our self-
healing mechanism.

Figure 2. Scoped fault handling

4.1. Service discovery

In order to find an alternative service to replace the
faulty service for self-healing purpose, the Semantic
Web service discovery technology is exploited. There
are various types of semantic matches. While exact
match between services (or between service and
requirements) appears to be the best choice, many
flavors of relaxed match may also serve the purpose.
The characterization of matches requires the semantic
description of web services in OWL-S. Two aspects of
service behavior described in OWL-S are of particular
interests to services matching: (1) the information
transformation represented by inputs and outputs, and
(2) the state change produced by service execution in
the form of preconditions and effects. This together is
known as IOPE representing service capability. Inputs
and outputs of a service are named and typed using
either OWL-S ontologies or data types that XML
Schema provides. They together constitute the main
interface for the purpose of interacting with the service.
In our previous research, we have characterized 14
different matches derived from IOPE [10].
Nevertheless, in this paper we will only highlight
several matches that are explicitly utilized by our
current implementation of the Service Discovery WS.

<process>
 ...
 <scope>
 <sequence>
 <invoke> Operation of Web Service 1 </invoke>
 </sequence>
 <faultHandlers>
 <catch faultName="..." faultMessageType="..." />
 <catchAll>
 ...<!-- Self-healing activities -->
 </catchAll>
 </faultHandlers>
 </scope>
 …
</process>

596600

Definition 1 (Relax-Input-Match):
() inputsinputsinputr BABAmatch ⊇=− ,

Service A is said Relax-input-matched with service
B if and only if inputs of service A are the superset of
inputs of service B.

Definition 2 (Subsume-Output-Match):
() outputsoutputsoutputs BABAmatch ⊆=− ,

Service A is said Subsume-Output-matched with
service B if and only if outputs of service A are the
subset of outputs of service B.

Definition 3 (Relax-IO-Match):
() () ()BAmatchBAmatchBAmatch OutputsInputrRIO ,,, −− ∧=

Service A is said RIO-matched with service B if and
only if inputs of service A are the superset of inputs of
service B and outputs of service A are the subset of
outputs of service B.

 When the Fault handlers catch a faulty service, its
service capability will be served as input of Service
Discovery WS. The requested service (the faulty
service) will be matched against all the advertisements
stored in the service repository. Based on the concept
subsumption relations in the corresponding ontology,
our Service Discovery WS can determine a list of
services that semantically match with the given faulty
service. The matching algorithm based on the above
definition is shown in Figure 3. When there is no exact
matched service, the relax matched service can also
work.

Figure 3. Matching algorithm

4.2. Knowledge base update

Knowledge is presented by ontology which is a

specification of formally described, machine-readable
collection of concepts and their relationships within a
domain. The concept of ontology enables description
of explicit semantics. In order to record the discovered
services for further service selection purpose, the
ontology for self-healing procedure should be built in
addition to the domain ontology. During service flow
execution, the knowledge base serves as a semantics
container to store all the dynamic execution
information. A web standard-based way for
representing ontology is the use of Web Ontology
Language (OWL) [11].

Figure 4 shows the ontology for self-healing. The
two OWL classes, namely, CompositeWS and
AtomicWS are subclass of the root class Thing. An
instance of CompositeWS will be created for each of
the outputs of Service Composer. Global business rules
will be associated to each instance of CompositeWS.
The faulty service and discovered services are
instances of AtomicWS. CompositeWS has one
object property hasFaultyService which has a range
class AtomicWS. AtomicWS has one object property
hasReplaceableSerivce whose domain and range
classes are itself. Each class has their correspondent
datatype properties, such as service Name, service
URL, etc. During the knowledge base updating phase,
an instance of the faulty service will be created first
followed by each matched service in the matching list.
The relationship between the CompositeWS and the
faulty AtomicWS, the faulty AtomicWS and matched
services are also established accordingly.

Figure 4. Ontology for self-healing

4.3. Rule evaluation and rule driven service
selection

In this research work, Semantic Query-Enhanced
Web Rule Language (SQWRL; pronounced squirrel)
[12] is utilized for both local and global business rules.
SQWRL is a SWRL [6] based query language that can
be used to query OWL ontologies. SQWRL provides
SQL-like operations to format knowledge retrieved
from an OWL ontology. The SQWRLQueryAPI
offered by Protégé is used to retrieve the result of
SQWRL queries. It provides a JDBC-like Java
interface. An SQWRL description can be found in the
next section.

To our knowledge, the actual use of SWRL in
OWL-S specification is to use SWRL-based expression
to model precondition and effect. It does not support
full rule specification. In this research, both local and
global business rules are used to purely support service
selection. Due to conceptually different from
precondition and effect according to OWL-S
specification, we put their URL into ServiceParameter
of OWL-S profile.

For each advertised service in the service repository
 if (match (adv.inputs, req.inputs) is Relax-Input-match) and
 (match (adv.outputs, req.outputs) is Subsume-Output-Match)
 match-list.add (adv);

 return match-list;

597601

Figure 5. Generated self-healing service flow

Two open-source projects, Protégé [13] and Jess

Rules Engine [14] are exploited in the rule evaluation.
Using SQWRL Query Engine bundled with the
Protégé distribution, both local and global business
rules can be processed by the backend Jess Rules
Engine. Based on these tools, we develop the Rule
Evaluation WS [7].

4.4. Service invocation

Based on the rules evaluation results and selection

criteria, the final service will be selected. Given the
selected service URL and the input variable of the
faulty service as inputs, the Service Invocation WS will
invoke the selected service. The output of the Service
Invocation WS is the output of the faulty service.

The generated self-healing service flow is depicted

in Figure 5. The input and output ontology of the faulty
service will be fed into the Service Discovery WS. The
Service Discovery WS will perform the semantic
matching and return a list of matched service URL.
Upon knowledge base update and business rules
evaluation, the substitution service will be selected.
The selected service URL and the inputs of original
faulty service together will be assigned to a new
variable which will be subsequently consumed by the
Service Invocation WS. The output will be assigned to
the original faulty service output variable which will be
served as input of next Web service in the service flow.
In such a way, the self-healing procedure merged with
the original service flow seamlessly.

5. PC manufacturing prototyping system

In order to respond to the dynamic market demand
for computers, business service flows for PC
manufacturing need to be dynamically formulated and
executed to share their functionalities and resources in
a collaborative manner. Figure 6 shows a sub-service
flow formulated in a Collaborative PC manufacturing
Virtual Enterprise. After processing customer order, a
monitor purchase order is issued to the MonitorSupply
Web service which produces a delivery order. For
computer assembly purpose, HardwareShipping Web
service has to ship monitors to the company which can
assemble the computers. Our self-healing capable
service flow execution system will be evaluated based
on this scenario.

Figure 6. Sub service flow in PC manufacturing
CVE

<partnerLinks>
 <partnerLink name=”SrvDiscover” />
 <partnerLink name=”KBUpdate” />
 <partnerLink name=”Evaluate&Select” />
 <partnerLink name=”SrvInvoke” />
</partnerLinks>

<variables>
 <variable name=”FaultySrv” />
 <variable name=”MatchedList” />
 <variable name=”SelectedSrvURL” />
 <variable name=”SelectedSrv” />
 <variable name=”FaultySrvInputValue” />
 <variable name=”FaultySrvOutputValue” />
</variables>

<sequence>
 <invoke partnerLink=”SrvDiscover”
 inputVariable=”FaultySrv”
 outputVariable=”MatchedList” />
 <invoke partnerLink=”KBUpdate”
 inputVariable=”MatchedList” />
 <invoke partnerLink=”Evaluate&Select”
 outputVariable=”SelectedSrvURI” />
 <assign> <copy><from>
 $SelectedSrvURL and $FaultySrvInputValue
 <to>$SelectedSrv
 </assign>
 <invoke partnerLink=”SrvInvoke”
 inputVariable=”SelectedSrv”
 outputVariable=”FaultySrvOutputValue” />
</sequence>

598602

5.1. Service discovery

In this section, we will illustrate the self-healing

procedure once a fault is caught by the Fault handler
due to the MonitorSupply service is currently not
available. Suppose the input of MonitorSupply service
is LCDMonitorPurchaseOrder and its output is
MonitorDeliveryOrder. The input and output represent
the service capability which will be exploited in
semantic service discovery. While exact match
between services appears to be the best choice, very
often, this kind of match can not be found. In such a
case, many flavors of relaxed match may also serve the
purpose. For example, if we have an ontology that
defines "LCDMonitorPurchaseOrder is-subclass-of
MonitorPurchaseOrder", and
"LCDMonitorDeliveryOrder is-subclass-of
MonitorDeliveryOrder", we may find a list of Web
services that serve our needs.

5.2. Knowledge base update

Next, the searched results will be updated in

knowledge base. Suppose we discover two
MonitorSupply services from company C1 and
company C2 respectively which are matched with the
faulty service. Based on the ontology designed in
Figure 4, the services instances are created
correspondently in knowledge base as shown in Figure
7. The PCmanufacturing composite service has a
faulty service MonitorSupplyWS which has two
replaceable services MonitorSupply_C1 and
MonitorSupply_C2.

Figure 7. Created instances in knowledge base

5.3. Rule evaluation and rule driven service
selection

Each of these replaceable services is associated with

local business rules. Suppose the following business
rule models the estimated cost of MonitorSupply_C1

service. Using natural English, this local business rule
can be described with rule R1 below.

R1. IF (c1) the monitor size is 17 inch; and (c2)
the quantity of monitors to be purchased (?q) is less
than 500; THEN the estimated service cost incurred is
(?qX250) dollars.

The rule R1 contains two conditions c1 and c2.
Assume that a client issues a request to this service for
purchasing four 17-inch monitors. This request
satisfies both conditions c1 and c2. According to R1, if
the service call can be finished successfully, the
estimated cost will be (4X250) dollars. This result is
reflected on the estimated cost property of
MonitorSupply_C1 service instance contained in the
OWL knowledge base as shown in Figure 7.

One prerequisite for specifying R1 using SWRL is
to design a proper group of OWL ontologies. In the
context of R1, two ontology concepts can be identified,
namely, Monitor and MonitorSupply_C1. These two
concepts are implemented via OWL classes as shown
in Figure 7. For the Monitor class, it contains two
properties: monitorSize and quantity. Meanwhile, we
can create another property, namely estimated cost, for
the MonitorSupply_C1 class.

After local business rules evaluation for these two
replaceable services MonitorSupply_C1 and
MonitorSupply_C2, the results such as the completion
time and estimated cost will be updated in the
knowledge base as shown in red in Figure 7.

In order to select one service among the several
alternatives, SQWRL is utilized for specifying the
selection rules (the global business rules) for
alternative service. Using natural English, this global
business rule can be described with rule R2 below.

R2. Select the substitution service with minimum
completion time for MonitorSupply Web service.

Based on the identified OWL classes and properties,
Figure 8 shows the SQWRL description for R2. Seven
atomic conditions are involved in defining the
antecedent of R2. The first three atomic conditions
identify the faulty service MonitorSupplyWS. The
fourth atomic condition selects all the replaceable
services for MonitorSupplyWS. The fifth, sixth and
seventh atomic conditions together identify the
properties of the replaceable services. The SQWRL
query in the consequent of R2 will return a service
with minimum completion time based on the local
business rules evaluation results. In this scenario, the
MonitorSupply_C1 service from company C1 will be
selected because it takes 2 days to get the monitors
which is faster than the service from the company C2.

599603

5.4. Service invocation

Finally, the selected MonitorSupply_C1 service

URL and its input will be fed into Service Invocation
WS and be invoked to replace the faulty MonitorSupply
service. The output will be assigned to the output
variable of the faulty service which subsequently
serves as the input variable of the following Web
service.

Figure 8. SQWRL description for Global

Business Rule R2

6. Conclusion

In this paper, we focused on self-healing capability
in robust service flow execution. The self-healing
mechanism has been proposed to dynamically replace
the faulty service with suitable alternatives such that
the service flow can be performed smoothly. In order
to realize the service substitution, our self-healing
mechanism can be divided into four major steps: (1)
find a list of alternative services; (2) update knowledge
base to record the information on matched services; (3)
apply both global and local business rules & update
knowledge base & select one service; (4) invoke the
selected service. The mechanism has been specifically
explored in this paper to support self-healable service
flow execution. Its effectiveness has also been
demonstrated by a concrete scenario (PC
manufacturing application) using a self-healing capable
Service Flow Execution System.

7. Acknowledgement

This work was supported in part by the Agency for
Science, Technology, and Research (A*STAR) of
Singapore SERC TSRP on IMSS Grants 0521160078.

8. References

[1] A. Alves, et al. "Web Services Business Process
Execution Language Version 2.0", 2006 Available from:
http://www.oasis-open.org/apps/org/workgroup/wsbpel/.

[2] ActiveBPEL3, http://www.activebpel.org, 2004
[3] S. Modafferi, M. Enrico, and P. Barbara, "SH-BPEL: a
self-healing plug-in for WS-BPEL engines", in Proceedings
of the 1st workshop on Middleware for Service Oriented
Computing. 2006, ACM: Melbourne, Australia.
[4] W. Ren, et al. "Semantic Enhanced Rule Driven
Workflow Execution in Collaborative Virtual Enterprise", in
The 10th International Conference on Control, Automation,
Robotics and Vision. Special Session on Integrated
Manufacturing & Service Systems (IMSS). ICARCV,
December 17-20, 2008. Hanoi, Vietnam.
[5] OWL-S Coalition, "OWL-S: Semantic Markup for Web
Services", W3C Member Submission 2004 Available from:
http://www.w3.org/Submission/OWL-S/.
[6] I. Horrocks, et al. "SWRL: A Semantic Web Rule
Language Combining OWL and RuleML", 2004 Available
from: http://www.w3.org/Submission/SWRL/.
[7] G. Chen, et al. "Dynamic Virtual Enterprise Integration
via Business Rule Enhanced Semantic Service Composition
Framework", 3rd IEEE Conference on Industrial Electronics
and Applications (ICIEA 2008), June 3-5, 2008, Singapore.
[8] WS-Diamond. "Web Services - DIAgnosability,
Monitoring and Diagnosis". 2005 Available from:
http://wsdiamond.di.unito.it/.
[9] K. Verma and A.P. Sheth, "Autonomic Web Processes",
in Proceedings of the Third International Conference on
Service-Oriented Computing. 2005 Springer-Verlag.
[10] Z. Yang, J. B. Zhang, and C.P. Low. "Towards Dynamic
Integration of Collaborative Virtual Enterprise using
Semantic Web Services", in The 4th International IEEE
Conference on Industrial Informatics. 2006. Singapore.
[11] D. L. McGuinness, F.V.H., "OWL Web Ontology
Language Overview", W3C Recommendation 2004
Available from: http://www.w3.org/TR/owl-features/.
[12]Yuhana. "SQWRL", 2007 Available from:
http://protege.cim3.net/cgi-bin/wiki.pl?SQWRL.
[13] "Protege Ontology editor and knowledge-base
framework", Available from: http://protege.stanford.edu/.
[14] E.F. Hill. "Jess the Rule Engine for the Java Platform",
Available from: http://www.jessrules.com/.
[15] S. Liu, R. Khalaf, and F. Curbera. "From DAML-S
Processes to BPEL4WS", in Proceedings of the 14th
International workshop on Research Issues on Data
Engineering: Web Services for E-Commerce and E-
Government Applications (RIDE'04). 2004.
[16] G. Chen, et al. "Collaborative Virtual Enterprise
Integration via Semantic Web Service Composition", in The
2nd IEEE Conference on Industrial Electronics and
Applications. 2007. Harbin, China.

CompositeWS (?cs) ∧ hasFaultyService (?cs, ?fs)
∧ name (?fs, "MonitorSupplyWS")
∧ hasReplaceableService (?fs, ?rs)
∧ completionTime (?rs, ?time)
∧ estimatedCost (?rs, ?cost) ∧ uri (?rs, ?u)
→ sqwrl:select (?rs, ?u, ?time, ?cost)
 ∧ sqwrl:min (?time)

600604

