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Abstract: 
Spectrum estimation is a popular method for identifying 

periodically expressed genes in microarray time series analysis. 
For unevenly sampled data, a common technique is applying 
the Lomb-Scargle algorithm. The performance of this method 
suffers from the effect of noise in the data. In this paper, we 
propose a new spectrum estimation algorithm for unevenly 
sampled data. The new method is based on signal 
reconstructing technic in aliased shift-invariant signal spaces 
and a direct spectrum estimation formula was derived based 
on B-spline basis. The new algorithm is very flexible and can 
reduce the effect of noise by adjusting the order of B-spline 
basis. The test on simulated noisy signal and typical 
periodically expressed gene data shows our algorithm is 
accurate compared with Lomb-Scargle algorithm. 
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1. Introduction 

Spectrum estimation has been a classical research 
topic in signal processing communities. Many approaches 
have been proposed in the past decades, including the 
modified periodogram, autoregressive (AR) model, the 
MUSIC algorithm and the multitaper method [1-2]. 
Although all these algorithms have their own advantages, 
they are all developed based on a basic assumption: the 
input signal is evenly sampled. However, in many 
real-world applications, the data can be unevenly sampled. 
For example, in DAN microarray gene expression 
experiments, a time series may be obtained with different 
time sampling intervals [3-5]. Furthermore, an evenly 
sampled time series may contain missing values due to 

corruption or absence of some expression measurements. A 
time series with missing values can be considered as one 
with unevenly data samples in general. 

Ruf is one of the first to treat evenly sampled gene 
expression time series with missing values as unevenly 
sampled data for spectral analysis using the Lomb-Scargle 
periodogram [6]. Recently, Bohn, Hinderlich, Hütt, Kaiser 
and Lüttge have used the Lomb-Scargle periodogram to 
detect rhythmic components in the circadian cycle of the 
Crassulacean acid metabolism plants [7]. The 
Lomb-Scargle periodogram was originally developed for 
analysis of noisy unevenly sampled data from astronomical 
observations. Since it assumes there is a single stationary 
sinusoid wave that has infinite support, it may introduce 
some illusive periodic components for finite data. Also due 
to the effect of the noise in the data, it may produce 
inaccurate estimation results. 

In this paper, we propose a new spectrum estimation 
technique for unevenly sampled data. Our method models 
the signal in the aliased shift-invariant signal space that is a 
generalization of shift-invariant signal space, for which 
many theories and algorithms are available [8-24]. In our 
method, a direct spectrum estimation formula is derived 
based on the B-spline basis that has a finite support and its 
Fourier transform do not introduce illusive components. 
The proposed algorithm is also flexible and can reduce the 
effect of noise by adjusting the order of the B-spline basis. 
Tests on simulated noisy signals and periodically expressed 
gene data showed our algorithm is accurate compared with 
the Lomb-Scargle algorithm. 
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2. Mathematical theory and algorithm  

2.1. Mathematical model 

In the following, we first review existing work on 
signal analysis in the shift-invariant signal space, then 
derive the new spectrum estimation algorithm. 

Shannon’s signal sampling and reconstruction theorem 
states: 

Theorem A:  
If ]},[ˆsupp:{ ΩΩ−⊂=∈ Ω ffBf  and 
 π20 ≤Ω< T , then 
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Equation (1) shows that the space of bandlimited 
signal is identical to the space: 
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Dowski et al. have introduced a reconstruction formula 
for unevenly sampled signal that is the special case of (2) 
[10]:  
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Since the sinc function has an infinite support and 
slow decay, it is seldom adopted in real applications. In [23], 
Xian and Lin find a good decay function that can replace 
the sinc basis function, but the new function still has an 
infinite support. To replace the sinc function with a general 
function φ , we introduce a signal space that is called the 
shift-invariant (also called time-invariant) signal space 
[8-24]:   
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Its aliased version is defined by 
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where 0>L  is a constant. Reconstruction coefficients 
}{ ic  are related to the choice of basis function, φ . We 

leave the detailed computational procedure to Section 2.2. 
Signal reconstructing in the shift-invariant space is an 

active research area and there are many mathematical 
theories and computer algorithms on the topic [8-24]. When 
the signal )(φVf ∈  or )(φLV , we hope to reconstruct 

signal f  from sampled value )}({ ixf , where }{ ix  is 

the sampling point set. If }{ ix  is an evenly sampling point 
set, this problem can be regarded as signal reconstruction in 
an evenly sampling space. Otherwise, this is a signal 
reconstruction problem in an unevenly sampling space. 

In fact, the well-known autoregressive (AR) model can 
be regarded as a special case of signal reconstruction in the 
above signal space. For a given discrete data sequence 

][nx  for 10 −≤≤ Nn , the sample at time index n  is 
approximated by a linear combination of previous K  
samples in the sequence based on the AR prediction model 
that can be written as, 
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where ][~ nx  and ][ne  represent the estimation of 
][nx  and the corresponding estimation error, respectively. 

Comparing (5) with (6), it is obvious that (6) is only a 
special case of (5). 

For the signal reconstructing in an aliased 
shift-invariant space, we can obtain the following theorem 
characterizing its energy density spectrum )(ωxxS  
according to (5). 

Theorem 1. If )()( φLVxf ∈ , then the energy 
density spectrum  
          22 |)(ˆ|)( ωφω πωLki

k
k

xx ecS −∑=         (7) 

where φ̂  is the Fourier transform of φ  defined by 

dtet ti πωφωφ 2)()(ˆ −+∞
∞−∫=  

Proof: From the definitions of energy density spectrum 
and the signal space )(φLV , we can easily deduce 

22 |)(ˆ|)( ωφω πωLki
k

k
xx ecS −∑=  according to (5) 

In order to avoid instructing illusive periodic 
components caused by basis function φ  with infinite 
support, for example, sinc, here we only consider basis 
functions with compact support. The B-spline function is a 
good choice and is widely adopted in the wavelet 

reconstruction theory. We use supp φ to indicate the 
support of basis function φ . Assume that 

supp ],[ ΩΩ−⊂φ  and )()( φLVxf ∈  that is defined in 
finite interval, then we have the following theorem: 
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Theorem 2. If supp ],[ ΩΩ−⊂φ  and 

)()( φLVxf ∈  defined in the interval ],[ 21 AA , then 
f can be determined completely by the coefficients }{ kc  
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where supp }0)(:{ ≠= xx φφ . 
Proof: Since supp ],[)( ΩΩ−⊂φ  and 

)()( φLVxf ∈  is defined in the interval ],[ 21 AA , we 
have  
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2.2. PSD estimation algorithm 

In terms of the definition of the power spectrum 
density (PSD), we can obtain the following estimation 
function according to (8) 
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Coefficients, }{ kc , can be calculated according to 
following steps: 

(1) Given sampling points ],[,, 211 AAxx J ∈L  and 

corresponding discrete function value ),,( 1 Jyyy L= , 

computing matrix: )(),( kljk TTUU == , where 
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(2) Compute bTc 1−=  according to yUb = , 

where U  denotes complex conjugate of U  and 1−T  is 
the inverse of T . 

Compared with traditional PSD estimation algorithms, 
our method can directly compute PSD for unevenly 
sampling signal from (9). Also we can control the effect of 
noise by selecting different basis function φ  and 
parameter L . 

3. Experimental results 

In our numerical test, we choose B-spline of order N 
as basis function φ  for spectrum estimation. B-spline of 
order N can be defined as the convolutions of (N+1) 

B-splines of order 0, i.e. 
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obvious that supp ],[ 2
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1 ++−⊂ NNφ  for B-spline of order 

N  and its Fourier transform can be easily computed as 

follows: 1)sin(ˆ += N
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Through an easy substitution, we can obtain an explicit 
repression of PSD estimation as follows: 
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We first tested our spectral estimation algorithm on 
simulated signal for comparing the estimation accuracy 
with the Lomb-Scargle method. A cosine curve has been 
used to represent the ideal expression of a gene that goes 
from "on" state, to an "off" state, and then back to "on" [25]. 
In Figure 1(a), a cosine curve was generated to simulate the 
expression of a gene that has a 24-hours period with data 
samples taken every half-hours and its corresponding 
periodogram (see Figure 1(b)) showing a peak at the 
frequency of 1/24 Hz. Figure 1(c) shows a the same cosine 
signal, but it is now corrupoted with Gassian noise and 
unevenly sampled. Its periodograms obtained by using 
Lomb-Scargle method and our algorithm are shown in 
Figure 1(d) and Figure 1(e), respectively. The frequency 
corresponding to the peak in the periodograms obtained by 
using the Lomb-Scargle method and our method is 1/27Hz 
and 1/24 Hz, respectively (see Figure 1(d) and (e)). Clearly 
our method is more accurate than the Lomb-Scargle 
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algorithm. Our method also produces less false peak in the 
spectrum. 
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(c)                   (d)                  (e) 

Figure 1. Comparison of spectral estimation for simulated 
data: (a) simulated cosine signal with even sampling; (b) 
periodogram of the simulated signal in (a) obtained by 
using the Fourier transform; (c) simulated noisy cosine 
signal with uneven sampling; (d) periodogram obtained by 
using the Lomb-Scargle method for the signal in (c); (e) 
periodogram obtained by our method for the signal in (c). 

 
We have also tested our algorithm on real gene 

expression data of Plasmodium falciparum, which is one of 
the species that cause human malaria [26]. The gene 
expression time series from the asexual intraerythrocytic 
developmental cycle (IDC) of Plasmodium falciparum are 
strongly periodic. Identifying periodically expressed genes 
is useful for understanding the genome of Plasmodium 
falciparum and designing effective vaccines for prevention 
of human malaria. In the gene expression database from 
[26], data values at 23-rd and 29-th hours are completely 
missing. With missing values, the time series can be in 
general treated as unevenly sampled data. An example of 
gene expression profile from the database is shown in 
Figure 2(a), and the periodograms obtained by using the 
Lomb-Scargle algorithm and our algorithm are shown in 
Figure 2(b) and Figure 2(c), respectively. The frequency 
corresponding to the peak in the periodograms obtained by 
usingthe Lomb-Scargle method and our method is 1/44.15 
Hz and 1/43.23 Hz, respectively (see Figure 1(b) and (c)). 
Another example is shown in Figure 3. The frequency 
corresponding to the peak in the periodograms obtained by 
using the Lomb-Scargle method and our method is 1/48.78 
Hz and 1/49.75 Hz, respectively (see Figure 1(b) and (c)). 
We can see from these diagrams that our algorithm can 
effectively reduce the spurious oscillation components in 
the spectra. 
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(a)                 (b)                 (c) 

Figure 2. Spectral estimation for the expression time series 
of gene a12797_1 in the Plasmodium falciparum 
microarray data: (a) gene expression pattern; (b) 
periodogram obtained by using the Lomb-Scargle method; 
(c) periodogram obtained by using our algorithm. 
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Figure 3. Spectral estimation the gene expression of gene 
13725_4 in the Plasmodium falciparum microarray data: (a) 
gene expression pattern; (b) periodogram obtained by using 
the Lomb-Scargle method; (c) periodogram obtained by 
using our algorithm. 

4. Conclusions 

In this paper, we have proposed a new spectrum 
estimation algorithm based on signal reconstructing 
technique in an unevenly sampled space. The advantages of 
our algorithm over conventional the Lomb-Scargle spectral 
estimation method is that new algorithm can effectively 
reduce the effects of noise and spurious oscillation 
components and therefore improve the estimation accuracy. 
Also new algorithm is flexible since the order of B-spline 
basis function can be adjusted. Experiments on simulated 
signal and real gene expression data show that our method 
is effective and can be applied to identifying periodically 
expressed genes. 
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