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Global conservation laws imply superselection rules (SSR) which restrict the operations that are
possible on any given state. Imposing the additional constraint of local operations and classical
communication (LOCC) forbids the transfer of quantum systems between spatially separated sites.
In the case of particle conservation this imposes a SSR for local particle number. That is, the
coherences between subspaces of fixed particle number at each site are not accessible and any
state is therefore equivalent to its projection onto these subspaces. The accessible entanglement
under the SSR is less than (or equal to) that available in the absence of the SSR. An ancilla can
be used as a reference system to increase the amount of accessible entanglement. We examine the
relationship between local particle number uncertainty and the accessible entanglement and consider
the optimal reference states for recovering entanglement from certain systems. In particular we
derive the optimal ancilla state for extracting entanglement for a single shared particle and make
steps towards the optimum for general systems. We also show that a reference for phase angle is
fundamentally different to a reference for the SSR associated with particle conservation.

PACS numbers: 03.67.-a, 03.67.Mn, 11.30.-j, 03.65.Ta

I. INTRODUCTION

Some five decades ago Wick, Wightman and Wigner
showed that conservation laws induce so called “supers-
election rules” (SSR) that forbid the observation of co-
herences between different eigenstates of the conserved
quantity by any physical measurement [1]. A decade later
Aharanov and Susskind demonstrated that this restric-
tion can be alleviated with an additional system that acts
as a reference for the coherences [2]. Such reference an-
cillae are of particular interest when the dimension of the
Hilbert space it occupies is not arbitrarily large compared
to that of the system. In such cases the quantum nature
of the reference system is important. We refer to such
a reference system as a finite reference because of the
finite dimension of the reference system’s Hilbert space
[36]. This is the regime that we are mainly concerned
with here.

There has been some laxity in the use of terms to dis-
tinguish the classical and quantum regimes in the litera-
ture. To avoid any possible confusion we shall reserve the
term reference frame for a set of independent variables
which, in principle, can be defined without an explicit
relation to any physical object. The inertial reference
frames in special relativity are an example. In contrast,
we use the terms reference system and reference ancilla

to describe a physical system whose observables are used
as a reference for other physical systems. This distinc-
tion between frames and systems is crucial in theories
such as quantum gravity where external reference frames
are artificial and a description of a physical system can
only be made relative to other physical systems [3, 4].

The lack of the ability to observe coherences under a
SSR implies that there are operations whose effect on the
system are not physically detectable. Conversely, the ex-

istence of such operations implies that a SSR operates.
This converse situation is true even in the absence of a
conservation law. For example, it can be shown that the
set of non-detectable unitary operations form a symme-
try group, G [5]. In other words, G is the symmetry
group which describes the invariance of the system un-
der the SSR. Moreover, this invariance implies that the
set of physically allowed operations {O(·)} is constrained
to commute with the symmetry group G [6], that is,

O[T̂ (g)ρ̂T̂ †(g)] = T̂ (g)O[ρ̂]T̂ †(g) ∀g ∈ G , (1.1)

for every state ρ̂ of the system. Here T̂ (g) is the unitary
representation of the transformation g ∈ G. In general,
O represents an operation on an open system and the
openness implies that any global conservation law may
not hold for the system itself. This shows that SSRs can
exist independently of conservation laws at least for open
systems.

In accord with previous work, we label the SSR associ-
ated with the symmetry group G as the G-SSR. Alterna-
tively, if G is characterized by a generator, we sometimes
refer to the SSR by the name of the generator. For ex-
ample, a unitary representation of U(1) for a system of

identical particles is given by {eiN̂θ : 0 ≤ θ < 2π} where

the group generator N̂ is the particle number operator,
and so here the U(1)-SSR is equivalent to the particle
number SSR.

The situation is further enriched if, in addition to a
SSR, we also impose the constraint of allowing only lo-
cal operations and classical communication (LOCC) for
a bipartite system. The physically allowed operations O
must satisfy both Eq. (1.1) and LOCC. Consider the bi-
partite case with subsystems at two spatially separated
sites A and B. Any local operation O = OA ⊗ 11B that
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satisfies Eq. (1.1) has the property that

(OA⊗11B)[T̂ (g)ρ̂T̂ †(g)] = T̂ (g)(OA ⊗11B)[ρ̂]T̂ †(g) (1.2)

for all g ∈ G, where Oµ is a local operator acting at site
µ and 11 is the identity operator. If the group has local
representations {T̂µ(g) : g ∈ G} for each site µ where

T̂ (g) = T̂A(g) ⊗ T̂B(g) then

Oµ[T̂µ(g)ρ̂T̂ †
µ(g)] = T̂µ(g)Oµ[ρ̂]T̂ †

µ(g) ∀g ∈ G . (1.3)

For the case of a Lie group, this requires its local genera-
tors to be additive. Thus the combination of LOCC and
a SSR can induce a local SSR acting at each site. Such
local SSRs are not necessarily fundamental in the sense
of arising from a conservation law like that of charge, but
are imposed by our interest in examining the effect of the
LOCC constraint. Essentially, a local SSR arises when
two sites lack a shared reference to break the symmetry
represented by G at each site [5, 6, 7, 8]. However, the
absence of the shared reference here is due to the LOCC
constraint rather than any fundamental constraint. For
example, the local U(1)-SSR due to the absence of a
shared optical phase reference is imposed by the prohi-
bition on transporting quantum fields between two sites
under the LOCC constraint rather than the conservation
of photon number.

Interest in superselection rules and their associated ref-
erence systems has revived in recent years particularly
in relation to quantum information [9]. Bartlett et al.

have shown that in the absence of a reference for spatial
orientation the communication of classical and quantum
information using spin particles is still possible provided
the spins are entangled and the information is encoded
in SSR-invariant subsystems [10]. They have also shown
how a private shared reference for spatial orientation can
be used for secret communications [11]. The effects of
finite references has been studied in a variety of ways.

For example, Bartlett et al. [10], Bagan et al. [12]
and Lindner et al. [13] have examined protocols for es-
timating the relative angle between two directions which
are defined by finite dimensional spin systems. Further,
the effect on quantum operations due to finite refer-
ences was studied initially by van Enk and Kimble [14]
and shortly later by Gea-Banacloche [15] and, although
specific details of this initial work attracted some crit-
icism from Itano [16] and Nha and Carmichael [17], it
has been extended and generalized to quantum measure-
ments, uncertainty relations and simultaneous measure-
ments mainly by Ozawa [18, 19, 20, 21].

Entanglement is also affected by the presence of a SSR.
A SSR has an effective decohering effect that constrains
the amount of entanglement in a system that is accessi-
ble. A number of different terms have been used to la-
bel the entanglement which is constrained in this way.
Bartlett and Wiseman [6], as well as others (see e.g.
[5, 8, 22, 23]), refer to it as the accessible entanglement
[37]. For the special case of indistinguishable particles in
the absence of a shared phase reference, we previously

referred to the SSR-constrained entanglement as parti-
cle entanglement in Refs. [7, 8] to distinguish it from the
entanglement of the spatial modes occupied by the parti-
cles. Our operational definition of particle entanglement
makes use of a set of local quantum ancillary systems (or
registers) which are not subject to the SSR. The accessi-
ble entanglement in a system of shared identical particles
is given by the maximum amount of entanglement that
one can transfer from the system to the local ancillas by
G-invariant operations that obey LOCC. It is important
to note that the transfer operation involves only a single

copy of the system state. However, once the entangle-
ment resides in the ancillae it can be manipulated in the
usual way free of the SSR. Further details of this non-
asymptotic interpretation of particle entanglement can
be found in the Introduction of Ref. [5].

In this paper we focus on the problem of finding the op-
timal reference state that maximizes the accessible entan-
glement of a system in the presence of the local particle
number SSR. Under such a SSR, the pure state describ-
ing a single particle which shared coherently between two
sites is physically equivalent to an equal mixture of states
representing a single particle at one site and a single par-
ticle at the other. In general, the SSR constrains the
accessible entanglement due to the unobservabilty of the
coherences between eigenkets of different local particle
number. The accessible entanglement in this case is the
weighted average of the entanglement found in each sub-
space of fixed local particle number. The entanglement
lost because of the SSR can be recovered with a reference
ancilla and it is this problem that we focus on here. In
particular, we examine cases where the number of par-
ticles in the reference ancilla is not arbitrarily large and
we explore how effectively the reference ancilla increases
the accessible entanglement in a variety of situations. In
Section II we calculate the optimal reference state for
maximizing the accessible entanglement from a system
containing a single shared particle where the number of
particles in the reference system is fixed. We compare the
amount of entanglement made accessible by the optimal
state with that due to various other states in section III
and make steps towards finding optimal reference state
for a general state of the system in section IV.

II. OPTIMAL REFERENCE STATE FOR A

SINGLE SHARED PARTICLE

A. Particle entanglement

We begin by briefly recalling the definition of the parti-
cle entanglement (or equivalently, the accessible entangle-
ment) as defined by Wiseman and Vaccaro [7]. As shown
above, SSRs can be induced by the lack of a shared refer-
ence or a conservation law. The origin of the SSR is unim-
portant for the main results of this paper. However, as
the conservation of particle number was used in Ref. [7],
we assume the conservation also holds here. The obser-
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vation of coherences between states of different particle
number requires operations that do not conserve particle
number. The conservation of particle number therefore
implies that phase coherences between subspaces of the
Hilbert space corresponding to different numbers of par-
ticles are unobservable. This means that phase shifts
generated by exp(−iN̂θ), where N̂ is the particle num-
ber operator and θ a phase angle, are not detectable.
The group of undetectable transformations is therefore
the group U(1)= {exp(−iN̂θ) : 0 ≤ θ < 2π} of phase
shift operators, which induces the particle number super-

selection rule U-SSR. In the case of bipartite systems,
we consider the SSR which is induced by imposing the
conservation of particle number at each spatial site. The
corresponding group is UAB(1) = UA(1) ⊗ UB(1) where
Uµ(1) is the group of operators that generate phase shifts
at site µ. We call this the local particle number superse-
lection rule, i.e. the local U-SSR.

Consider the pure state |Ψ(N)〉AB of a system compris-
ing a fixed number of indistinguishable particles shared
between two spatially separated sites labeled A and B.
We have included a superscript in the label of the state
to indicate the total (fixed) number of particles the state
represents. The effective state under the local particle
number SSR is not |Ψ(N)〉AB but rather a mixed state
given by [6]

ρ̂(N) =

∫

2π

dθA

2π

∫

2π

dθB

2π

[

e−i(N̂AθA+N̂BθB)|Ψ(N)〉AB

]

×
[

AB〈Ψ(N)|ei(N̂AθA+N̂BθB)
]

(2.1)

=

N
∑

n=0

Π̂
(n,N−n)
AB |Ψ(N)〉AB〈Ψ(N)|Π̂(n,N−n)

AB (2.2)

where Π̂
(n,N−n)
AB is a operator which projects onto the

subspace representing n particles at site A and (N−n) at
B. The entanglement of ρ̂(N) is, by definition, the parti-
cle entanglement of |Ψ(N)〉AB. We note that the effective
state, ρ̂(N), is a mixture of a set of mutually orthogonal,

entangled pure states Π̂
(n,N−n)
AB |Ψ(N)〉AB. Its entangle-

ment is thus the average of the entanglement of each
member of the set. This means that the particle entan-
glement is given by [7]

EP(|Ψ(N)〉AB) ≡
∑

n
pnEM (|Ψ(n)

proj〉AB) , (2.3)

where

|Ψ(N)
n 〉AB =

Π̂
(n,N−n)
AB |Ψ(N)〉AB√

pn
, (2.4)

pn = AB〈Ψ(N)|Π̂(n,N−n)
AB |Ψ(N)〉AB ,

EM (|Ψ(N)
n 〉AB) = S(TrA

[

|Ψ(N)
n 〉AB〈Ψ(N)

n |
]

) .

Here S(ˆ̺) is the von Neumann entropy of ˆ̺, |Ψ(N)
n 〉AB is

the state of the system after detecting n particles at site
A, and EM (|ψ〉) is the entropy of entanglement of the

state |ψ〉. In the current context EM (|ψ〉) corresponds to
the entanglement of the spatial modes that are occupied
by the particles.

B. Particle entanglement of system and reference

ancilla

Two of us previously showed [7] that two copies of a
shared single-particle system contained particle entangle-
ment whereas (as noted above) each of the systems does
not. Evidently one system behaves as a reference for the
other. We further developed developed this concept in
Ref. [5] where we showed that a shared particle ancilla
can be used as a reference to increase the accessible the
entanglement in another system. We now examine the
problem of finding the state of the reference ancilla that
yields the maximum value of the particle entanglement
of the combined system and reference ancilla for a given
state of the system. We confine our analysis to situa-
tions where the system and reference ancilla are in pure
states to avoid unnecessary detail. Also in accord with
our assumption that the particle number is conserved,
we constrain the total number of particles in each of the
system and the reference ancilla to be fixed [38]. Our fo-
cus will initially be on the simplest case, that of a single
shared particle in the state:

|Ψ(1)〉AB =
1√
2
(|0, 1〉AB + |1, 0〉AB) (2.5)

where the ket |n,m〉AB represents the occupation of spa-
tial modes at the sites A and B by n and m identical
particles, respectively, in second quantization notation.
It is straightforward to show that this state possesses no
particle entanglement, i.e. EP (|Ψ(1)〉AB) = 0 [7, 8]. Let
the reference ancilla consist of M particles of the same
type as the system and be prepared in the pure state

|Φ(M)〉AB =

M
∑

n=0

cn|n,M − n〉AB , (2.6)

for which the coefficients cn satisfy the normalization
condition

〈Φ(M)|Φ(M)〉 =

M
∑

n=0

|cn|2 = 1 (2.7)

but are otherwise undetermined. This ancilla state has
been intentionally constructed to have no particle entan-
glement itself, i.e. EP (|Φ(M)〉AB) = 0. Any particle en-
tanglement in the combined system and ancilla state, i.e.
in

|C(M+1)〉AB = |Ψ(1)〉AB ⊗ |Φ(M)〉AB , (2.8)

will therefore be due to the ancilla’s ability to ameliorate
the effects of the local U-SSR.
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Expanding |C(M+1)〉AB in terms of states with fixed
local particle number yields

|C(M+1)〉 =

M+1
∑

n=0

√
pn|C(M+1)

n 〉 (2.9)

where pn = 〈C(M+1)|Π̂(n,M+1−n)
AB |C(M+1)〉 and

|C(M+1)
n 〉 =

1√
pn

Π̂
(M+1,n)
AB |C(M+1)〉 (2.10)

is a state of representing a total of n particles at site
A and (M + 1 − n) at site B. For convenience, we omit
the site labels AB here and below when they are implied

by the context. The projection operator Π̂
(n,M+1−n)
AB is

of the same basic form as the one in Eq. (2.4) but here
it projects onto the subspace of states of the combined
system plus ancilla with a total of exactly n particles at
A and (M+1−n) at B. That is, it distinguishes between
the sites but it is insensitive to the individual modes at
each site. Making use of Eq. (2.5) we find that

|C(M+1)
n 〉=

1√
2pn

(

cn−1|1, 0〉 ⊗ |n− 1,M − n+ 1〉

+cn|0, 1〉 ⊗ |n,M − n〉
)

(2.11)

for n = 0, 1, . . . ,M + 1. To make expressions more com-
pact here and in the following, we have introduced two
extra coefficients c−1 and cM+1 whose values are zero,
i.e.

|c−1|2 = |cM+1|2 = 0 . (2.12)

We shall refer to Eq. (2.12) as the “boundary con-
ditions”. As before, the value of pn ensures that

〈C(M+1)
n |C(M+1)

n 〉 = 1 and is easily found to be given
by

pn =
1

2
(|cn−1|2 + |cn|2) (2.13)

for 0 ≤ n ≤ M + 1. Taking the partial trace of

|C(M+1)
n 〉〈C(M+1)

n | over a basis representing states at site
B yields

|cn−1|2
2pn

(

|n− 1〉 ⊗ |1〉〈1| ⊗ 〈n− 1|
)

+
|cn|2
2pn

(

|n〉 ⊗ |0〉〈0| ⊗ 〈n|
)

. (2.14)

The entanglement of modes EM (|C(M+1)
n 〉) is given by

the von Neumann entropy of Eq. (2.14), i.e.

EM(|C(M+1)
n 〉) =− 1

2pn
|cn−1|2 log2(

|cn−1|2
2pn

)

− 1

2pn
|cn|2 log2(

|cn|2
2pn

) , (2.15)

and so, from Eq. (2.3), the particle entanglement is the
average

EP(|C(M+1)〉) =

M+1
∑

n=0

pnEM(|C(M+1)
n 〉)

=
1

2 log2 e

M+1
∑

n=0

[

− 2|cn|2 ln(|cn|2)

+(|cn−1|2 + |cn|2) ln(|cn−1|2 + |cn|2)
]

.

(2.16)

C. Conditions for the optimum reference

The maximization of the particle entanglement in
Eq. (2.16) over the coefficients cn is subject to the nor-
malization of the ancilla state |Φ(M)〉 given in Eq. (2.7).
We note that the optimization can be performed with
respect to |cn|2 rather than cn since the particle entan-
glement Eq. (2.16) and the constraint Eq. (2.7) are both
functions of |cn|2 only. Let

F = (2 log2 e)EP(|C(M+1)〉) − α(

M
∑

n=0

|cn|2 − 1) (2.17)

be the auxiliary function where α is a Lagrange multi-
plier.

The coefficients of the optimal reference state are given
by the extremum of Eq. (2.17) and so satisfy

∂F

∂|cn|2
=−2[ln(|cn|2) + 1] + [ln(|cn−1|2 + |cn|2) + 1]

+[ln(|cn|2 + |cn+1|2) + 1] − α

= ln
[ (|cn−1|2 + |cn|2)(|cn|2 + |cn+1|2)

|cn|4
]

− α

= 0 (2.18)

for n = 0, 1, . . . ,M . This equation can be expressed in
terms of a recurrence relation as follows

β|cn|4 = |cn|4 + |cn−1|2|cn+1|2 + |cn|2(|cn−1|2 + |cn+1|2)
(2.19)

for n = 0, 1, . . . ,M where we have set β = eα. The
boundary conditions in Eq. (2.12) ensure the recurrence
relation has the correct form for n = 0 and n = M .

To find the solution it is convenient to first rearrange
the recurrence relation as

|cn+1|2 =
(β − 1)|cn|4 − |cn|2|cn−1|2

|cn|2 + |cn−1|2
. (2.20)

Iterations of this starting from n = 0 lead to explicit ex-
pressions for the coefficients in which |cn|2 is a polynomial
in β of order n. The details are given in the Appendix.
Unfortunately, the derivation of a solution from these
expressions that satisfies the upper boundary condition
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FIG. 1: Optimal reference state for a system comprising a
single shared particle. The probability |cn|

2 is plotted as a
function of the number of particles n at site A for the nu-
merical solution (crosses) and our ansatz (solid curve) for an
ancilla with a total of M = 29. For the ansatz we used the
values A = 1 and ǫ = 3

2
which are correct to O(M−2).

|cM+1|2 = 0 and the normalization condition Eq. (2.7)
does not appear tractable analytically. Nevertheless we
note that the system state Eq. (2.5) is symmetric with re-
spect to the interchange of labels, |n,m〉AB 7→ |m,n〉AB,
at each site A and B, which implies that if there is a
unique optimal reference state, it will also be symmetric
under the same operation. Indeed we also show in the
Appendix using the polynomial expressions that

|cn|2 = |cM−n|2 (2.21)

for n = 0, 1, . . . ,M . This result will be useful later.
The optimal reference state for any given value of M

can be determined numerically by computing the values
of β and the set of coefficients {|cn|2} that satisfy the re-
currence relation Eq. (2.20), the normalization condition
Eq. (2.7) and the boundary conditions Eq. (2.12). The
approach we adopted was as follows: (i) make an initial
guess of the value of β, (ii) use the lower boundary con-
dition |c−1|2 = 0 and the recurrence relation Eq. (2.19)
to compute the values of the variables |c′n|2 = |cn|2/|c0|2
for n = 0, 1, . . . ,M , (iii) use the computed values of |c′n|2
and the normalization condition Eq. (2.7) to determine
the values of the normalized coefficients |cn|2. This yields
a set of normalized coefficients |c0|2, |c1|2 . . . , |cM |2 that
depend on the value of β. (iv) adjust the value of β us-
ing a bisection method to find the zero of |cM+1|2 and
repeat steps (ii)-(iv) until a desired tolerance is reached.
In Fig. 1 we plot the numerically determined solution
to the recurrence relation Eq. (2.19) for M = 29. The
figure clearly illustrates the predicted symmetry about
n = (M + 1)/2.

In Fig. 2 we plot the particle entanglement,
EP (|C(M+1)〉), of the combined system plus ancilla
against the total number of particles, M , in the ancilla.
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0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
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P

FIG. 2: The amount of particle entanglement EP versus the
number of particles in the reference ancilla, M , for a system
consisting of a single shared particle. The ancilla is in the
optimal reference state discussed in the text.

The fact that EP (|C(M+1)〉) > 0 whereas EP (|Ψ(1)〉) =
EP (|Φ(M)〉) = 0 shows that the ancilla partially shields
the entanglement of the system from the local U-SSR.

D. An ansatz for the optimal reference

The numerical solution depicted in Fig. 1 suggests that
the analytical solution may be of a trigonometric form.
To check, we now consider the ansatz for the solution to
the recurrence relation of the form

|cn|2 = B−1{A− cos[z(n)]} (2.22)

where

z(n) = ξn+ θ . (2.23)

Here A, B, ξ and θ are constant for a given value of M ,
i.e. a given number of particles in the ancilla. We note
that the numerical solution in Fig. (1) comprises almost
one full cycle of the cosine function. This implies ξ can
be expressed conveniently in the form

ξ =
2π

M + 2ǫ
(2.24)

where ǫ is an adjustable parameter. Moreover the sym-
metry condition Eq. (A8) implies a condition on the value
of θ as follows. Replacing the left and right sides of
Eq. (2.21) using the ansatz Eq. (2.22) and the expres-
sion for ξ in Eq. (2.24) shows

cos
[ 2π

M + 2ǫ
n+θ

]

= cos
[ 2π

M + 2ǫ
(M−n)+θ

]

, (2.25)

which is satisfied by

θ =
2πǫ

M + 2ǫ
. (2.26)
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Hence the final form of our ansatz, given by Eqs. (2.22)-
(2.26) is

|cn|2 = B−1

{

A− cos
[2π(n+ ǫ)

M + 2ǫ

]

}

(2.27)

and depends on just three parameters A, B and ǫ.
We now check the validity of the ansatz by substituting

it into the recurrence relation Eq. (2.19). To simplify
matters we use the form given by Eqs. (2.22) and (2.23).
The result of the substitution is

(β − 1)
{

A− cos[z(n)]
}2

=
{

A− cos[z(n+ 1)]
}{

A− cos[z(n− 1)]
}

+
{

A− cos[z(n)]
}

×
{

2A− cos[z(n+ 1)] − cos[z(n− 1)]
}

,

(2.28)

which is independent of the normalization constant B.
Using trigonometric identities and grouping terms it is
easy to show that the right hand side of this equation
can be expressed as

RHS = 3A2 + cos2(ξ) − 1 +
[

1 + 2 cos(ξ)
]

×
{

− 2A cos[z(n)] + cos2[z(n)]
}

. (2.29)

Similarly the left hand side of Eq. (2.22) is

LHS = (β− 1)
{

A2 − 2A cos[z(n)] + cos2[z(n)]
}

. (2.30)

Comparing the coefficients of cos[z(n)] and cos2[z(n)] in
Eqs. (2.29) and (2.30) shows that the value of β that
satisfies the recurrence relation is given by

β − 1 = 2 cos(ξ) + 1 . (2.31)

Comparing the constant terms in these equations simi-
larly shows that (β − 1)A2 = 3A2 − sin2(ξ). These last
two results imply that

A2 =
sin2(ξ)

2[1 − cos(ξ)]
=

1 + cos(ξ)

2
. (2.32)

Eliminating cos(ξ) and sin(ξ) in Eq. (2.32) using
Eq. (2.31) then yields

β = 4A2 . (2.33)

These results show that the ansatz does indeed satisfy the
recurrence relation for particular values of the parameters
A, B and ǫ.

To determine the actual values of the parameters we
need to apply additional conditions. We first consider the
boundary conditions |c−1|2 = 0 and |cM+1|2 = 0. Setting
n = −1 in the detailed form of the ansatz Eq. (2.27)
yields

B−1

{

A− cos

[

2π(ǫ− 1)

M + 2ǫ

]}

= 0 , (2.34)

which gives an expression for A in terms of ǫ as

A = cos

[

2π(ǫ− 1)

M + 2ǫ

]

. (2.35)

The same result is obtained for n = M + 1 due to the
symmetry condition Eq. (2.21). Finally we note that the
analytic solution |c1|2 = |c0|2(β − 1) given in Eq. (2.22)
yields another expression involving A and ǫ as follows.
Using the ansatz Eq. (2.27) to replace the coefficients
|c0|2 and |c1|2 and Eq. (2.33) to replace β gives

A− cos

[

2π(1 + ǫ)

M + 2ǫ

]

=

[

A− cos(
2πǫ

M + 2ǫ
)

]

(4A2 − 1) .

(2.36)
This analysis shows that our ansatz, which depends on
the values of just three parameters A, B and ǫ, satisfies
all the conditions for the optimal reference state provided
Eqs. (2.35) and (2.36) are satisfied. Indeed the values
of the parameters ǫ and A are determined by solving
Eqs. (2.35) and (2.36) simultaneously, and the value of
B determined from the normalization condition Eq. (2.7).
Once these values are determined, our ansatz Eq. (2.27)
provides an exact analytical expression for the optimal
reference state for any value of M .

We can also find approximate values for A, B and ǫ in
the large M regime. Substituting for A using Eq. (2.35)
and simplifying yields

sin

(

2πǫ

M + 2ǫ

)

sin

(

2π

M + 2ǫ

)

= sin

[

2π(ǫ− 1
2 )

M + 2ǫ

]

sin

(

2π 1
2

M + 2ǫ

)

×
{

4 cos2
[

2π(ǫ− 1)

M + 2ǫ

]

− 1

}

which, in the large M regime, gives

ǫ =
3

2
+O(M−2) . (2.37)

Similarly, we find from Eq. (2.35) in the same regime that

A = 1 +O(M−2) . (2.38)

The normalization constant B is found by evaluating
∑

n |cn|2 = 1 using the ansatz Eq. (2.27), i.e.

B =

M
∑

n=0

{

A− cos

[

2π(n+ ǫ)

M + 2ǫ

]}

. (2.39)

For the case where M is odd we find, using the symmetry
condition Eq. (2.21), that

B = 2

M−1

2
∑

n=0

f(n) (2.40)

where

f(x) =

{

A− cos

[

2π(x+ ǫ)

M + 2ǫ

]}

(2.41)
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is a monotonically increasing function over the range
from x = 0 to x = M+1

2 . We note that

2

∫
M+1

2

0

dxf(x) ≥ B ≥ 2

∫
M+1

2

0

dxf(x− 1) , (2.42)

that is,

A(M + 1) + 1 + ǫ ≥ B ≥ A(M + 1) − 3 + ǫ , (2.43)

and so

B−1 =
1

A(M + 1)
+O(M−2) . (2.44)

The same result is also found for the case where M is
even. Hence in the large M regime the analytical form
of the optimal reference state is

|cn|2 =
1

M + 1

{

1 − cos

[

2π(n+ 3/2)

M + 3

]}

+O(M−2)

=
2

M + 1
sin2

[

π(n+ 3/2)

M + 3

]

+O(M−2) . (2.45)

For comparison, in Fig. 1 we have also plotted as the
solid curve the values of the probabilities |cn|2 given by
the ansatz in Eq. (2.27) for M = 29 for the values ǫ = 3

2

and A = 1, which are correct to O(M−2). The figure
shows that the ansatz with these approximate values of
ǫ and A is in relatively close agreement with the exact
numerical solution (crosses) at this value of M .

E. General nature of the optimal reference states

To see why the optimal reference state has the gen-
eral form shown in Fig. 1 and Eq. (2.45) consider two
reference states in opposing limiting cases. First, in the
limit of a narrow particle number distribution only one
coefficient is non-zero; it is straightforward to show using
Eq. (2.16) that the particle entanglement EP (|C(M+1)〉)
is zero for this reference state. In the other extreme,
the particle number distribution is uniform with |cn|2 =
1/(M + 1) for n = 0, 1, . . . ,M ; the right hand side of
Eq. (2.16) is 1 − M/(M + 1) for this reference state.
Clearly a reference system with broad particle num-
ber distribution has an advantage for making parti-
cle entanglement accessible. However, the reason for
EP (|C(M+1)〉) being less than 1 bit in the broad particle
number distribution case can be traced to the bound-
ary conditions Eq. (2.12). This suggests that a distribu-
tion which vanishes in near the boundaries n = 0 and
n = M also has an advantage. Evidently the particle
number distribution of the optimal reference state bal-
ances these two opposing effects, breadth of the distribu-
tion with vanishing values near the boundaries, to maxi-
mize EP (|C(M+1)〉).

Our derivation of the optimal state fixes only the mod-
ulus of the coefficients cn in Eq. (2.6). The arguments of

the complex numbers, cn, are completely arbitrary. This
is somewhat surprising given the role of the ancilla is pre-
sumed to act as a phase reference. We now explore how
the ability to act as a reference for the U-SSR differs from
the ability to act as a phase reference. First note that
the asymmetry of a state depends solely on the modulus
of number state coefficients cn [5]. For example, consider
the state of the reference ancilla representing a uniform
sharing of particles with arbitrary complex arguments
given by

|Φ(M)〉AB =
1√

M + 1

M
∑

n=0

eiθn |n,M − n〉AB (2.46)

where {θn : 0 ≤ θn < 2π} are an unordered set of

phase angles. Under the local group operation T̂A(k∆) =

e−iN̂Ak∆ ⊗ 11B where ∆ = 2π/(N + 1) this state trans-
forms to

1√
M + 1

M
∑

n=0

ei(θn−nφk)|n,M − n〉AB (2.47)

which is orthogonal to |Φ(M)〉AB for integer k satisfying
1 ≤ k ≤ N . This shows that |Φ(M)〉AB is asymmetric

with respect to U(1) and thus breaks the local U(1) sym-
metry [39]. As this result is independent of the values of
the phase angles {θn} it confirms that only the moduli

of the number state coefficients are important in terms of
the U(1)-SSR. Moreover, Eq. (2.16) shows that the par-
ticle entanglement of a system consisting of one shared
particle and an ancilla in reference state |Φ(M)〉AB is in-
dependent of the phases, {θn}, of the reference state.

Next consider the phase properties of the state
|Φ(M)〉AB for various choices of the set of phase angles
{θn}. For this we use the Pegg-Barnett phase formalism
for physical states in the infinite-s limit [24, 25, 26]. The
joint phase probability density PΦ(θA, θB) for phase an-

gles θA and θB which describe the phase operators φ̂A

and φ̂B of the ancilla spatial modes at sites A and B,
respectively, is given by

P (θA, θB) =
1

(2π)2

∣

∣

∣

∣

∣

∑

n,m

ei(nθA+mθB)〈n,m|Φ(M)〉AB

∣

∣

∣

∣

∣

2

(2.48)
For the reference state |Φ(M)〉AB this can be rewritten as

P (θA, θB) =
1

2π
PΦ(θA − θB) (2.49)

where

PΦ(θA − θB) =
1

2π(M + 1)

∣

∣

∣

∣

∣

M
∑

n=0

ei[n(θA−θB)+θn]

∣

∣

∣

∣

∣

2

(2.50)

is the probability density for the phase difference φ̂A−φ̂B

and the factor 1/2π in Eq. (2.48) is the uniform phase
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FIG. 3: The distribution of the relative phase difference for a
random distribution of {θn}.
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FIG. 4: The distribution of the relative phase difference where
{θn} is linear in n.

probability density for the phase operator of either spa-
tial mode. The highly correlated nature of the phase
difference stems from the sharing of a fixed number M
of particles between the two modes. Figure 3 shows this
phase distribution for the case where θn = πn whereas
figure 4 shows the phase distribution where θn is random.
Note that both phase distributions equally alleviate the
U-SSR. Clearly there is a fundamental difference between

the ability to act as a phase reference and the ability to

act as a reference for the U-SSR, viz. the complex phase
of the number state coefficients are crucial for the former
but are unimportant for the latter. While this conclusion
applies to the specific case of a single-shared particle sys-
tem as considered in Eq. (2.16) , we show later in Section
IV that it also extends to arbitrary systems states.

III. COMPARISON OF THE OPTIMAL

REFERENCE FRAME TO OTHER STATES

States with broad particle number distributions are
known to have well-defined phase properties [24, 25, 26,
27]. So it is interesting to compare our optimal reference
states with classes of states that have been optimized
for other phase dependent quantities. We define a figure
of merit, D, based on the excess particle entanglement
that is made accessible by the optimal reference state as
follows:

D =
Ep[|C(M+1)

opt 〉] − Ep[|C(M+1)〉]
Ep[|C(M+1)

opt 〉]
, (3.1)

where

|C(M+1)
opt 〉= |Ψ(1)〉 ⊗ |Φ(M)

opt 〉 (3.2)

|C(M+1)〉= |Ψ(1)〉 ⊗ |ψ(M)〉 , (3.3)

for single particle system state |Ψ(1)〉, optimal reference

ancilla state |Φ(M)
opt 〉 and arbitrary reference ancilla state

|ψ(M)〉. We now consider a number of states whose phase
properties are important in some way. All the states are
constructed on the Hilbert space HR which is spanned by
the number state basis {|n,M − n〉 : n = 0, 1, . . . ,M}.

The Berry-Wiseman phase optimized states of a two-
mode optical field give the optimum phase shift estima-
tion in a Mach-Zehnder apparatus for a fixed total num-
ber of particles (photons) under ideal canonical phase
measurements [28]. These states have the form

|ψ〉 ∝
M
∑

n=0

sin[
π(n+ ǫ)

M + 2ǫ
]|n,M − n〉 (3.4)

where M is the number of particles and ǫ = 1. The
Summy-Pegg phase optimized states of a single mode op-
tical field give the minimum phase variance for a fixed up-
per bound in the particle (photon) number distribution
[27]. Their two-mode version on the Hilbert space HR is
given by Eq. (3.4) with a parameter value of ǫ ≈ 0.84 for
M & 10. The variance of the optimized phase quantity
for both classes of states scales as 1/M2. A class of states
with less phase resolution is given by the single-mode co-

herent states |α〉 ∝
∑

n α
n|n〉/

√
n! where |n〉 is the usual

number state. These states have a phase variance which
scales as 1/|α|2 and are optimized in the sense that they
approximate number-phase minimum uncertainty states
[25] for |α| ≫ 1. To make a comparison with our opti-
mal reference state we construct a two-mode version in
the Hilbert space HR with an analogous number state
expansion to |α〉 as follows

|φ〉 ∝
M
∑

n=0

√

(M
2 )n

n!
|n,M − n〉 . (3.5)
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The parameter that is analogous to the field amplitude
α in |α〉 has the value

√

M/2 here. Thus in the large
M regime the variance of the two-mode phase opera-
tor scales as 2/M . We also consider reference states
whose particle number probability distribution |cn|2 cor-
responds to a binomial distribution, i.e.

|ψ〉 =

M
∑

n=0

[(

M
n

)

pn(1 − p)(M−n)

]1/2

|n,M − n〉 (3.6)

for which we set p = 0.5 to make the distribution sym-
metric. These states are a two-mode generalization of
Stoler et al.’s single mode binomial states [29]. Finally
we include in our comparison the shared phase state,

|ψ〉 =
1√

M + 1

M
∑

n=0

|n,M − n〉 , (3.7)

which is a two mode version of the single-mode Pegg-
Barnett phase state with zero phase [24, 26]. This state
belongs to the class of states on HR with maximum asym-
metry with respect to the particle number SSR [5]. The
change in the von Neumann entropy of these states due
to the action of the SSR is the maximum value of log2M
and so these states play an important role in terms of
breaking the symmetry represented by the SSR [5].

Fig. 3 shows that the figure of merit, D, of all states,
at least after a certain value of M , are monotonically de-
creasing with M . However, the decrease in D for increas-
ing M for the Berry-Wiseman and the two-mode Summy-
Pegg minimized phase variance states is far greater than
the two-mode versions of the coherent and binomial
states. The reason for this can be traced to our ear-
lier observation in Sec. II E that broad particle-number
distributions are an advantage in making the entangle-
ment accessible. In particular the former two states have
a particle-number standard deviation that scales as M
whereas the two-mode coherent states have a particle-
number standard deviation that scales as

√
M . Com-

pared to the maximum possible width M of the distri-
bution, the former are relatively broad and the latter is
relatively narrow. We note that the figure of merit D
for the coherent and binomial states become closer as
M increases as expected from the fact that the associ-
ated particle-number distributions approach each other
as M → ∞.

IV. OPTIMAL REFERENCE STATES FOR

GENERAL PURE STATES

We now generalize our results to the case where there
are N particles in the system and, as before, M particles
in the ancilla. Consider the tensor product of two arbi-
trary states of the system and ancilla for this case given
by

|C(M+N)〉AB = |Ψ(N)〉AB ⊗ |Φ(M)〉AB ,

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

n

|c
n|2

FIG. 5: A comparison of the figure of merit D for the shared
phase states (◦), two-mode versions of the coherent states
(*), binomial states (+) and Summy-Pegg phase optimized
states (×), and Berry-Wiseman phase optimized states (�).
D represents the relative effectiveness of a given reference
state compared to the optimal reference state. The effective-
ness of all states increases as the total number of particles M

increases for large M .

where the system and ancilla states are

|Ψ(N)〉AB =
N

∑

n=0

dn|n,N − n〉AB , (4.1)

|Φ(M)〉AB =

M
∑

n=0

cn|n,M − n〉AB , (4.2)

respectively. The coefficients cn and dn are subject to
the normalization conditions

N
∑

n=0

|dn|2 =
M
∑

m=0

|cm|2 = 1 . (4.3)

Neither the system nor the ancilla contain entanglement
of particles i.e. EP(|Ψ(M)〉AB) = EP(|Φ(M)〉AB) = 0. To
simplify the notation we shall omit the subscripts A and
B from here onwards. The state of the combined system
can be expressed as

|CM+N 〉=

N
∑

n=0

M
∑

m=0

dncm|n,N − n〉 ⊗ |m,M −m〉

=

N+M
∑

k=0

√
pk|C(M+N)

k 〉 (4.4)

where |C(M+N)
k 〉 is a state containing exactly k particles

at site A and (N + M − k) at site B. Also pn is a nor-
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malization constant, i.e.

|C(M+N)
k 〉=

1√
pk

N
∑

n=0

M
∑

m=0

δn+m,kdncm

×|n,N − n〉 ⊗ |m,M −m〉 (4.5)

pk =

N
∑

n=0

M
∑

m=0

|dncm|2δn+m,k . (4.6)

The calculation of EP in Section II for a system compris-
ing one particle is easily extended to the case N particles
as follows. We find that

EP(|C(M+N)〉) =

N+M
∑

k=0

pkEM(|C(M+N)
k 〉)

= −
N+M
∑

k=0

pk

N
∑

n=0

M
∑

m=0

|dncm|2
pk

δn+m,k log2

|dncm|2
pk

= −
N+M
∑

k=0

N
∑

n=0

M
∑

m=0

|dncm|2δn+m,k log2

|dncm|2
pk

. (4.7)

We again find that the particle entanglement is indepen-
dent of the complex phases of the number state coef-
ficients cn of the reference state. This shows that our
conclusion in Section II E for the special case of a single
shared-particle system state, namely that a phase ref-
erence and a reference for the U-SSR are fundamentally
different, applies also to the general case of arbitrary sys-
tem states.

A. The infinite-particle ancilla state

One may suspect that in the limit of M → ∞, the an-
cilla could resemble a classical reference and completely
shield the system from the local particle number SSR.
We now show this using the uniformly distributed an-
cilla state with cn = 1/

√
M + 1 for M ≫ N . The state

with exactly k particles at site A for N ≤ k ≤M is given
by

|C(M+N)
k 〉

=
1√
pk

N
∑

n=0

dn|n,N − n〉 ⊗ |(k − n),M − (k − n)〉

and so

EP(|C(M+N)
k 〉) = EM(|C(M+N)

k 〉) , (4.8)

and the probability pk in Eq. (4.6) of finding this state is
simply

pk =

N
∑

n=0

|dn|2
M + 1

=
1

M + 1
. (4.9)

The contribution to EP(|C(M+N)〉) from these states is

X =
M
∑

k=N

pkEM(|C(M+N)
k 〉) =

M + 1 −N

M + 1
EM(|Ψ(N)〉) .

It is straightforward to show that the remaining 2N

states |C(M+N)
k 〉 for 0 ≤ k < N and M < k ≤ N + M

have EM(|C(M+N)
k 〉) ≤ EM(|Ψ(N)〉) and pk ≤ 1/(M + 1)

and so their contribution to EP(|C(M+N)〉) is less than

Y =
2N

M + 1
EM(|Ψ(N)〉) .

These last two results give bounds on EP(|C(M+N)〉) as

X ≤ EP(|C〉) ≤ X + Y .

In the limit M → ∞, X → EM(|Ψ(N)〉) and Y → 0 and
so

EP(|C(M+N)〉) → EM(|Ψ(N)〉) .

The infinite-particle ancilla effectively shields the system
from the particle number SSR and makes all of its en-
tanglement accessible. We note that the class of perfect
reference ancillae for the SSR include states that are poor
phase references.

B. Conditions for general optimal ancilla states

We now use the Lagrange multiplier method to
find conditions for the coefficients cn of the opti-
mal ancilla state for an arbitrary, but fixed, value of
M . We want to maximize the particle entanglement
EP(|C(M+N)〉) over |cn|2 subject to the normalization

constraint
∑M

n=0 |cn|2 = 1. The optimal ancilla state for
any system state is given by the extremum of the auxil-
iary function

F = EP(|C(M+N)〉) − α1(
M
∑

n=0

|cn|2 − 1) (4.10)

where EP(|C(M+N)〉) is given by Eq. (4.7) and α1 is the
Lagrange multiplier. Setting the derivative ∂F/∂|cm|2 to
zero we find with a little effort that

α1 =

N
∑

n=0

[

− |dn|2 log2(|dncm|2) + |dn|2 log2 pn+m

]

(4.11)
for m = 0, 1, . . .M and where pk is given by Eq. (4.6).

It is easy to show that the symmetry condition
Eq. (2.21) does not hold in general. Consider, for ex-
ample, the simplest case given by N = M = 1, where
both the system and ancilla contain a single shared par-
ticle. Substituting these values into Eq. (4.11) yields for
m = 0

α1 = |c1|2 log2

|c1d0|2 + |c0d1|2
|c0d0|2
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and for m = 1

α1 = |c0|2 log2

|c1d0|2 + |c0d1|2
|c0d1|2

.

The simultaneous solution of these equations is given by

2x − 1

x
=

∣

∣

∣

∣

d0

d1

∣

∣

∣

∣

2

,

where x = |c1/c0|2. This implies that the optimum refer-
ence state for a non-symmetric system state, |c0| 6= |c1|,
is also non-symmetric with |d0| 6= |d1|.

The analytical treatment of system and ancilla states
with arbitrary values ofN andM , respectively, is beyond
the scope the current paper. Instead we focus here on
the situation where the system state is of a simple form,
namely, a shared phase state with dn = 1/

√
N + 1, i.e.

we set

|Ψ(N)〉 =
1√
N + 1

N
∑

n=0

|n,N − n〉 . (4.12)

We further restrain the problem to the case where N =
M to make the problem tractable.

A shared phase state has a symmetry between the sites
in the sense that it is invariant under an interchange or
site labels, i.e. AB 7→ BA. The corresponding optimal
reference state has the same symmetry with coefficients
of the form

|cm|2 = |cM−m|2 (4.13)

for m = 0, 1, . . . ,M . The proof of this is as follows. We
find from Eqs. (4.11) and (4.6) the set of equations

α1 = − log2(
1

N + 1
|cm|2)+

1

N + 1

N
∑

n=0

log2 pn+m (4.14)

for m = 0, 1, . . . ,M where

pk =
1

N + 1

k
∑

j=k−N

|cj |2 . (4.15)

Here, for compactness, we have extended the set of coef-
ficients cn with the values cn = 0 for n < 0 and n > M .
Taking the exponential of both sides of Eq. (4.14) yields

β|cm|2(N+1) =

N
∏

n=0

(

n+m
∑

j=n+m−N

|cj |2
)

(4.16)

Omitting the zero terms |cj |2 for j < 0 and j > M and
setting N = M we find

β|cm|2(M+1)=

M−m
∏

n=0

(

n+m
∑

j=0

|cj |2
)

M
∏

n=M−m

(

M
∑

j=n+m−M

|cj |2
)

=

M
∏

n=m

(

n
∑

j=0

|cj |2
)

m
∏

n=0

(

M
∑

j=n

|cj |2
)

, (4.17)

where we have made use of the normalization Eq. (4.3) to
include an extra factor in the first line. Using this result
we find the relationship between the coefficients |cm|2 for
sequential values of the index m is

β|cm+1|2(M+1) = β|cm|2(M+1)
1 −

∑m
j=0 |cj |2

∑m
j=0 |cj |2

(4.18)

β|cm−1|2(M+1) = β|cm|2(M+1)
1 − ∑M

j=m |cj |2
∑M

j=m |cj |2
.

(4.19)

We also find by setting specific values of m in Eq. (4.17)
that

β|c0|2(M+1) =

M
∏

n=0

(

n
∑

j=0

|cj |2
)

(4.20)

β|cM |2(M+1) =
(

M
∑

j=0

|cj |2
)

M−1
∏

n=0

(

M
∑

j=n

|cj |2
)

(4.21)

and so |c0|2 = |cM |2. Using this result together with
Eqs. (4.18) and (4.19) with the specific values of m = 0
and m = M , respectively, shows that |c1|2 = |cM−1|2.
Repeating this analysis for sequential values of m com-
pletes the proof of the symmetry in Eq. (4.13).

Another property of the optimal state is that the dis-
tribution |cm|2 is unimodal which can be seen as follows.
First we define the difference ∆m+1,m as

∆m+1,m = |cm+1|2(M+1) − |cm|2(M+1) (4.22)

which, from Eq. (4.18), is given by

∆m+1,m = |cm|2(M+1)(
1 − 2

∑m
j=0 |cj |2

∑m
j=0 |cj |2

) . (4.23)

From the symmetry property Eq. (4.13) of the optimal
state and the normalization condition Eq. (4.3) we know
that

[M/2]
∑

m=0

|cm|2 =

M
∑

m=[M/2]+1

|cn|2 =
1

2
(4.24)

where [M/2] is the largest integer satisfying [M/2] ≤
M/2. Next we use this result to determine the posi-
tivity of the differences ∆m+1,m. Consider if the ex-
pression 1 − 2

∑m
j=0 |cj |2 in Eq. (4.23) were zero for a

value of m less than [M/2]. This would imply that
|cm+1|2, |cm+2|2, . . . , |c[M/2]|2 = 0 and by Eq. (4.23) that

∆m+1,m = 0, which would mean that |cm|2 = |cm+1|2 =

0 and so 1 − 2
∑m−1

j=0 |cj |2 = 0. It follows, by in-

duction, that the coefficients |cj |2 would be zero for
j = 0, 1, . . . , [M/2] which contradicts Eq. (4.24). Hence
1 − 2

∑m
j=0 |cj |2 = 0 only for m = [M/2] and so from
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FIG. 6: Comparison of the particle number distributions for

the optimal reference state |Φ
(M)
opt 〉 (×) and the trial state

|φ
(M)
trial〉 (—) for N = M = 29. The comparison shows that

the optimal reference state is very well approximated by the
trial state. Moreover, a comparison with the optimal state
for N = 1, M = 29 (− −) shows that the optimal particle
number distribution broadens out as the number of particles
in the system, N , increases. Finally we note that distribution
for the optimal reference state (×) satisfies the symmetry and
unimodal properties derived analytically.

Eq. (4.23) ∆j+1,j > 0 for j = 0, 1, . . . , ([M/2] − 1). Tak-
ing account of the symmetry Eq. (4.13) then shows that
the distribution |cn|2 is monotonically increasing over the
index m for m = 0, 1, . . . , [M/2] and monotonically de-
creasing for m = [M/2], ([M/2] + 1), . . . ,M . This com-
pletes the proof of the unimodal property.

In summary, the optimal state for a system in the
shared phase state Eq. (4.12) and a reference ancilla with
an equal maximum number of particles, i.e. withM = N ,
has coefficients |cm| that are symmetric about a modal
point and are monotonically increasing before this point
and are monotonically decreasing after it. These proper-
ties are reminiscent of the ansatz used for a single shared
particle case which suggests that the optimal state would

be well approximated by a trial state |φ(M)
trial〉 which is of

the form Eq. (2.27) for a suitable choice of the parame-
ters A and ǫ, and a range of M values. Exact analytical
solutions or better approximations are beyond the scope
of this paper. However, one can solve the N = M case
numerically using either Eq. (4.18) or Eq. (4.19). Fig. 6
shows the particle number distribution for the exact op-
timal reference state with N = M = 29 compared with
that of the trial state for the parameter values A = 1.9
and ǫ = 8.9. The figure confirms our intuition that the
exact solution in the N = M case can be approximated
by a state which is of the form Eq. (2.27). The inner

product 〈Φ(M)
opt |φ

(M)
trial〉 of the exact solution with the trial

state differs from one by 6 × 10−6.

V. DISCUSSION

We have focused on the situation where the ancilla
state |Φ(M)〉 has a particularly simple form, as given by
Eq. (2.6) and Eq. (4.2), corresponding to a single spa-
tial mode at each site. Such states automatically satisfy
the requirement EP(|Φ(M)〉) = 0, i.e. that the ancilla
does not contain particle entanglement. Nevertheless our
analysis generalizes quite easily to situations with multi-
ple spatial modes and multiple ancillae. The most gen-
eral pure ancilla state of M particles which contains no
particle entanglement has the form

|Φ(M)〉 =

M
∑

m=0

cm|φ(m)〉A ⊗ |ϕ(M −m)〉B (5.1)

where |χ(n)〉µ, for χ = φ or ϕ, is an arbitrary normal-
ized state of exactly n particles at site µ in the second
quantization formalism. For example, if the part of the
ancilla at site µ involves the 3 mutually orthogonal spa-
tial modes |·〉µ ⊗ |·〉µ ⊗ |·〉µ, then the general expression
for |χ(n)〉µ is

|χ(n)〉µ =
∑

i,j,k

fi,j,k|i〉A ⊗ |j〉A ⊗ |k〉Aδi+j+k,n (5.2)

where fi,j,k are normalized coefficients. Notice that
the set of states at each site are orthonormal, viz.

µ〈χ(n)|χ(m)〉µ = δn,m. To incorporate these more gen-
eral ancilla states in our previous analysis we need only
replace the ancilla states |n〉µ in the above with |φµ(n)〉µ.
However, as our analysis used only the orthogonality
property of the set of |n〉µ and not its detailed struc-
ture, the coefficients |cm|2 for the optimal ancilla state
would be unchanged. Hence the solutions derived above
represent classes of optimal ancilla states for arbitrary
choices of coefficients of the kind fi,j,k in Eq. (5.2).

Moreover consider an ancilla which comprises compo-
nent subsystems of the form

|Φ′(M)〉 = |Φ(M1)〉 ⊗ |Φ(M2)〉 (5.3)

where M = M1 + M2. The requirement that

EP(|Φ′(M)〉) = 0 implies that |Φ′(M)〉 can be expressed
in the form

|Φ′(M)〉 =

M
∑

m=0

c′m|φ(m)〉A ⊗ |ϕ(M −m)〉B (5.4)

where the tensor product form of Eq. (5.3) restricts the
variability of the coefficients c′m. This is a further con-
straint on the coefficients, in addition to the normaliza-
tion condition, and so the entanglement made accessible
by a composite ancilla cannot exceed that given by a
single component ancilla composed of a maximum of M
particles. Hence the use of multiple ancillae in a tensor
product state does not give any advantage in optimizing
the accessible entanglement.
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VI. CONCLUSION

Quantum reference frames are of particular theoretical
interest and the phenomena of unlocking entanglement
has proven to be a very interesting application. Our ana-
lytical techniques have proven to be fruitful in producing
exact solutions in the case of a single shared particle and
guidelines for sensible approximations for system states
of large N . Much work is needed to produce exact ana-
lytical solutions for more general system states. However,
the results extracted seem to establish the intuition that
pure states with a broad particle-number distribution act
as good reference frames for the particle number SSR. In-
deed, the optimal reference state in the infinite-particle
limit M → ∞ makes all the entanglement in the single
shared particle accessible.
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APPENDIX A: SOLUTION AS A SERIES OF

POLYNOMIALS IN β

Here we explore the nature of the iterative solution
of the recurrence relation Eq. (2.20) for the case where
the system consists of a single particle which is equally
shared between the sites. Setting n = 0 and using the
boundary condition |c−1|2 = 0 gives an expression for
|c1|2 in terms of |c0|2. Next, by setting n = 1 we find
an expression for |c1|2 and so on. Continuing in this way
yields a solution to Eq. (2.20) that is expressed in terms
of just β and |c0|2 as

|cn|2 = Pn(β)|c0|2 (A1)

where Pn(β) are polynomials in β of order n given by

P0(β) = 1

P1(β) = β − 1

P2(β) = (β − 1) (β − 2)

P3(β) =
(

β2 − 3 β + 1
)

(β − 2)

P4(β) = (β − 3) (β − 1)
(

β2 − 3 β + 1
)

P5(β) =
(

β3 − 5 β2 + 6 β − 1
)

(β − 3) (β − 1)

P6(β) =
(

β3 − 6 β2 + 10 β − 4
) (

β3 − 5 β2 + 6 β − 1
)

(A2)

etc. Due to the normalization condition Eq. (2.7), we
have the property that

M
∑

n=0

Pn(β) =
1

|c0|2
. (A3)

Alternatively, rearranging the recurrence relation
Eq. (2.19) as

|cn−1|2 =
(β − 1)|cn|4 − |cn|2|cn+1|2

|cn|2 + |cn+1|2
, (A4)

leads to a different form of the solution. For this we
set n = M and use the boundary condition cM+1 = 0
with Eq. (A4) to get an expression for |cM−1|2 in terms
of |cM |2. Continuing in this way with reducing values
of n we find that any coefficient |cM−n|2 can be written
in terms of polynomials in β and |cM |2. The symmetry
of Eq. (2.19) with respect to interchanging n with m =
M−n ensures that the polynomials are the same as those
appearing in Eq. (A1), i.e.

|cM−n|2 = Pn(β)|cM |2 . (A5)

Substituting n = M into Eq. (A5) and (A1) yields

|c0|2 = PM (β)|cM |2 , |cM |2 = PM (β)|c0|2 (A6)

respectively. The simultaneous solution to Eqs. (A6) is

PM (β) = 1 , |c0|2 = |cM |2 (A7)

and so from Eqs. (A1) and (A5) we find that

|cn|2 = |cM−n|2 (A8)

for n = 0, 1, . . . ,M . Thus the solution which represents
the optimal reference state is symmetric in this sense.

APPENDIX B: PHASE PROPERTIES OF THE

STATE |Φ
(M)
1 〉AB

The unitary operator ÛA = eiN̂A(N̂A−1)ϑ in the defini-

tion of the state |Φ(M)
1 〉AB in Eq. (??) represents a Kerr-

like nonlinear interaction. The action of this operator on
coherent states has been discussed extensively in the lit-
erature (see e.g. Refs. [30, 31, 32, 33, 34]). However, in

our case the operator ÛA acts on the shared phase state

|Φ(M)
0 1〉AB in Eq. (??) and so requires a minor extension

of previous work. For this we use a previous result to
derive a form of the operator ÛA that allows us to infer

the pertinent phase properties of |Φ(M)
1 〉AB.

One of us has previously shown that [34]

K−1
∑

k=0

ck exp(inφk) = exp[−iϑn(n− 1)] (B1)

cj =
1

K

K−1
∑

n=0

exp[−iϑn(n− 1)] exp(inφj) (B2)

where

ϑ=
πJ

K
(B3)

φk = φ0 +
2πk

K
(B4)

φ0 = {[J(K − 1)] mod2} π
K

(B5)
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and J and K are positive integers sharing no common
factors. Expanding Û in terms of the Fock basis then
yields

ÛA =
∞
∑

n=0

exp[−iϑn(n− 1)]|n〉AA〈n| (B6)

=

∞
∑

n=0

K−1
∑

k=0

ck exp(inφk)|n〉AA〈n| (B7)

=

K−1
∑

k=0

ck exp(iN̂Aφk) (B8)

which is in the form of a series of phase shifting operators

exp(iN̂φk). The case discussed in the text is for the
choice J = 1 and K = 2 for which ϑ = π/2, φ0 = π/2,
φ1 = 3π/2, c0 = (1 + i)/2, and c1 = (1 − i)/2, and so

|Φ(M)
1 〉AB = ÛA|Φ(M)

0 〉AB

=
1 + i

2
√
M + 1

M
∑

n=0

einπ/2|n,M − n〉AB

+
1 − i

2
√
M + 1

M
∑

n=0

e−inπ/2|n,M − n〉AB .(B9)

Using Eq. (2.50) then shows that Eq. (??) is the phase
difference probability density corresponding to this state.
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