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Abstract 
 

Many classification methods have been proposed to 
find patterns in text documents. However, according to 
Occam’s razor principle, “the explanation of any 
phenomenon should make as few assumptions as 
possible”, short patterns usually have more explainable 
and meaningful for classifying text documents. In this 
paper, we propose a depth-first pattern generation 
algorithm, which can find out short patterns from text 
document more effectively, comparing with breadth-first 
algorithm.   
 

Availability:   
The translated vector data of the tested web text 
documents and the found patterns can be obtained from 
http://www.deakin.edu.au/~jiyuan/wi2006.html 
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1. Introduction 
 

To categorize text documents, the classification 
methods [3][7][8][9][10] are usually be used to generate 
rules (or patterns) for each category. A rule is 
combination of keywords. For example, “kw1=computer 
�� �����	
��
����	�� 
��� �� a pattern for computer 
document category. Such as Rocchio method [4], Naïve 
bayes based method [6], and SVM based text 
classification method are widely used. These methods 
learn labeled text documents and then construct a 
classifier. By using the classifier, a new coming text 
document can be predicted in terms of which category it 
belongs to. The keywords which appear in documents can 
be considered as the features of text document domains. If 
the keywords form a feature space; every document 
becomes a data point in the feature space. However, the 
dimensionality for text document domain is very high 
because every keyword corresponds to a dimension. This 
results in the ineffective performance of classification 
methods [2]. 

In [2], a robust rule generation method was proposed. 
This method enumerates all possible keyword 
combinations. The enumeration starts from 1-keyword 
combination to n-keyword combination. Each keyword 
combination can be viewed as a subspace in feature space. 
The subspace covers certain text documents. In an ideal 
situation, we can find a keyword combination that covers 
only specific category documents. In most cases, we use 
several keyword combinations, C’s, to cover a specific 
category document set S. 

SCC ⇒∪∪ �21  (1) 

If the keyword combination consists of k keywords, it 
is called k-keyword combination. For example, Equation 2 
is a 2-keyword combination. It covers the documents in 
which both keyword No. 3 and No. 7 appear. The 
Equation 2 can be shortened to (kw3 ∩kw7). 

)''()''( 73 YkwYkw =∩=  (2) 

If a document is covered by a k-keyword combination, 
it will also be covered by its sub combination (i-keyword 
combination (i < k)). Based on this fact, most of the 
irrelative keyword combinations can be pruned at the 
early stages of the rule generation procedure [2]. Firstly, 
all possible 1-keyword combinations are enumerated. The 
1-keyword combinations are sorted into descending order 
for the “primary key” and in ascending order for the 
“second key”. The primary key is the number of specific 
category documents that are covered by keyword 
combination; the second key is the number of other 
category documents that are covered by the keyword 
combinations. Secondly, the sorted 1-keyword 
combinations are put in a queen called Bin1. Thirdly, 
from the top of Bin1, two 1-keyword combinations are 
combined to form 2-keyword combinations. Like the first 
step, all 2-keyword combinations are sorted by primary 
and second keys to form Bin2. When a keyword 
combination that covers only the specific category 
documents is found, it becomes a pattern for the specific 
category. To reach this kind of cover quickly, In this 
paper, we propose an algorithm that is based on depth-
first traversal. 

Unlike the breadth-first traversal algorithm [2], the new 
algorithm finds the most potential keywords efficiently. 
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The irrelative keyword combinations can be pruned at an 
earlier stage. This avoids dealing with the huge number of 
keyword combinations whose number increases 
exponentially in terms of the number of keywords.  

 

2. Preliminaries 
 
Given a specific category, our algorithm induces a set 

of decision rules. Each rule is of the form “if <cover> 
then predict <category>”, where <cover> is Boolean 
keyword combinations as given below: 

A selector is the basic test for a keyword. For example, 
kw = yes (no) denotes keyword kw (dis)appears in all 
documents of a category. The selector can be shortened to 
kw, because we do not consider the keyword combinations 
that disappear in specific documents as a selector.  

A conjunction of selectors is called a cover (or rule). 
We say that a rule covers a document if the rule is true. 
For example, Figure 1 indicates whether or not three 
keywords kw1, kw2 and kw3 appear in three different 
documents d1, d2 and d3. If we have a rule: (kw1 ��������
we say that the rule covers two documents d1 and d3. 

 

Figure 1 Documents and keywords. ‘y’/’n’ denotes whether 
the corresponding keyword (dis)appears in the documents.  

The rules produced by our algorithms can be viewed as 
finding optimal subspaces covering only one category’s 
documents and not any other documents are included. 
Throughout the paper, we call this kind of subspace a 
positive cover. The training examples consist of positive 
samples and negative samples. In our approach, the 
description of categories is found one by one. If we have n 
categories, we have to learn n times to find each 
description of the category. In each trial, all documents in 
the specific category are called positive documents 
whereas other documents are called negative documents.  
 

3. Our approach 

As a pattern corresponds to a cover, we can find out all 
patterns for a specific category determining coverage of 
the category documents. A naïve algorithm is immediate.  

To cover all text documents for a specific category, 
more than one positive cover may be needed. Figure 2 
shows a naïve algorithm that generates the patterns to 
describe a specific category. In the while-loop (line 3-14), 
we continue finding one by one until all positive samples 
have been covered. In the for-loop (line 6-10), a keyword 
combination that has the biggest coverage for positive 
samples is selected as a pattern. In line 13, all positive 

samples that are covered by the found pattern are removed. 
The next pattern is found in the remaining positive and 
negative samples. As mentioned before, it is not practical 
to enumerate all possible keyword combinations, because 
of the high dimensionality of a document’s feature space.  

 

Figure 2  A naïve algorithm for rule generation 

Similar to most association rule algorithms [1][2], 
pruning irrelative rule candidates (or keyword 
combinations) is a crucial problem. In this paper, we 
introduce a depth-first traversal method to prune irrelative 
keyword combinations. Figure 3 illustrates how to filter out 
irrelative keywords in the process of finding patterns. 
Firstly, all 1-keyword combinations are listed. The 
number of positive and negative documents is counted. 
The 1-keyword combinations are sorted in ascending 
order of the number of positive documents and in 
descending order of the number of negative documents, as 
shown in subfigure (B). Secondly, kw2 and kw3 are 
selected to be combined because they have biggest 
positive covers; they are the most potential keywords to 
cover more positive documents. From subufigure (c), the 
combination of kw2∩kw3 covers 2 positive documents 
and 0 negative documents. Consequently, the combination 
kw2∩kw3 is a pattern for the dataset. Thirdly, the 
documents D1 and D2 are removed because they are 
covered by rule kw2∩kw3. Only one pattern is found 
because no positive documents remain in the dataset.  

 

Figure 3 An example for depth first rule generation algorithm 

1. Algorithm ruleGeneration()
2. rules = empty
3. while positiveSample exist
4.     maxPositiveCover = 0
5.     bestCover = null
6.     for each keyword combination Ci
7.         If cover(Ci) > maxPositiveCover
8.             bestCover = Ci
9.             maxPositiveCover = cover(Ci)
10. end if
11. endfor
12.    rules = rules ∪ bestCover
13.    delete positiveSample covered by Ci
14. end while
15. return rules

kw1   kw2  kw3
D1   ‘Y’ ‘N’ ‘Y’
D2   ‘Y’ ‘N’ ‘N’
D3   ‘Y’ ‘Y’ ‘Y’

kw1    kw2    kw3
D1  ‘Y’ ‘Y’ ‘Y’
D2  ‘N’ ‘Y’ ‘Y’
D3  ‘Y’ ‘N’ ‘N’
D4  ‘Y’ ‘Y’ ‘N’
D5  ‘Y’ ‘N’ ‘Y’

kw2 ‘Y’ 2  1
kw3 ‘Y’ 2  1
kw1 ‘Y’ 1  3

kw2 kw3 ‘Y’’Y’ 2  0

Positive documents

negative documents

Sorted 1-keyword combination
Generated rule

(2-keyword combination)

# of positive documents

# of negative documents

(A)

(B) (C)
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The kw1 in 1-keyword combination does not need to 
combine with other keywords (kw2 and kw3), because 
after the combining of kw2 and kw3, the positive 
coverage of kw1 (=1) is smaller than that of kw2∩kw3. In 
a real dataset, there is a huge number of this kind of 
keyword combinations that can be pruned away. Figure 4 
shows how to construct bins for keyword combinations. 

 

Figure 4 The flow of finding a rule for a specific category 

The keyword combinations are stored into Bins as 
shown in Figure 4(A). They are sorted in descending order 
of the number of positive documents that are covered by 
the keyword combination and in ascending order of the 
number of negative documents covered by the keyword 
combination. If a combination has zero negative document, 
we keep the combination as the best answer. The best 
answer is updated in the expanding process.  It becomes a 
pattern at the end of process. They can be viewed as 
primary and secondary keys. The “good” keyword 
combinations are always in the top of the Bins because 
they cover more positive documents and less negative 
documents. Figure 4(B) shows an example of Bin_2. The 
first column represents the keyword combinations. The 
second and third columns represent the number of positive 
and negative samples included in the keyword 
combination. Here we explain our strategy to expand n-
key combinations to n+1-key combinations. We give an 
example of expanding from 1-key combinations to 2-key 
combinations.  

Figure 5 illustrates An example of expanding keyword 
combinations. It has 5th largest keyword “kw8” in Bin_1. 
We assume the 2-keyword combinations from four  largest 

keyword “kw2”, “kw5”, kw1” and “kw3” have been 
calculated and already in basic combination bin_2. There 
are three rational 2-keyword combinations, i.e. kw2���5, 
kw2���� and kw1�kw5 cover more positive documents 
than that is covered by the best keyword combination.. 
Now we want to combine “kw8” with its upper keywords 
(kw2, kw5, kw1 and kw3). Their combinations are put in 
incremental combination Bin_2. There are two rational 
elements “kw2 kw8” and “kw3 kw8” (Note that 
“kw5∩kw8” and “kw1∩kw8” are assumed to be pruned 
away). When we expand every element in the basic 
combination Bin_2 by adding “kw8”, we check whether 
each subset including “kw8” is in incremental 
combination Bin_2. For example, the first element in the 
basic combination bin, Bin_2 “kw2∩kw5” is expanded to 
“kw2∩kw5∩kw8”. We then check its 2-keyword subset 
“kw2∩kw8” and “kw5∩kw8”. Due to the fact that 
“kw5∩kw8” is not in incremental combination Bin_2, the 
expanded keyword combination “kw2∩kw5∩kw8” can be 
pruned away. Only “kw2∩kw3∩kw8” cannot be pruned 
away by checking incremental combination bins because 
“kw2∩kw8” and “kw3∩kw8” are in the incremental 
combination bins. Finally we check whether 
“kw2∩kw5∩kw8”is a rational combination by calculating 
its covering number of positive documents. 

As the incremental combination bins are introduced, a 
large number of combinations can be pruned away without 
check their positive document coverage. This is an 
improvement of the method proposed by [2].   

We Summarize depth-first algorithm below: (1).we 
calculate the number of positive and negative documents 
for each 1-keyword combination and then proceed to put 
all 1-keyword combinations in the first Bin (Bin_1), as 
sorted by the primary and secondary keys. (2) we expand 
the keyword combinations for bin_1 one by one as shown 
in Figure 4.  

  

 

Figure 5 An example of expanding keyword combinations 

4. Experiment 

kw5

kw2

kw8

kw3

kw1

kw2 ∩ kw3

kw2 ∩ kw5

kw1 ∩ kw5

kw3 ∩kw8

Kw2 ∩ kw8

Incremental combination bins

Basic combination bins

Bin_1 Bin_2

kw2 ∩ kw3 ∩ kw8

Bin_3

…

kw2 ∩ kw5 ∩ kw8 
kw1 ∩ kw5 ∩ kw8 

Pruned away

kji kwkwkw ∩∩
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ji kwkw ∩

…
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Incremental combination bins

…

Basic combination bins

Keyword combination # posDocument # negDocument
23                         5
17                       16

.

.

.

.

.

.

.

.

.

(A)

(B)

Bin structure

32 kwkw ∩

21 kwkw ∩

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00  © 2006

Authorized licensed use limited to: GRIFFITH UNIVERSITY. Downloaded on September 8, 2009 at 00:28 from IEEE Xplore.  Restrictions apply. 



 
We test our algorithm to find rules for describing a 

given category on web documents. In paper [2], the 
effectiveness in accuracy and interpretability has been 
shown for the enumeration based algorithm by comparing 
to ID3 and CN2. The rules generated by this paper are the 
same as by paper [2]. We demonstrate the priority of our 
new algorithm in both time and space complexity by 
comparing with breadth-first rule generation algorithm.  

 
4.1 Dataset  

     
The dataset consists of 314 web text documents that 

are collected from various University of Waterloo web 
sites.  It was downloaded from http://pami.uwaterloo.ca/ 
~hammouda/webdata/ [5]. The cleaned up data can be 
found in http://www.deakin.edu.au/~jiyuan/wi2006.html. 
Ten categories and the number of documents in the 
categories are listed below: 

Black bear attach (30) 
Campus network (33) 
Canada transportation roads (22) 
Career services (52) 
Co-operative education (55) 
Health services (23) 
River fishing (23) 
River rafting (29) 
Snowboarding skiing (24) 
Winter Canada (23) 
All stop words, such as “a”, “an”, “on” are removed, 

and we have changed all words into their root, for 
example “fishing” � “fish”. If a word rarely appears in 
the documents, we treat it as a noise in the classification 
of the text document. So we removed all low frequent 
words. In the experiment, we have removed words that 
appear in documents below 40 times. Finally, 619 
keywords are obtained as the features to represent 
documents.  

Compared to the Breath First rule generation algorithm, 
the depth first algorithm can find the largest positive 
coverage faster. Figure 6 shows the CPU cost for 
generating rules to describe documents in 10 categories. 
The horizontal axis represents 10 categories. The vertical 
axis represents the seconds to generate rules for 
corresponding categories. Note that the log scale is used 
in the vertical axis. In the figure, the time complexity has 
been reduced by adopting the depth-first technique. Since 
the page limitation, we omit other experiment results.  

 

5. Conclusion 
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Figure 6 Comparison of CPU time 

 
Document classification is a fundamental topic in the 

web world. Many learning algorithms such as AQ15, ID4 
and CN2 have been applied to classify categories of 
documents. In this paper, we proposed a depth-first rule 
generation algorithm. Comparing to breadth-first 
algorithm, the new algorithm demonstrates its priority in 
time and space complexities, especially in finding short 
patterns. Since the algorithm needs only limited space, the 
algorithm can be executed on normal personal computers. 
Besides, the rules produced by our algorithm are more 
accurate and interpretable. 
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