
Finding Short Patterns to Classify Text Documents

Jiyuan An and Yi-Ping Phoebe Chen

School of Information Technology, Faculty of Science and Technology,
Deakin University, Melbourne, VIC 3125, Australia

{jiyuan, phoebe}@deakin.edu.au

Abstract

Many classification methods have been proposed to
find patterns in text documents. However, according to
Occam’s razor principle, “the explanation of any
phenomenon should make as few assumptions as
possible”, short patterns usually have more explainable
and meaningful for classifying text documents. In this
paper, we propose a depth-first pattern generation
algorithm, which can find out short patterns from text
document more effectively, comparing with breadth-first
algorithm.

Availability:
The translated vector data of the tested web text
documents and the found patterns can be obtained from
http://www.deakin.edu.au/~jiyuan/wi2006.html

Keywords
Document Categorization, rule generation, breadth-first,
depth-first.

1. Introduction

To categorize text documents, the classification
methods [3][7][8][9][10] are usually be used to generate
rules (or patterns) for each category. A rule is
combination of keywords. For example, “kw1=computer
�� �����	
������	�� ��� �� a pattern for computer
document category. Such as Rocchio method [4], Naïve
bayes based method [6], and SVM based text
classification method are widely used. These methods
learn labeled text documents and then construct a
classifier. By using the classifier, a new coming text
document can be predicted in terms of which category it
belongs to. The keywords which appear in documents can
be considered as the features of text document domains. If
the keywords form a feature space; every document
becomes a data point in the feature space. However, the
dimensionality for text document domain is very high
because every keyword corresponds to a dimension. This
results in the ineffective performance of classification
methods [2].

In [2], a robust rule generation method was proposed.
This method enumerates all possible keyword
combinations. The enumeration starts from 1-keyword
combination to n-keyword combination. Each keyword
combination can be viewed as a subspace in feature space.
The subspace covers certain text documents. In an ideal
situation, we can find a keyword combination that covers
only specific category documents. In most cases, we use
several keyword combinations, C’s, to cover a specific
category document set S.

SCC ⇒∪∪ �21 (1)

If the keyword combination consists of k keywords, it
is called k-keyword combination. For example, Equation 2
is a 2-keyword combination. It covers the documents in
which both keyword No. 3 and No. 7 appear. The
Equation 2 can be shortened to (kw3 ∩kw7).

)''()''(73 YkwYkw =∩= (2)

If a document is covered by a k-keyword combination,
it will also be covered by its sub combination (i-keyword
combination (i < k)). Based on this fact, most of the
irrelative keyword combinations can be pruned at the
early stages of the rule generation procedure [2]. Firstly,
all possible 1-keyword combinations are enumerated. The
1-keyword combinations are sorted into descending order
for the “primary key” and in ascending order for the
“second key”. The primary key is the number of specific
category documents that are covered by keyword
combination; the second key is the number of other
category documents that are covered by the keyword
combinations. Secondly, the sorted 1-keyword
combinations are put in a queen called Bin1. Thirdly,
from the top of Bin1, two 1-keyword combinations are
combined to form 2-keyword combinations. Like the first
step, all 2-keyword combinations are sorted by primary
and second keys to form Bin2. When a keyword
combination that covers only the specific category
documents is found, it becomes a pattern for the specific
category. To reach this kind of cover quickly, In this
paper, we propose an algorithm that is based on depth-
first traversal.

Unlike the breadth-first traversal algorithm [2], the new
algorithm finds the most potential keywords efficiently.

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

Authorized licensed use limited to: GRIFFITH UNIVERSITY. Downloaded on September 8, 2009 at 00:28 from IEEE Xplore. Restrictions apply.

The irrelative keyword combinations can be pruned at an
earlier stage. This avoids dealing with the huge number of
keyword combinations whose number increases
exponentially in terms of the number of keywords.

2. Preliminaries

Given a specific category, our algorithm induces a set

of decision rules. Each rule is of the form “if <cover>
then predict <category>”, where <cover> is Boolean
keyword combinations as given below:

A selector is the basic test for a keyword. For example,
kw = yes (no) denotes keyword kw (dis)appears in all
documents of a category. The selector can be shortened to
kw, because we do not consider the keyword combinations
that disappear in specific documents as a selector.

A conjunction of selectors is called a cover (or rule).
We say that a rule covers a document if the rule is true.
For example, Figure 1 indicates whether or not three
keywords kw1, kw2 and kw3 appear in three different
documents d1, d2 and d3. If we have a rule: (kw1 ��������
we say that the rule covers two documents d1 and d3.

Figure 1 Documents and keywords. ‘y’/’n’ denotes whether
the corresponding keyword (dis)appears in the documents.

The rules produced by our algorithms can be viewed as
finding optimal subspaces covering only one category’s
documents and not any other documents are included.
Throughout the paper, we call this kind of subspace a
positive cover. The training examples consist of positive
samples and negative samples. In our approach, the
description of categories is found one by one. If we have n
categories, we have to learn n times to find each
description of the category. In each trial, all documents in
the specific category are called positive documents
whereas other documents are called negative documents.

3. Our approach

As a pattern corresponds to a cover, we can find out all
patterns for a specific category determining coverage of
the category documents. A naïve algorithm is immediate.

To cover all text documents for a specific category,
more than one positive cover may be needed. Figure 2
shows a naïve algorithm that generates the patterns to
describe a specific category. In the while-loop (line 3-14),
we continue finding one by one until all positive samples
have been covered. In the for-loop (line 6-10), a keyword
combination that has the biggest coverage for positive
samples is selected as a pattern. In line 13, all positive

samples that are covered by the found pattern are removed.
The next pattern is found in the remaining positive and
negative samples. As mentioned before, it is not practical
to enumerate all possible keyword combinations, because
of the high dimensionality of a document’s feature space.

Figure 2 A naïve algorithm for rule generation

Similar to most association rule algorithms [1][2],
pruning irrelative rule candidates (or keyword
combinations) is a crucial problem. In this paper, we
introduce a depth-first traversal method to prune irrelative
keyword combinations. Figure 3 illustrates how to filter out
irrelative keywords in the process of finding patterns.
Firstly, all 1-keyword combinations are listed. The
number of positive and negative documents is counted.
The 1-keyword combinations are sorted in ascending
order of the number of positive documents and in
descending order of the number of negative documents, as
shown in subfigure (B). Secondly, kw2 and kw3 are
selected to be combined because they have biggest
positive covers; they are the most potential keywords to
cover more positive documents. From subufigure (c), the
combination of kw2∩kw3 covers 2 positive documents
and 0 negative documents. Consequently, the combination
kw2∩kw3 is a pattern for the dataset. Thirdly, the
documents D1 and D2 are removed because they are
covered by rule kw2∩kw3. Only one pattern is found
because no positive documents remain in the dataset.

Figure 3 An example for depth first rule generation algorithm

1. Algorithm ruleGeneration()
2. rules = empty
3. while positiveSample exist
4. maxPositiveCover = 0
5. bestCover = null
6. for each keyword combination Ci
7. If cover(Ci) > maxPositiveCover
8. bestCover = Ci
9. maxPositiveCover = cover(Ci)
10. end if
11. endfor
12. rules = rules ∪ bestCover
13. delete positiveSample covered by Ci
14. end while
15. return rules

kw1 kw2 kw3
D1 ‘Y’ ‘N’ ‘Y’
D2 ‘Y’ ‘N’ ‘N’
D3 ‘Y’ ‘Y’ ‘Y’

kw1 kw2 kw3
D1 ‘Y’ ‘Y’ ‘Y’
D2 ‘N’ ‘Y’ ‘Y’
D3 ‘Y’ ‘N’ ‘N’
D4 ‘Y’ ‘Y’ ‘N’
D5 ‘Y’ ‘N’ ‘Y’

kw2 ‘Y’ 2 1
kw3 ‘Y’ 2 1
kw1 ‘Y’ 1 3

kw2 kw3 ‘Y’’Y’ 2 0

Positive documents

negative documents

Sorted 1-keyword combination
Generated rule

(2-keyword combination)

of positive documents

of negative documents

(A)

(B) (C)

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

Authorized licensed use limited to: GRIFFITH UNIVERSITY. Downloaded on September 8, 2009 at 00:28 from IEEE Xplore. Restrictions apply.

The kw1 in 1-keyword combination does not need to
combine with other keywords (kw2 and kw3), because
after the combining of kw2 and kw3, the positive
coverage of kw1 (=1) is smaller than that of kw2∩kw3. In
a real dataset, there is a huge number of this kind of
keyword combinations that can be pruned away. Figure 4
shows how to construct bins for keyword combinations.

Figure 4 The flow of finding a rule for a specific category

The keyword combinations are stored into Bins as
shown in Figure 4(A). They are sorted in descending order
of the number of positive documents that are covered by
the keyword combination and in ascending order of the
number of negative documents covered by the keyword
combination. If a combination has zero negative document,
we keep the combination as the best answer. The best
answer is updated in the expanding process. It becomes a
pattern at the end of process. They can be viewed as
primary and secondary keys. The “good” keyword
combinations are always in the top of the Bins because
they cover more positive documents and less negative
documents. Figure 4(B) shows an example of Bin_2. The
first column represents the keyword combinations. The
second and third columns represent the number of positive
and negative samples included in the keyword
combination. Here we explain our strategy to expand n-
key combinations to n+1-key combinations. We give an
example of expanding from 1-key combinations to 2-key
combinations.

Figure 5 illustrates An example of expanding keyword
combinations. It has 5th largest keyword “kw8” in Bin_1.
We assume the 2-keyword combinations from four largest

keyword “kw2”, “kw5”, kw1” and “kw3” have been
calculated and already in basic combination bin_2. There
are three rational 2-keyword combinations, i.e. kw2���5,
kw2���� and kw1�kw5 cover more positive documents
than that is covered by the best keyword combination..
Now we want to combine “kw8” with its upper keywords
(kw2, kw5, kw1 and kw3). Their combinations are put in
incremental combination Bin_2. There are two rational
elements “kw2 kw8” and “kw3 kw8” (Note that
“kw5∩kw8” and “kw1∩kw8” are assumed to be pruned
away). When we expand every element in the basic
combination Bin_2 by adding “kw8”, we check whether
each subset including “kw8” is in incremental
combination Bin_2. For example, the first element in the
basic combination bin, Bin_2 “kw2∩kw5” is expanded to
“kw2∩kw5∩kw8”. We then check its 2-keyword subset
“kw2∩kw8” and “kw5∩kw8”. Due to the fact that
“kw5∩kw8” is not in incremental combination Bin_2, the
expanded keyword combination “kw2∩kw5∩kw8” can be
pruned away. Only “kw2∩kw3∩kw8” cannot be pruned
away by checking incremental combination bins because
“kw2∩kw8” and “kw3∩kw8” are in the incremental
combination bins. Finally we check whether
“kw2∩kw5∩kw8”is a rational combination by calculating
its covering number of positive documents.

As the incremental combination bins are introduced, a
large number of combinations can be pruned away without
check their positive document coverage. This is an
improvement of the method proposed by [2].

We Summarize depth-first algorithm below: (1).we
calculate the number of positive and negative documents
for each 1-keyword combination and then proceed to put
all 1-keyword combinations in the first Bin (Bin_1), as
sorted by the primary and secondary keys. (2) we expand
the keyword combinations for bin_1 one by one as shown
in Figure 4.

Figure 5 An example of expanding keyword combinations

4. Experiment

kw5

kw2

kw8

kw3

kw1

kw2 ∩ kw3

kw2 ∩ kw5

kw1 ∩ kw5

kw3 ∩kw8

Kw2 ∩ kw8

Incremental combination bins

Basic combination bins

Bin_1 Bin_2

kw2 ∩ kw3 ∩ kw8

Bin_3

…

kw2 ∩ kw5 ∩ kw8
kw1 ∩ kw5 ∩ kw8

Pruned away

kji kwkwkw ∩∩

ikw

ji kwkw ∩

…

Bin_1 Bin_2 Bin_3

Incremental combination bins

…

Basic combination bins

Keyword combination # posDocument # negDocument
23 5
17 16

.

.

.

.

.

.

.

.

.

(A)

(B)

Bin structure

32 kwkw ∩

21 kwkw ∩

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

Authorized licensed use limited to: GRIFFITH UNIVERSITY. Downloaded on September 8, 2009 at 00:28 from IEEE Xplore. Restrictions apply.

We test our algorithm to find rules for describing a

given category on web documents. In paper [2], the
effectiveness in accuracy and interpretability has been
shown for the enumeration based algorithm by comparing
to ID3 and CN2. The rules generated by this paper are the
same as by paper [2]. We demonstrate the priority of our
new algorithm in both time and space complexity by
comparing with breadth-first rule generation algorithm.

4.1 Dataset

The dataset consists of 314 web text documents that

are collected from various University of Waterloo web
sites. It was downloaded from http://pami.uwaterloo.ca/
~hammouda/webdata/ [5]. The cleaned up data can be
found in http://www.deakin.edu.au/~jiyuan/wi2006.html.
Ten categories and the number of documents in the
categories are listed below:

Black bear attach (30)
Campus network (33)
Canada transportation roads (22)
Career services (52)
Co-operative education (55)
Health services (23)
River fishing (23)
River rafting (29)
Snowboarding skiing (24)
Winter Canada (23)
All stop words, such as “a”, “an”, “on” are removed,

and we have changed all words into their root, for
example “fishing” � “fish”. If a word rarely appears in
the documents, we treat it as a noise in the classification
of the text document. So we removed all low frequent
words. In the experiment, we have removed words that
appear in documents below 40 times. Finally, 619
keywords are obtained as the features to represent
documents.

Compared to the Breath First rule generation algorithm,
the depth first algorithm can find the largest positive
coverage faster. Figure 6 shows the CPU cost for
generating rules to describe documents in 10 categories.
The horizontal axis represents 10 categories. The vertical
axis represents the seconds to generate rules for
corresponding categories. Note that the log scale is used
in the vertical axis. In the figure, the time complexity has
been reduced by adopting the depth-first technique. Since
the page limitation, we omit other experiment results.

5. Conclusion

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10category

1/
10

 S
ec

o
n

d
s

Breadth First

depth first

Figure 6 Comparison of CPU time

Document classification is a fundamental topic in the

web world. Many learning algorithms such as AQ15, ID4
and CN2 have been applied to classify categories of
documents. In this paper, we proposed a depth-first rule
generation algorithm. Comparing to breadth-first
algorithm, the new algorithm demonstrates its priority in
time and space complexities, especially in finding short
patterns. Since the algorithm needs only limited space, the
algorithm can be executed on normal personal computers.
Besides, the rules produced by our algorithm are more
accurate and interpretable.
6. Acknowledgments

The work reported in this paper was partially supported
by the Australian Research Council's Discovery Project
grants DP0344488 and DP0559251.

Reference
1. Agrawal, R Srikant, R.: "Fast Algorithms for Mining
Association Rules", VLDB94, 487-499. 1994.
2. An, J. and Chen, Y.: Concept Learning of Text Documents.
Web Intelligence 2004: 698-701
3. Clark, P and Niblett, T: The CN2 Induction Algorithm.
Machine Learning 3: 261-283 (1989)
4. Joachims, T.: A Probabilistic Analysis of the Rocchio
Algorithm with TFIDF for Text Categorization. ICML97. 143-
151 (1997).
5. Hammouda, K. M., Kamel, M. S.: Phrase-based Document
Similarity Based on an Index Graph Model. ICDM 2002: 203-
210
6. Lewis, D. D.: Naïve (Bayes) at forty: The independence
assumption in information retrieval. ICML 1998, 148-156
7. Li, Y. and Zhong, N., Interpretations of association rules by
granular computing, ICDM 2003: 593-596
8. Li, Y and Zhong, N. Ontology-based Web mining model:
representations of user profiles, WI 2003: 96-103.
9. Michalski. R. S. Carbonell, J. G. and Mitchell, T. M.:
“Machine learning an artificial intelligence approach”,
Morgan Kaufmann Publishers, INC., 1983
10. Mitchell, T. “Machine learning”, McGraw Hill, 1997

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

Authorized licensed use limited to: GRIFFITH UNIVERSITY. Downloaded on September 8, 2009 at 00:28 from IEEE Xplore. Restrictions apply.

