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Abstract 
 
Computer simulation models have changed the ways in which researchers 
are able to observe and study social phenomena such as crime. The ability of 
researchers to replicate the work of others is fundamental to a cumulative 
science, yet this rarely occurs in computer simulations. In this paper, we 
argue that for computer simulations to be seen as a legitimate methodology in 
social science and for new knowledge to be generated, serious consideration 
needs to be given to how simulations could or should be replicated. We 
develop the concept of systematic replication, a method for developing 
simulation experiments which move towards generalisable inference that is 
directed, explicit and incorporates complexity incrementally. Finally, we outline 
how the discrete parts of this process might be carried out in practice using a 
simple simulation model. 
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Introduction  

 
John Eck (2007) likened the numerous yet somewhat limited interjections of 
other disciplines into criminology to the attacks on Europe by Barbarians 
during the Middle Ages. The Barbarians would land, pillage a few towns and 
villages, burn down a few buildings and, whilst in-situ, strike fear into the 
hearts of the indigenous population. Ultimately though, after plundering the 
easier targets, they would tire, retreat and leave an area to recover, ultimately 
leaving it unchanged by the attack. 
 
Over the past few decades, advances in a number of disciplines have lead 
several such invasion forces to the shores of criminology. However, only a 
handful actually settled and provided more than a fleeting diversion to the 
general populace. The recent emergence of computer simulation models1, 
whose origins lie in the disciplines of computer science and artificial 
intelligence, could hail the arrival of another invading force, which may 
empower those interested in crime with an additional tool aimed at increasing 
understanding. On the other hand, it may prove to be a temporary sortie that 
criminologists simply need to put up with until interest wanes.  
 
Recent research (see Liu and Eck (2008) for the most complete and up to 
date treatment of the potential for simulation models in criminology and crime 
reduction) has conceived, discussed and presented several criminological 
applications of simulation and described how the methodology potentially 
offers researchers the ability to observe and study the crime phenomenon in 
ways that were not previously possible for logistic, moral or economic 
reasons. Through the implementation of in silico experiments, which, unlike 
traditional analyses, allow for perfect observation and measurement, it aims to 
produce models of behaviour or systems providing a framework around which 
existing criminological theories can be examined, tested and, where 
applicable, refined. 
 
Social scientists should be excited by the prospect of simulation models as a 
methodology for a number of reasons: 

 Simulation offers social scientists an analogue to controlled 
experiments for examining social phenomena. In a simulation 
researchers can alter factors normally beyond their control, implement 
interventions perfectly and explore dose-response relationships beyond 
logistic and financial constraints. By extension, criminological theories 
can be made testable. 

 Simulation allows for perfect observation and measurement. 
Researchers have the ability to record all interactions between 
components of the model, as well as knowing the outcome of these 
with absolute precision. Obviously, this is limited to the validity of the 
rules programmed, but this is a separate matter. In the real world, even 
with a perfect measurement instrument (which we do not have), there 
are many factors which strive to compromise the precision of outcome 
measures (e.g. sampling errors). 
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 It is possible, but not necessary, to model processes according to a 
'bottom-up' approach by creating and following individuals overtime 
with a view to examine how specific turning points of experiential 
trajectories can be examined. DeAngelis and Gross, (1992)⁠ provide 
an authoritative source on the advantages and disadvantages of both 
individual and population level models. While individual level models 
are currently in vogue, under certain circumstances (large populations 
of relatively homogeneous units, availability of appropriate data for 
corroboration; see DeAngelis and Rose (1992)⁠ for more detail) 
population level models possess profoundly attractive properties. 

 Simulation models can be performed en masse relatively easily and 
quickly. Once the model is built, minor adjustments are simple to 
perform. 

 The above factors circumvent what Holland (1986) calls the 
‘fundamental problem of causal inference’, the counterfactual problem. 
Our inability to observe the effect of two rival treatments on the same 
experimental unit has dogged researchers since the days of R. A. 
Fisher. Two main solutions present themselves (assuming 
homogeneity among experimental units and aggregation over 
treatment groups), but these vary in applicability according to the 
research question. Simulation models allow repeated experiments 
under identical conditions save for differences selected by the 
researcher. 

 As implied from the previous point, conducting simulations that are 
equivalent to randomised controlled trial is far simpler and cheaper 
than in the real world. 

 Additionally, aside from the potential application of simulation models 
themselves, the actual process of decomposing theories into simulation 
formalisms, such as the rules which govern agent behaviour, is useful 
in that it provides researchers greater insight, and demands that they 
specify theories and concepts in explicit terms. This can highlight 
potential inconsistencies or shortcomings and, by doing so, contributes 
to the subsequent strengthening of theory. 

 
We will not devote any more space to explaining the promise of simulation 
models for criminology, as the other articles in this special edition are 
testament to this. Instead, the focus of this paper is on an aspect of the 
methodology which is given little attention. With the great potential of 
simulation methods comes an even greater obligation; one which, if 
overlooked, may result in simulation becoming yet another methodological fad 
that promised much and delivered little. For simulation models to live up to 
their potential, methods for directing their development and validating their 
findings need to be established. If this does not occur, we predict the 
methodology of simulation in criminology is at risk of declining into relative 
obscurity.  
 
 

Research Problem 
 



 4 

The aim of this article is to outline the conditions under which the results of in 
silico experimentation can be thought of as valid. The principle method by 
which empirical findings are validated with established experimental designs 
is through replication. So, it follows that if simulations are a form of 
experiment, replicating in silico simulations will reveal their validity.  
 
Before proceeding, the term ‘replication’ needs to be explicitly defined. We 
can specify two types of replication; pure replication occurs when the same 
methods are used under identical conditions (same laboratory, sample, 
research staff, etc.) and practical replication when an experiment or study is 
designed to imitate an initial experiment or study as closely as possible but 
contains some differences either by accident or design. Almost all replications 
in social science falls into this second type of replication. Pure replication 
occurs very rarely, but is possible to achieve in computer simulation models 
as long as random seeds were recorded for initial runs to be incorporated in 
successive replications. Indeed, the computer science task of verification is 
similar in nature to this. The closest related concept in social science is 
internal validity (Shadish, et al. 2002).  
 
In terms of practical replication, these replications are typically performed so 
they closely resemble the original study, but with slight differences. These 
minor differences (different lab, sample, etc.) allow researchers to probe 
whether such disparities influence the size and magnitude of the experimental 
effect. The precise experimental effect may not be observed, but hopefully the 
differences will be small. Subsequently, researchers may purposely alter an 
independent variable (for example, in drug trials) to encapsulate 
representations more akin to the designated target construct. The collective 
goal of such replications is to produce a picture of the extent to which a 
generalised causal inference will hold over a number of differing 
configurations. Clearly, this type of replication has links to external validity 
(Shadish, et al., 2002). Other benefits of replication exist, as are other types of 
validity required to demonstrate causal relationships, but these will not be 
outlined here. Townsley and Johnson (2008) describe these in detail with 
special attention paid to simulation models. 
 
Both types of replication are required to demonstrate valid experimental 
result. Yet, replicating in silico experiments is admittedly a different task to 
replicating real world experiments. Especially in the social sciences, 
researchers have an onerous time controlling the myriad factors which might 
influence the causal relationship. Even with the most carefully designed study 
and substantial agency and practitioner commitment, it seems unlikely that 
real world replications will approach anything similar to pure replication. The 
advantage of simulation models is that they empower the researcher with 
absolute control, which helps considerably in understanding and subsequently 
validating causal inference. 
 
To date there have been remarkably few attempts to replicate simulations. 
The most insightful recent example is probably Hales et al.’s (2003) model-to-
model analysis. They comment that the noticeably increased interest in 
applications of simulation techniques to a wide variety of social and physical 
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problems has been accompanied by a paucity of attempts at replication. They 
lament the fact that “[simulation] researchers tend to work in isolation, 
designing all their models from scratch and reporting their results without 
anyone else reproducing what they found” (1.2). Takadama et al. (2003) set 
out a method of ‘cross-element validation’, whereby comparisons are made 
between two simulations identical save for one element. By altering a small 
component of the system, the impact of system settings can be scrutinised. 
On the other hand, Klüver and Stoica (2003) tested different algorithms for the 
same research problem and found quite high levels of correspondence. 
Edmonds and Hales (2003) developed and tested two independent 
replications of a published simulation and found consistency (of results) 
between the two replications, but not with the original simulation. They 
comment “that, almost certainly, the vast majority of published social 
simulations do not completely comply with their authors' intentions” (1.5). 
 
Axtell et al. (1996) developed an analogous concept to replication which they 
call model alignment. They argue that two models can be considered aligned, 
or ‘docked’, if they produce equivalent results under equivalent conditions. 
This allows objective and transparent comparisons between distinctly different 
models to be made. In their case study, Axtell et al. used two models of 
cultural transmission (the well known Sugarscape simulation by Epstein and 
Axtell (1995) and Axelrod’s Culture Model (ACM) described in Axelrod 
(1995)). The study is interesting for three reasons. Firstly, the authors admit 
that the docking exercise was underpinned by the experimental method in that 
their procedures were “roughly analogous to those used when a second 
investigator in a laboratory science is attempting to reproduce results obtained 
in a first investigator's laboratory” (p127). Secondly, the authors describe how 
they wrestled with inferring equivalence in experimental effects and found that 
simple summary statistics of experimental effects were not sufficient. They 
conclude that “distributional information about reported measurements is 
necessary if statistical methods to test equivalence are to be employed by a 
later investigator” (p135). Thirdly, the virtue of modular programming 
approaches was demonstrated in a compelling fashion. The authors report 
that the entire docking exercise required an estimated 60 researcher hours 
(excluding report writing). 
 
Investing programming effort in the development of the simulations prior to 
publication meant that many of the modifications to the in silico experimental 
settings were analogous to ‘throwing switches’ (p 133).To explain briefly, 
using modular programming approaches such as Object-Orientated Design 
(OOD), researchers can minimise the work involved in maintaining, modifying 
and analysing their existing models. OOD allows the logical segmentation of 
program components into objects, which hold state and behaviour 
information. This offers considerable flexibility to those modifying existing 
simulation components, as internal functions, algorithms and data 
manipulations can be altered, refined and/or replaced without the need for the 
model to be redesigned. This inherent modularity also provides OOD with a 
distinct advantage over other more traditional approaches for researchers 
wishing to analyse complex program interactions and states, the likes of 
which are often seen in simulation models.  
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Ultimately, Axtell et al. (1996) conclude that efforts to demonstrate model 
alignment in the future is only likely when “a precise, detailed statement of 
how the model works” is available (p135). Unfortunately, it seems that 
simulation replications are rare and opportunistic, or at least not systematic. 
Researchers rarely commence development of a simulation with 
consideration of how it might be replicated by others. For this, we blame the 
disconnect between the two varieties of researchers involved in simulation 
modelling: computer scientists and domain experts. Each group 
predominantly focuses on different aspects of modelling. Domain experts are 
typically interested in using the model, whereas computer scientists focus on 
building the model. There is, of course, inevitable overlap in their respective 
agendas, but despite the penetration into the social sciences, much of the 
heavy cognitive lifting in simulation development is still carried out by 
computer scientists2.  
 
The field of model replication seems currently underdeveloped, especially by 
those with potentially most to gain, i.e. those who might use simulations to 
direct action or policy rather than computer scientists. The complex non-linear 
nature of crime interactions dictates that the processes of replication and 
evaluation that simulations provide can substantially aid in increasing our 
understanding of causal inference, thus maximising the utility of any model 
tempered by a number of simulation findings. Simulation replications, much 
like their traditional counterparts, can be used to increase construct 
robustness by gradually introducing greater levels of intricacy aimed at 
moving from in vitro inference to in situ inference; investigating the degree to 
which causal relationships hold over a variety of different settings3. This 
process of directed incremental complexity allows us to examine our model 
through numerous cross sections of the system simulated as we move 
towards sufficiency (Eck and Liu, this volume). However, if we are to present 
a cogent argument for the validity and subsequent utility of our simulation 
models, then the implementation of replication and its use in the introduction 
of incremental complexity will obviously require an investigator to utilise a 
systematic and logical approach. 
 
Therefore, we now describe a methodology of systematic replication which 
aims to move towards generalisable inference, suggesting that, whilst 
originally devised for traditional experiments, its key components might just as 
well relate to in silico experiments. Before doing so, a few qualifiers are 
necessary. First, experimentation is not the only method of conducting 
science. Other hard science fields (e.g. astronomy) advance without exclusive 
adherence to experiments. Experiments are merely the simplest method from 
which to draw inferences. Second, simulation models only get us so far on the 
spectrum of understanding. Experiments can reveal causal description, but 
can only offer candidate causal explanation by demonstrating generative 
sufficiency (Epstein 2006). Thus, we may demonstrate that a phenomena is 
reproducible given a theorised mechanism, but we can never be sure that 
such a mechanism is necessary in the real world. Third, strictly speaking, a 
simulation model can never be mis-specified. The system operates exactly as 
the components and their interaction rules were designed. Its output is valid. 
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However, in the real world, if models are mis-specified, there is a natural 
feedback mechanism to indicate this mis-specification. Excluding an important 
factor results in poor fit or predictions by default, but in silico we will never 
know if an omitted variable is important. Worse, even if we do include it, but 
get the interaction rules wrong, we are unlikely to know. This problem can 
only be solved by developing simulation models in a transparent and explicit 
manner, to be held up for peer scrutiny and replication.  
 
The remainder of this article is organised in the following way: having 
described the research focus of the paper, we present a simple simulation 
model for the express purpose of illustrating how a series of simulation 
replications can be developed to increase the robustness and subsequent 
utility of a simulation model. Next, systematic replication is defined, first in 
conceptual terms, then by an explicit methodology to methodically approach 
causal inference. In this section the case study and a number of real world 
crime studies are used to illustrate various components of systematic 
replication. The final section of the article deals with the means to document 
systematic replications.  
 

 
A Case Study: Cops & Robbers 
 
In this section we briefly describe a simple simulation model as a means to 
illustrate the nuances of replicating in silico experiments in a systematic 
fashion. Cops & Robbers, initially described by Birks et al. (2007), was 
developed using NetLogo4, a “cross-platform multi-agent programmable 
modelling environment”5. Briefly, the model’s aim is to provide insight into the 
victim-offender-location interaction described in routine activity theory (Cohen 
and Felson, 1979). In order to do so, it examines several simplistic theories of 
both victimization and prevention, allowing exploration of the effects of 
variations in several micro-level properties upon macro-level outputs, such as 
simulated crime and prevention rates. In the most abstract version, Cops & 
Robbers imagines a simulation world that is inhabited by three distinct groups 
of individuals: potential victims, offenders and law enforcement. This abstract 
model of offending initially theorizes:  
 

that all individuals move around the environment in a random fashion; 
that a crime occurs when an offender comes into the same location at 
the same time as a target; and that a detection/prevention occurs when 
an offender, target and guardian all come together at the same point in 
space and time. 

 
The central premise of Cohen and Felson’s theory is that the incidence of 
crime is not determined by the number of offenders or victims per se, but the 
rate at which they intersect without a guardian. Examining the guardianship 
element of our theory, a series of experiments can be designed to investigate 
this mechanism, implementing various configurations of guardianship and 
exploring the direction and magnitude of any observed causal relationships. 
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These hypothetical experiments will form the basis of our example simulation 
used to illustrate the key concepts to be discussed.  
 
In building the simulation, we initially formalise two key mechanisms that allow 
the experiment to take place: a guardianship behaviour, the algorithmic 
equivalent of the guardianship element of our initial theoretical statement, 
which we incorporate into the decision calculus of our law enforcement 
agents; and a similar offending construct, which is bestowed upon our 
offender agents. Our outcome measures are the crime and prevention rates 
(the latter is the number of crimes denied by the presence of a guardian – an 
interim metric impossible to measure outside in silico experimentation). These 
measures allow us to describe the experimental effect by observing the 
relative difference in magnitude and direction of both crime and prevention 
occurrence across simulations with varying properties and representations of 
units, treatments and settings. 
 
Our aim is to investigate whether we can produce a generative model which 
can demonstrate candidate causal explanation for the spatial and temporal 
distribution of crime. To do so, we begin with an extremely simplistic model of 
routine activity, then, through a series of systematically directed 
experiments/trials, introduce model complexity by incorporating moderator 
variables additional moderator constructs relating to different aspects of the 
model, whilst maintaining sufficient outcome measures to capture the 
experimental effect studied. To be clear, the overarching aim of this series of 
experiments will be to explore the guardianship construct and probe the 
strength and extent of its relationship with crime levels. For each simulation 
replication model, a distinct hypothesis is generated. These hypotheses relate 
to the incremental introduction of moderator variables. Throughout this 
process we advocate the application of an explicit and transparent method of 
describing simulation experiments in order to aid in the incremental replication 
of a model by other researchers to further validate its findings. 
 
As we will later discuss in more detail, in order to promote the process of 
systematic replication, initial simulation experiments should be both explicit 
and transparent in their documentation. In practice, this dictates that 
investigators should denote both the experimental aim, in our case, the study 
of the guardianship mechanism hypothesised by routine activity theory, and 
utos configuration of each in silico experiment.  
 
 

Systematic Replication  
 
Systematic replication is proposed as a method for developing simulation 
experiments which move towards generalisable inference that is directed, 
explicit and incorporates complexity incrementally. It consists of two distinct 
components: 

i) Cronbach’s (1982) formulation of generalisation; and 
ii) what Shadish et al. (2002) call the ‘phased model of increasingly 

generalisable studies’. 
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Systematic replication is underpinned by the generalisation formulation 
conceived by Cronbach (1982). He stated that any study can be considered a 
unique configuration of units (subjects), treatments (manipulable causes), 
outcomes/observations (measurement of effect) and settings (social and 
physical environment of study). Thus, a single study is denoted as utos. 
Replications of this utos configuration are pure replications as all conditions 
are the same (as long as identical random seeds are utilised). If the observed 
experimental effect is reproducible through a series of pure replications, then 
that unique configuration of utos can be said to produce valid outcomes. We 
explain later in detail a process for conducting this type of validation task. 
 
Using Forrester et al.’s (1990) description of the well-known Kirkholt burglary 
prevention project as an example, the utos is comprised of burgled 
households (units); a suite of tactics, including careful problem diagnosis, coin 
meter removal, promoting interagency cooperation, cocoon neighbourhood 
watch, prevention of repeat victimisation (treatment); recorded repeat 
victimisation, recorded burglary, victim and neighbour interviews (outcome); 
and a high crime, clearly defined housing estate in the North of England 
(setting). The observed impact of the Kirkholt utos was an approximate 75 
percent reduction in the annual burglary count three years after 
implementation (with roughly 42%, 57%, 25% and 21% reductions year on 
year).  
 
Obviously, policy makers and researchers are interested in the degree to 
which the observed experimental impact of burglary reductions under the 
Kirkholt utos might hold over other utos configurations. Tilley (1993) described 
three replications of the Kirkholt study. Decomposing the replication that 
closest resembled the Kirkholt utos (Tilley’s so called '?R1'), the Rep1 utos 
could be described as a configuration of burgled households (units); a suite of 
tactics not limited to problem diagnosis, target hardening for social housing 
tenants, limited interagency cooperation, traditional neighbourhood watch with 
modest coverage, prevention of repeat victimisation (treatment); police 
burglary records and victim interviews (outcome); and neither a high crime 
area, nor a clear demarcation between the action area and the surrounding 
environment (setting). The observed impact of the Rep1 utos was an increase 
in burglary of about 22 percent in the first year of implementation, followed by 
a further 43 percent increase the next.  
 
The differences in utos configurations and outcomes are stark and decisions 
about generalisability are difficult to make with confidence (was it the different 
setting, the different tactics, or both that led to the different observed impact?). 
Cronbach (1982) argued that generalised causal inference was only possible 
if one was able to demonstrate that the experimental effect held over many 
utos configurations. He defined UTOS as the population of units, treatments, 
outcomes and settings over which a causal relationship holds. Lower case 
letters, therefore indicate sampled values of u, t, o and s. Capital letters 
indicate the population for that component. Thus, the generic task of 
generalisation is to go from utos (one particular realisation) to UTOS (a causal 
relationship that holds over many types of units, treatments, outcomes and 
settings).6 
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To illustrate, Table 1 describes the simple Cops & Robbers model in utos 
terminology alongside other putative configurations. These additional 
configurations make sense in terms of assessing the generalisability of 
experiments/models. As well will explain later, in our view investigators should 
also provide a list of other potentially viable utos configurations with a view to 
being included in subsequent replications. Thus, Table 1 outlines the aim of 
our example experiment, the relevant utos configurations of our initially 
described model and several other candidate utos configurations7.  
 

[insert Table 1 about here] 
 
Before discussing the applicability of the ‘phased model of increasingly 
generalisable studies’ in allowing us to move towards UTOS, two points 
concerning the applicability of utos for demonstrating in silico experimentation 
generalisation need to be made: 
 

1. Cronbach was primarily interested in intervention evaluation, reflected 
by the inclusion of the treatment component in utos. Our purpose is 
broader than this, encompassing the falsification of theories, as well as 
theory development. Real world interventions can be considered as an 
implementation of some policy which, in turn, is simply a theory of how 
particular constructs are related. Therefore, we take the position that 
interventions are just a special case of theory testing and by allowing 
the in silico treatment to describe the theory, our treatment utos is 
directly applicable for our purpose.  
 

2. For in silico experimentation, generalising over the o dimension of utos 
does not completely transfer from classical experimental and quasi-
experimental studies. This is because in the real world, measurement 
issues force researchers to compromise and capture abstract 
constructs using proxy measures. If our hypothesis relates increased 
guardianship with lower levels of crime, there are many ways to 
measure offending (the outcome). For instance, levels of crime can be 
captured using recorded crime, court records or self-report surveys, 
each having relative strengths and weaknesses. Cronbach argued that 
results derived from single measures could be compromised by 
particulars of that measurement type. That is, there are some elements 
of a given measure which inadvertently bias the results. If experimental 
effects are, therefore, consistent across different measurement types, 
we can be much more confident that those results are valid. Simulation 
models, however, possess perfect observation and measurement. 
Therefore, all we need do is ensure that sufficient outputs are observed 
to capture the experimental effect under study. Although, if simulation 
results are to be compared to those from empirical research methods, 
analogous outputs which capture the frailty of traditional recording 
methods may need to be engineered (this will be discussed briefly later 
in this paper). Randomised controlled trails are good for revealing 
whether an outcome measure has changed, but are not sufficient to 
say why. Fortuitously, in silico experiments allow for the measurement 
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of numerous interim variables and system states between cause and 
effect which might allow some insight into causal explanation or 
mechanisms. Thankfully, unlike real world experiments, the 
implications of realising one has not recorded all the data required to 
describe an experimental effect in silico are relatively modest.  

 
In discussing the utility of the utos methodology for developing systematic 
replication of simulation models, the next substantive issue which arises is 
concerned with how to determine the variety of units, treatments, outcomes 
and settings that might allow us to demonstrate a valid causal relationship, 
and how we might go about demonstrating this. With respect to the former, in 
the real world, when scientists manage a directed programme of studies, they 
do not randomly sample from the plethora of units, treatments, etc. available. 
Instead, they purposively sample, drawing on theory, experience and logic. By 
employing a systematic approach, as will be elaborated later, we envisage 
that there is tremendous power in researchers explicitly documenting the 
factors that have been tested and those yet to be included in a simulation 
model.  
 
As for the way in which a move from utos to UTOS might be executed, 
consider what Shadish et al. (2002) call the ‘phased model of increasingly 
generalisable studies’. This is an approach where several studies are 
conducted, some of which are nested within discrete study phases. These 
phases are distinct because the research objective changes from phase to 
phase. The rationale of this incremental approach allows research activity to 
develop only at the pace of the evidence. Further, the experimental conditions 
begin in ‘perfect’ controlled environments and are made realistic in a 
piecemeal fashion so that a cumulative causal picture emerges. We suggest 
that such an approach would well suit the incremental development of 
simulation models of crime activity. Table 2 shows this phased approach for 
generic science and in silico experimentation.  
 

[insert Table 2 about here] 
 
The first phase is about developing a hypothesis from first principles or highly 
abstract scenarios (theory). The second phase involves developing reliable 
and accurate procedures for conducting the study. This might mean using a 
piece of laboratory equipment or identifying a robust statistical method, as 
well as some form of data generating procedure (police recorded crime, 
interviews, etc.). The third phase involves testing the hypothesis under 
perfect, controlled conditions. In drug testing and development, say, this 
usually means using healthy males, presumably because they are a relatively 
homogeneous group with respect to the particular causal relationship being 
tested. In the social sciences, finding homogeneous units is very difficult and 
conducting highly controlled trials even more so. Typically, some compromise 
is made, either in the experimental design or treatment implementation for 
pragmatic reasons. These initial three phases are stylised versions of how 
individual studies are conducted. 
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The next two phases describe efforts to replicate studies whose hypotheses 
survive the first three phases. The fourth phase tests the limits of the causal 
relationship by introducing heterogeneity into the study. The principle here is 
that if a causal relationship can be observed within a heterogeneous sample, 
we can be more confident of its validity than if it has only been observed from 
a homogeneous group of experimental units. Of course, heterogeneity is 
introduced for a purpose; it represents the presence of a supposed moderator 
variable. Imagine a substance abuse education campaign is initially tested on 
a sample of children from a single school. Prior to widespread adoption, 
researchers may speculate that elements of the campaign may not enjoy the 
same level of effectiveness for children outside the social class of the pilot 
school (as schools usually limit their enrolment to children residing within a 
particular catchment area). Thus, the socio-economic status is identified as a 
potential moderator variable. Further testing in schools across the social class 
spectrum would determine whether this factor is indeed a moderator variable 
and, if so, its impact on the generality of the campaign’s casual validity. 
 
Generalising to UTOS in silico means to move from a single (sampled) 
observation to a population in the following way: a naive model (utos0) 
involving homogeneous units and a homogeneous setting is defined. utos0 is 
made incrementally more complex by introducing heterogeneity with respect 
to units, treatments and settings (in silico utos is already generalised for 
outcomes). Practically, moderator variables are incorporated by creating 
heterogeneity. For example, suppose a simulation is developed where agents 
move about and make decisions according to some predefined formalism. 
Whatever the outcome, the observed experimental effect is valid for these 
homogeneous units in this monoculture setting. This naive model (utos0) 
could be made more generalisable and less abstract by incrementally 
introducing complexity. Suppose theory suggests that gender of units has a 
significant impact on target selection. A slightly less naive model would have a 
system populated with male and female agents, with a corresponding altered 
decision calculus.  
 
An initial simulation (and almost any published experiment) can be 
epistemologically located at phase 3 and provides some indication of internal 
validity depending on the experimental design. The main thrust of this article 
is articulating a systematic method of carrying out phases 4 and 5. Even so, 
just as with a real world experiment, researchers attempting to replicate prior 
studies need to scrutinise phases 1 through 3 of the original study in order to 
ensure the parameters, constructs and formalisms of the in silico experiment 
are understood. This is the process of pure replication. Figure 1 shows an 
idealised version of how this cycle of incremental development might operate 
in practice. 
 

[insert Figure 1 about here] 
 
Space restrictions do not permit a thorough examination of how phases 1 to 3 
can be conducted or scrutinised systematically. Instead, we point out that 
phases 1 to 3 require fundamental scientific research tasks, which a 
competent researcher ought to be able to perform. While the in silico version 
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is somewhat different, the nature and types of decisions made have much in 
common with mainstream research methodologies. For instance, regression 
modelling requires, among other things, the constructs of interest to be 
operationalised in an appropriate manner, careful consideration in model 
development, attention to data quality and meaning (does a drug arrest hot 
spot indicate drug dealing or police activity?), avoiding over-fitting the data 
and a considered interpretation of results. In short, despite our not focussing 
on phases 1 to 3, they are of critical importance. Additionally, replication and 
scrutiny, both internally and by other researchers at phases 4 and 5, will 
uncover threats to internal validity related to phases 1 to 3. Eck and Liu (this 
volume) comment on these issues and set out what this entails. 
 
Recently, systematic reviews have gained popularity in the social policy 
research arena8. They differ from meta analyses and narrative reviews in that 
the criteria for conducting the review is transparent and explicit at all stages 
(proposal, inclusion of studies, analysis, reporting). In this aspect, the 
approach proposed in this article is a systematic, cumulative approach to 
simulation modelling. It requires that changes at each iteration be made 
explicit in order that impact on experimental effects can be observed and that 
other researches can scrutinise the model. The main difference between 
systematic reviews and systematic replications is that one is inherently 
retrospective and the other prospective. The disadvantage of the retrospective 
approach is that is the reviewer can only use those studies that satisfy the 
criteria for inclusion, which can result in small sample sizes. Clearly, this is not 
a problem for systematic replication, as simulation models can be modified in 
light of errors and flaws which become revealed during their study. Further, 
new research questions may be added opportunistically over time.  
 
 

Systematic Replication Criteria  
 
Criterion 1: Testing for presupposed emergence as a rival hypothesis 
 
This first criterion deals with determining the internal validity of utos0. Simply 
put, prior to any efforts to replicate a simulation, researchers should 
implement the model described and replicate the decisions made in phases 1 
to 3. Of principle importance is whether any observed experimental outcomes 
are the result of programming decisions rather than relationships between 
constructs. We do not explore this criterion any further as it is outside the 
scope of this article. Eck and Liu discuss some of these issues in this volume. 
 

Criterion 2: Generalising about experimental units (developing utos → 

Utos) 
 
The second criterion is concerned with moving from inferences on 
homogeneous experimental units (usually people) to inferences on the 
population of units (that are necessarily heterogeneous). In practice, this is 
about introducing and operationalising moderator variables, which effectively 
partition the utos0 homogeneous units into strata of experimental units. 
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The Minneapolis Domestic Violence (DV) experiment described in Sherman 
and Berk (1984) provides a clear example of the importance of delineating 
between differing units when establishing causal relationships. The original 
study, which aimed to reduce domestic violence, examined the effect of three 
police responses (treatments) aimed at domestic violence offenders: 
mandatory arrest; advice (including mediation); and ‘sending’, where the 
offender was sent away from the home for a ‘cooling-off’ period. In the initial 
experimental setting, the observed experimental effect was substantially 
reduced recidivism for units receiving the ‘mandatory arrest’ treatment. 
However, when replicated and implemented in other areas, the relationship 
between mandatory arrest and DV recidivism was, in some cases, reversed. It 
has been hypothesised that a key factor influencing this effect was the 
employment status of offenders: in the initial study area, DV offenders 
predominantly held jobs and were shamed by arrest; whilst in certain 
replication areas, offenders were unemployed and not necessarily shamed by 
arrest. Therefore, the effect of offender employment was not adequately 
captured in the initial study, leading to incomplete causal inference. Formally, 
the experimental effect observed in the Minneapolis utos was not consistent 
for utos configurations where the unit moderator variable ‘employment’ took 
on different values to the initial Minneapolis utos. 
 
In silico we suggest the unit construct denotes, much as it does in the real 
world, the characteristics and behaviours of our experimental subjects. Using 
the Cops & Robbers guardianship experiment as an example, we might wish 
to examine the effect that different offending rates have on the experimental 
effect. This is the first candidate moderator variable. Thus, we grant the 
offender agents a new characteristic – lambda. High values of this 
characteristic indicate offenders who are driven to offend more frequently than 
those with low values. By implementing this new parameter, we wish to 
observe whether the experimental effect is consistent, even with different 
types of offender agents.  
 
So, phase 4 of the phased approach would be to determine how this 
moderator variable will be operationalised and what elements of the model 
this will impact upon. In this case, an agent characteristic lambda is created 
and the offender agent decision calculus modified so that when offenders 
encounter a potential victim, the likelihood of them choosing to offend is 
dictated by the value of lambda. If lambda has three potential values, ‘high’, 
‘medium’ and ‘low’, we create three simulations, each with a homogeneous 
population of offending agents that relate to the different levels of lambda. 
Subsequently, the emergent properties of each simulation are examined 
through a series of pure replications and the direction and magnitude of the 
experimental effect observed over all three. If this process produces a 
plausible experimental effect in line with our existing knowledge base, we 
proceed to the next phase. 
 
Phase 5 involves a new simulation model populated with offending agents 
who are heterogeneous with respect to the lambda characteristic. Therefore, 
each level of the ‘offending rate’ construct is present in this model. Again, we 
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run our simulation and examine the magnitude and direction of the 
experimental effect, this time over a heterogeneous group. In this scenario the 
proportion of agents represented by each level of the moderator variable may 
be determined by empirical evidence if so desired. 
 
There are several advantages to completing the tasks in phase 4 prior to 
implementing a heterogeneous model described in phase 5. First, aggregation 
effects like Simpson’s Paradox are avoided. Experimental effect in sub-
populations may vary dramatically, only to be diluted in the aggregate. 
Second, the incremental nature of operationalisating a moderator variable 
forces the researcher to be explicit and aids in uncovering errors at as early a 
stage as possible. 
 
Further replications may explore the impact upon the experimental effect of 
both the incorporation of other potentially viable units or the alteration of 
existing ones, initially in homogeneous groups (phase 4) and subsequently 
across heterogeneous ones (phase 5). For example, thus far, lambda values 
for each agent within the population have remained static over the entire 
simulation (i.e., the agent life-course). However, existing theory, experience 
and logic suggest this representation is not reflective of real offender 
characteristics. Therefore, further simulation iterations might introduce 
dynamic representations of lambda that change over the course of a 
simulation. An initial dynamic model may, following a simplistic interpretation 
of the age-crime curve, dictate that all offenders begin with lambda at low; 
then, after a given amount of simulation time, lambda becomes high, later 
declining to medium and then returning to low. Initial phase 4 replications 
would bestow all offender agents with this identical construct, dictating that 
the changes to lambda over time occur for the group as a whole. After 
examining the experimental effect of this configuration, subsequent phase 5 
replications will allow for simulation-time changes in lambda to be localised to 
individual offenders creating a heterogonous population of offenders, all of 
which possess their own dynamic representation of lambda. Eventually, 
replications may develop this construct further by allowing lambda to 
represent a typology of life-course trajectories (Nagin et al., 1995). 
 
 
Criterion 3: Generalising about experimental treatments (developing 

utos → uTos 

 
The third criterion is concerned with moving from inferences on homogeneous 
experimental treatments, such as specific crime prevention interventions, to 
inferences on a suite of treatments aimed at producing the desired 
experimental effect. As previously discussed, the authors consider such 
interventions to be special cases of theory testing, in that they are informed by 
policy (which is in effect a theory about some aspect of society) and attempt 
to manipulate some cause (albeit imperfectly compared to controlled 
experiments) to generate a desired effect.  
 
Therefore, in generative simulation experimentation we suggest the treatment 
should delineate the mechanisms around which the current experimental aim 
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is aligned. In our Cops & Robbers example, our experimental aim is to study 
routine activity theory, and in particular, the guardianship mechanism it 
presents. Therefore, the treatment within our current experiment denotes the 
configuration of the guardianship mechanism within the simulation, its 
associated agent parameters and the rules which dictate how and which 
agents employ it. In addition, it should also be noted that any outcome 
measures should be based around the requirement for adequate 
measurement and understanding of the treatment mechanism being studied. 
This requirement is discussed further in criterion 4. 
 
The initial model grants all law enforcement agents the absolute capability of 
guardianship. Drawing further from routine activity theory, our initial replication 
model may introduce a moderator variable which represents the capability of 
such guardianship. Again, we might initially delineate our new variable 
capability into three categories: high, medium and low; altering the respective 
agent calculus accordingly so that when encountered, the likelihood of an 
individual providing adequate guardianship to prevent a crime is dictated by 
their capability. Phase 4 will run simulation models, each with homogeneous 
populations at each level of capability, again observing the experimental 
effect. Phase 5 will with run simulation models with heterogeneous 
populations of guardians. 
 
Moving further towards a more plausible representation of guardianship as 
defined by routine activity theory, further model iterations might introduce and 
examine the effect of other non-enforcement agents acting as guardians. 
Additionally, we may establish a sphere of influence around each guardian 
agent within which guardianship is provided, allowing guardians to prevent 
offences not only at their exact location, but also within their close vicinity. 
Initial (phase 4) experiments will allow for the scrutiny of such mechanisms in 
simplistic monocultures, where the experimental effect is more transparent 
and easier to decompose. Subsequent (phase 5) replications could 
incorporate and examine the effect heterogeneity of both capability and 
guardianship effect size has within our population of potential guardians, and, 
more generally, on the observed experimental effect9.  
 
This criterion strives to probe whether the initial treatment t is a valid 
representative of the construct treatment T. It seeks to determine whether the 
observed experimental result was generated by the treatment construct or 
other facets of t which are not a direct consequence of the treatment 
construct. For example Braga et al (1999) describe a randomised controlled 
trial where 12 pairs of violent crime hot spots are used to test the efficacy of 
problem-oriented policing. The question here is whether the observed 
experimental effect (reduced crime in the treatment areas with no 
displacement) was the result of the stated treatment construct 'problem-
oriented policing' or was it, say, a Hawthorne effect induced by elevated 
agency attention and investment? Replications that implement different 
versions of the treatment construct help answer this question. 
 
Criterion 4: Generalising about experimental outcomes (developing utos 
→ utOs) 
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When performing traditional experiments, the investigator needs to identify the 
most appropriate outcome measure that will capture the experimental effect. 
This is made all the more difficult as measurement imprecision can cast 
doubts on the validity of experimental results. The common remedy is to 
identify multiple outcome measures in order to avoid relying too much on a 
single measure. For example, offending can be measured through self-report 
surveys, police arrests, court conviction or probation data. As we have 
previously discussed, the selection of varying outcome measures can lead to 
varying inferences about experimental effect. Faggiano et al. (2005) 
conducted a systematic review of education-based programmes to prevent 
drug consumption. They described three basic intervention types: skill-based 
(refusal skills, safety skills); knowledge-based (information about the 
consequences of drug abuse); and affective-oriented (self-esteem, motivation, 
personal development). When evaluated on the primary outcome measure of 
increased skills, all programmes were shown to be effective at increasing 
participant skills. However, when the outcome measure was changed to drug 
use, only skills training programmes showed an impact.  
 
Greater confidence can be afforded inferences drawn in circumstances when 
multiple outcome measures produce similar findings, as the particular bias 
evident in each measure does not seem to be large enough to change the 
results in the aggregate. If all measures align in a similar fashion, we can be 
more confident about the generality of any causal inference made. However, 
in simulation experimentation, the investigator is provided a great advantage 
over the traditional experimenter, as he is given the ability to engineer and 
specify any number of outcome measures, which provide absolute 
measurement and can be positioned at a wide variety of locations and levels 
of granularity within a simulation. For example, we might record every 
offender agent’s decision-making process individually, down to currently 
perceived risks and rewards, whilst also recording the overall number of 
crimes committed within an area by both an individual and the entire offending 
population.  
 
A further advantage provided by ubiquitous measurement that should be 
exploited is its inherent temporality. Traditional experiments can often, for 
understandable reasons, only implement a limited number of measurement 
points from which to draw inferences throughout the implementation of some 
mechanism. Simulation, on the other hand, allows for continual monitoring of 
all selected outcome measures. Further, if lack of sufficient measurement 
emerges as an issue, an in silico experiment can easily be remedied, as 
additional outcome measures can be incorporated and experiments repeated 
where necessary. 
 
Beyond the required adequate description of the experimental effect, 
simulation also provides a window, as it were, into our theory, allowing us to 
examine the micro, meso and macro ramifications of our theoretical 
assumptions. In doing so, simulation provides a distinct contrast to statistically 
based explanations, which provide limited causal description (i.e., how 
dependent variables relate to independent ones, but nothing in-between). The 
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generative nature of simulation allows for the production of candidate causal 
explanations of crime phenomena. The gathering of candidate causal 
explanations is aided significantly through the examination of the simulations’ 
interim states, which are often invisible in traditional experiments. These 
measures allow us to more closely scrutinise the mechanism under study and, 
where possible, establish the significance of numerous potentially contributory 
elements within the observed experimental effect. For example, in a traditional 
experiment, a reduction in the number of burglaries may be observed after the 
implementation of high-visibility policing strategies. In this scenario, the 
experimenter cannot infallibly infer that the increased number of police officers 
prevented more crimes from occurring, as opposed to other potentially rival 
explanations, since there is no reliable metric for the number of crimes 
prevented. Again, the fundamental problem of causal inference (Holland, 
1986), our inability to observe the counterfactual, bounds the confidence with 
which inferences are drawn. No such limitation exists for simulation models. 
Yet, this wealth of choice afforded to the investigator dictates that if 
assessment of simulations is to be facilitated, he or she should proceed in a 
systematic fashion.  
 
In summary, the role of the in silico investigator, with respect to outcome 
measures, is to record sufficient data to capture the experimental effect and, 
where possible, introduce interim variables which capture the experimental 
effect at the micro, meso and macro level, providing greater insight into how 
candidate causal explanations may operate. Beyond this, as simulation 
models become more and more realistic, at some point, simulation outcomes 
may be contrasted with empirical findings. Empirical crime data are inherently 
flawed and often fraught with a myriad of potential dangers: the dark figure, 
under and over-reporting, deception, recording errors and political bias, to 
name but a few. Therefore, if one is to compare simulation and empirical 
findings, it would seem sensible to create simulation outputs which attempt to 
best capture existing recording practices and their inherent flaws, to allow for 
direct comparison. Issues such as the modelling of this noise in crime data 
are of great importance for models aimed at end users like policy makers. 
Although such techniques are currently underdeveloped, they are, 
unfortunately, beyond the scope of this article. However, the issue is 
discussed in more detail in this volume (see Eck & Liu). 
 
 
Criterion 5: Generalising about experimental settings (developing utos 
→ utoS) 
 
The s of utos denotes the setting; in traditional experimentation this is the 
cultural and physical environment in which an experiment takes place. 
Generalising about experimental settings involves the extrapolation from a 
single setting to many settings, therefore increasing the universal applicability 
of treatments implemented. This extrapolation is all but impossible in practice, 
as factors that operate at the neighbourhood or community level will take on 
only one value per study. Within a single study there are likely to be a host of 
potential moderator variables at play (e.g., deprivation level, social housing, 
inner city/suburban, extent of public transport, etc).  



 19 

 
Tilley (1993) described three replications of the famous Kirkholt burglary 
prevention study. Even though there were a number of differences between 
the Kirkholt utos and the Rep1 utos (described earlier), assume that the only 
one of importance is the setting. Kirkholt is a relatively self-contained housing 
estate, with clearly demarcated borders – in short, ‘[a]nyone entering or 
leaving the estate would know that they were doing so’ (p3). The action area 
in the Rep1 utos was different however. The scheme covered 3.5 times the 
number of properties as Kirkholt, and there were no clear boundaries to the 
geographic extent of the project. The different experimental effects observed 
in the two studies could be caused by some difference in the physical and 
social environments of the two areas. Perhaps Kirkholt worked because all 
local offenders knew the opportunity structure of the entire estate had 
changed; something that may not have been as obvious in the replication 
project10. 
 
For Cops & Robbers, our aim is to progress through a series of incrementally 
complex replications, from our initial simplistic setting to a more robust and 
plausible representation of ‘setting’ in which our agents are situated and our 
treatment acts. The critical aspects of in silico settings can be captured by two 
categories: environmental configuration and population configuration. The 
environmental configuration describes the simulation environment’s 
morphology, such as world size, the presence, or lack thereof, of transport 
networks, zoning, physical barriers etc. The population configuration 
describes those conditions which occur as a result of interactions between 
agent (unit) populations and the environmental configuration; for instance, 
offender, guardian and potential victim densities or spatial distributions.  
 
In the first iteration of Cops & Robbers (utos0), the environmental 
configuration for our initial setting is a uniform size toroidal homogeneous 
world that allows for unconstrained movement in all directions by all agents 
within it. The population configuration describes a world where all agents 
begin the simulation in random locations, and where offender, guardian and 
potential victim population sizes remain static throughout a simulation, thus 
dictating that the aggregate density and distribution of agents remains fixed.  
 
In advancing our simulation we may choose to examine the effect that 
changes to the environmental configuration, which introduce more purposeful 
and realistic agent movement mechanics, might have. Initial phase 4 
experiments following routine activity theory may introduce simplistic zoning 
so that the simulation environment is divided into 3 distinct zones; residential, 
employment and entertainment. Using these three zones, our agents’ decision 
calculus could be modified to allow agents to follow simplistic routines, which 
centre on a number of plausible trips between zone types. Again, in line with 
routine activity theory, phase 5 experiments might introduce individual routine 
activity nodes for each agent.  
 
When manipulating population configurations, initial phase 4 replications may 
investigate the effect of varying the number of, and therefore (where the world 
size remains constant) densities of, offender, guardian and potential victim 
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populations. Again, for simplicity’s sake, we may initially run three simulations, 
the first with low densities of all agents, the second with medium and the third 
high. Phase 5 configurations will allow for differing densities between agent 
groups for each of the three agent sets. This would allow examination of the 
interaction of differing population scales and the experimental effect. 
 
 

Documenting Systematic Replications 
 
If systematic replications are to gain acceptance, investigators should 
consider the potential subsequent replications of their simulation when 
designing and describing the initial model. By being explicit and transparent in 
documenting all model configurations, parameters and constructs, 
investigators can maximise both their own and others’ understanding of the 
model. In doing so, they increase the ability to perform valid and pertinent 
replications which move toward a cumulative goal. The point is that all 
accepted methodologies in science have criteria for reporting results, from 
laboratory research (the American Psychological Association sets out how an 
experiments should be reported) to systematic reviews. 
 
Whilst we have provided a phased model of incremental development and 
examples for each systematic replication criterion, the tasks outlined in 
phases 4 and 5 in Table 2 are described in quite abstract terms. Therefore, 
we now outline a framework for investigators whose aim is to use simulation 
models, and the replication thereof, to move towards models of causal 
inference.   
 

1) The first task of the replicator is to replicate steps 1-3 of the phased 
model (see Table 2) and generate repeatable findings. 

2) The original experimenter should specify the utos configuration 
included in the original simulation. Table 1 provides an example. 

3) In addition, the original researcher should include two other lists of 
variables (which, although not strictly necessary, would assist future 
replications). First, a list of other utos variants not included/tested 
which the researcher believes (through experience, theory or empirical 
evidence) may have some bearing on the causal inference. The 
second list is the set of utos variants presumed to be irrelevant to the 
causal inference.  

4) Future replications should draw on constructs not yet incorporated into 
the simulation, as well as others that might be created and/or informed 
by new research findings. 

5) The researcher should move toward causal inference by either 
determining irrelevancies (those constructs that do not vary the 
experimental effect) or making discriminations (those constructs that do 
vary or limit the experimental effect).  

 
One potential criticism of the approach proposed is that it is unrealistic to 
impose these standards when the main channels of dissemination remain 
remarkably inflexible on matters of word length and style. Our view is that the 
virtues of reproducible research allow effective dissemination of research 
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findings without usurping conventional publication mechanisms and aid in 
technology transfer among colleagues. Reproducible research allows 
consumers of research to reproduce the analysis of studies precisely and 
quickly. In the simplest case, imagine a word processor file that is bundled 
with all the supporting data, algorithmic code and the means to re-run the 
analysis. The description of the research is identical to a standard journal 
article and the supporting files (data and commands) can be accessed 
through macros embedded throughout. Suppose there is a sentence like, ‘No 
statistical differences were observed between the two groups (p > 0.05)’. A 
curious reader could access the commands and data utilised to compute the 
quoted statistic, or any of the figures, or any part of the analysis. Similarly, if 
someone had data in a similar format, they could generate equivalent findings 
to the study by using the same commands used by the original researcher. 
One example of documenting reproducible research is described by Schwab 
et al. (2000). There is no feasible reason why simulation modelling could not 
harness a similar process of dissemination with a view to promoting validation 
through replication and peer scrutiny. A side benefit of that if one knows that 
all the data and code that support the study are available to peers, a great 
deal more care is taken to report and interpret the results objectively. 
 
It is in the spirit of reproducible research that the Unified Modelling Language 
(UML) was originally conceived and developed. Defined by a consortium of 
major IT companies known as the Object Management Group (OMG) 
including IBM, Sun Microsystems and Hewlett Packard the aim of UML is to 
provide software engineers with a general-purpose notation which allows for 
the abstract description of software solutions irrespective of their development 
platform. Focusing around object-orientated software development UML, and 
its most recent incarnation UML 2.0, enables developers to visually depict a 
program's respective objects, their attributes and the relationships between 
them. Thus providing software developers and analysts alike with a birds-eye 
view of a system's structure and function, and in turn increasing both 
understanding and the ease with which software can be reproduced and/or 
modified. 
 
However, like most other developing standards, UML is not without its critics 
some of whom claim it has become increasingly cumbersome and  unwieldy 
in its application due to its growing complexity as more and  more elements 
are added. Furthermore, due to its attempts to be all things to all men UML 
has difficultly in providing sufficient functionality in a number of more 
specialized domains. To this end, researchers have made efforts to extend 
UML in order to more adequately capture the requirements of emerging 
technologies. With respect to subject of this paper there have been several 
efforts to make UML more suited to the depiction of simulations and in 
particular agent-based models (Odell et al. 2000; Cranefield et al. 2001; 
Huget and Odell, 2005) 
 
Recalling the phased approach to increasing complexity set out in Table 2, 
and in particular the second phase which involves the development of 
methods and instruments to ensure accurate and valid means to test 
hypotheses, we suggest that the use of UML in describing simulations, or a 
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suitable extension thereof, may be of considerable importance, allowing for 
faster and more robust transfer of model specifications across research 
teams, thus increasing research productivity. 
 
 

Conclusion 
In this paper we have discussed the potential of simulation methods for the 
social scientist and, more specifically, those interested in synthesising the 
interactions between explanatory variables. We have noted the relative 
scarceness of simulation replication (the methodology through which 
traditional experimental results are often validated), especially within the 
social sciences, a field that has potentially much to gain from the validation of 
in silico experimentation.  
 
Implementing any existing methodology in a novel way within an established 
discipline is likely to split the research population into three groups: those who 
are unaware of or indifferent to the use of the methodology; those who are 
aware, but sceptical about its usefulness; and its proponents, who might be 
somewhat enamoured with the method. The existence of each group is 
necessary, especially the latter, without whom the approach may not have 
diffused across disciplines in the first place. Yet, whatever one’s perspective, 
it is to the mutual benefit of all that new methods are systematically and 
objectively employed with a view to assessing and determining their validity. 
Therefore, to minimise the potential of methodological stagnation, we suggest 
that simulations need to be considered scientifically and their results validated 
with respect to purpose. To this end, we have presented an iterative 
development framework, inspired by traditional experimentation and 
analogous to clinical drug trials, which we hope will aid in the development 
and subsequent validation and verification of models of crime occurrence. 
 
The role of utos can help us to logically and systematically introduce 
moderator variables in order to probe the extent of causal inference. The use 
of a phased model of increasing generalisability allows us to manage the 
incremental introduction of complexity. It serves to do what is impossible in 
the real world, i.e. permitting a single modification of the utos configuration 
each iteration, rather than being subject to the real world frailties of 
implementation failure and measurement error. Further, we promote the 
usage of systematic, explicit and transparent documentation, applying 
principles of reproducible research, in a hope to aid in the scrutiny and 
reproduction of simulations throughout the research community. Ultimately, 
we aim to produce models capable of providing greater insight into causal 
description and, where possible, candidate causal explanations.  
 
It is also important to note that, although we advocate the use of simulation 
models, this is not to the detriment of any existing methodologies. Rather, we 
hope simulation models will provide an additional tool to the researcher 
interested in examining crime. Moreover, the in silico experiment should 
complement the empirical experiment and vice versa. Additionally, the roles 
and configurations of systematic replication techniques presented within this 
paper should only be considered our initial model and are likely to be 
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improved in subsequent treatments of simulation model validation. What is of 
fundamental importance is that, however generative models of crime 
interactions are built, the approach is a systematic and scientific one. The 
authors hope that the methods and metrics presented will evolve to facilitate 
their practical usage amongst those interested in examining the formation of 
crime patterns. While critics may argue with our precise formulation, it at least 
introduces many of the attributes (i.e., transparency, explicitness) of good 
science. The task may seem Herculean judging by the plethora of conditions 
listed that require satisfying, but this merely highlights the scepticism with 
which claims from single simulation studies need to be treated. 
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Table 1: Summary of initial Cops & Robbers in silico experiment to investigate 
Guardianship Mechanism of Routine Activity Theory. 

utos 
Components 

Initial utos Configuration Other Potential utos Configurations 

(These represent a suite of 
potential model iterations; in 
practice, these elements would be 
implemented in an incremental 
fashion.) 
 

 
Units 

Agent Parameters: None 
 
 
Agent Calculus:  
Movement Mechanism (all agents) – 
random  
Offending Mechanism (offenders) – fixed, 
homogeneous agent populations 
 

Agent Parameters: ‘Lambda’ 
(offending rate - high, medium, low) 
 
Agent Calculus: 
Movement Mechanism (all agents) – 
deliberative (routine activities, 
zone/node-based) 
Offending Mechanism (offenders) – 
lambda-based, heterogeneous 
offender populations 

 
Treatment 

Guardianship Mechanism: 
– Limited to law enforcement agents only  
– Provided at guardian’s exact location 
only. 

Guardianship Mechanism: 

– Provided by all agents 
– Provided in proximity to agent 
locations  
– Varying degrees of guardianship 
capability 

 
Outcome 
 

 
For each potential victim: Number of 
victimisations and time occurred for each. 
 
For each offender: Number of crimes 
committed and time for each. 
 
For each law enforcement agent: 
Number of prevented crimes and time for 
each. 
 
Aggregate measures for each population 
of units could be computed. Thus, a crime 
incidence rate, offending rate and a 
prevention rate could be produced and 
examined. These could be aggregated to 
whatever level of granularity is required. 
 

For each potential victim: Number of 
victimisations and time occurred for 
each. 
 
For each offender: Number of crimes 
committed and time for each. 
 
For each law enforcement agent: 
Number of prevented crimes and time 
for each. 
 
Aggregate measures for each 
population of units could be computed. 
Thus, a crime incidence rate, offending 
rate and a prevention rate could be 
produced and examined. These could 
be aggregated to whatever level of 
granularity is required. 

 
Setting 

 
Environmental Configuration:  
Homogeneous, static-size, torroidal, no 
backcloth  
 
Population Configuration: 
Agents begin at random locations.  
Static agent population sizes.  
 

Environmental Configuration:  
Heterogenous, Zoning, Physical 
Barriers, Transport Network  
 
Population Configuration: 
Non-uniform agent distributions & 
densities.  
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Table 2: Phased studies of increasing complexity for real world and in silico experimentation 
Phase Real World Experimentation In silico Experimentation Validation Stage 

1 
Review existing theoretical and applied research to 
identify a testable hypothesis. 
 

Review existing theoretical and applied research to 
identify a testable hypothesis. 

Initial simulation 
or single study 

2 

Develop methods and instruments to ensure 
accurate and valid procedures to test hypothesis; 
e.g. surveys, statistical models and data or 
laboratory procedure. 

Develop attributes of the model to ensure accurate and 
valid means to test hypothesis; e.g., the formalism that 
operationalises the constructs. From a computer science 
perspective, this involves simulation component 
verification (are we building the model correctly?) and 
validation (are we building the correct model?) Use UML 
to document this phase. 

3 

Conduct controlled trial under ideal/abstract 
conditions. This might entail sampling healthy young 
males for drug trials (homogeneous experimental 
units) or first year psychology students (abstract but 
controlled application). 

Conduct simulation under ideal conditions. That is an 
initial simulation (a naive model) with homogeneous units 
of analysis within a monoculture environment with a low 
level of complexity.  

Pure 
replications 

4 

Determine if hypothesis operates in particular sub-
populations of interest that are similar to real world 
application. By purposively sampling different 
experimental units, some picture of the consistency 
of the causal relationship is obtained. 

Determine if hypothesis operates in more complex 
scenarios. Introduce complexity incrementally. Moderator 
variables are operationalised by allowing variation of 
experimental unit attributes (or settings or treatments) 
and modify decision calculus accordingly. Each level of 
moderator variable generates a distinct simulation 
populated with fixed values for the moderator variable in 
question. 
 

Practical 
replications or 
iterations 

5 
Large-scale study aimed at entire communities 
(maximum generalisability) in order to identify 
aggregate impact.  

Implement a combined simulation where all values of 
moderator variable are present. Observe the sign and 
direction of the causal relationship in aggregate.  
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Figure 1: Representation of how the phased model is used in conjunction with utos notation.  
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1
  For the purposes of this article, we define a simulation model as a system defined by rules, some of which relate to interactions between components 

of the system. Allowing the system to ‘run’ the application of these rules generates output. All aspects of the system are defined and directly programmed by 
the researcher. 
2
  These comments apply equally to any discipline which acts as a ‘service’ discipline to others. Obvious examples include applied statistics and 

mathematics. We do not believe all or even most computer scientists (or statisticians and mathematicians) are rapacious mercenaries obsessed with 
methodological gymnastics for the sake of it. 
3
 Computer scientists use convergence and sensitivity test at this stage as well. Our focus in this article is primarily on the social scientists who we feel 

have the most to gain from testing the validity of models that focus on social phenomena. 
4
  Freely available from http://ccl.northwestern.edu/netlogo/ 

5
  Ibid 

6
  For similar reasons to Shadish et al. (2002) we represent Cronbach’s notation in a modified form, which we believe makes it more interpretable. 

7
  This list is by no means exhaustive and serves only to aid in the presentation of the case studies. 

8
  See www.campbellcollaboration.org. 

9  Later simulations may also recreate treatments such as crime prevention interventions in a more analogous way to traditional uses of Treatment 

within utos. Importantly though, such intervention simulation relies heavily upon a sufficiently validated and verified base model of all the interactions 
associated with crime and its key elements.  Therefore, the initial models we describe only strive towards theoretically, rather than operationally, relevant 
applications.  
10

  Of course, in reality there were other differences between the two studies so it is unlikely that purely setting differences were responsible for the 
difference. 

http://ccl.northwestern.edu/netlogo/

