
SPECTRAL ESTIMATION USING HIGHER-LAG AUTOCORRELATION
COEFFICIENTS WITH APPLICATIONS TO SPEECH RECOGNITION

Benjamin J. Shannon and Kuldip K. Paliwal

School of Microelectronic Engineering
Griffith University, Brisbane, QLD 4111, Australia

Ben.Shannon@student.griffith.edu.au, K.Paliwal@griffith.edu.au

ABSTRACT

In this paper, we introduce a noise robust spectral
estimation technique for speech signals that is derived
from a windowed one-sided higher-lag autocorrelation
sequence. We also introduce a new high dynamic range
window design method, and utilise both techniques in
a modified Mel Frequency Cepstral Coefficient (MFCC)
algorithm to produce noise robust speech recognition
features. We call the new features Autocorrelation Mel
Frequency Cepstral Coefficients (AMFCCs). We compare
the recognition performance of AMFCCs to MFCCs for
a range of stationary and non-stationary noises on the
Aurora II database. We show that the AMFCC features
perform as well as MFCCs in clean conditions and have
higher noise robustness in noisy conditions.

1. INTRODUCTION

The potential for computing noise robust speech recog-
nition features from the autocorrelation domain has at-
tracted a lot of attention. A number of speech recognition
feature extraction techniques have been proposed in the
literature based on autocorrelation domain processing.
The first technique proposed in this area was based on
the use of High-Order Yule-Walker Equations [1], where
the autocorrelation coefficients that are involved in the
equation set exclude the zero-lag coefficient. Other sim-
ilar methods have been used that either avoid the zero-
lag coefficient [1] [2] [3], or reduce the contribution from
the first few coefficients [4] [5]. All of these meth-
ods are based on linear prediction (LP) processing and
provide some robustness to noise, but their recognition
performance for clean speech is much worse than the
unmodified or conventional LP approach [5].

A potential source of error in using LP methods to
estimate the power spectrum of a varying SNR signal is
highlighted by Kay [6]. Kay showed that the model order
is not only dependent on the AR process, but also on the
prevailing SNR condition. Therefore, in this paper, we do
not use an LP based method to process the autocorrelation
sequence. Instead, we compute the magnitude spectrum
of the one-sided higher-lag autocorrelation sequence us-
ing the Fourier transform, process it through a Mel filter
bank and parameterise it in terms of MFCCs. Since
the proposed method combines autocorrelation domain

processing with Mel filter bank analysis, we call the re-
sulting MFCCs, Autocorrelation Mel Frequency Cepstral
Coefficients (AMFCCs).

Speech recognition feature extraction algorithms are
typically designed assuming stationary broadband (usu-
ally white) noise. In this work, we consider stationary
noise signal as well as non-stationary noises, such as
emergency vehicle sirens and chirp signals. We show
that higher-lag autocorrelation processing is robust against
these types of noise disturbances.

The paper organisation is as follows. In section 2 we
discuss some properties of the autocorrelation sequence
in relation to speech and noise signals showing examples.
We then describe, in section 3, the newly proposed higher-
lag autocorrelation spectral estimation technique and test
its effectiveness for noise robust speech feature extraction
using the Aurora II database in section 4. This is then
followed by conclusions in section 5.

2. PROPERTIES OF AUTOCORRELATION
SEQUENCES

In this section, we demonstrate briefly how the smooth
spectral envelope information of a voiced speech signal is
distributed within its short-time autocorrelation sequence.
We then discuss the autocorrelation distribution for noise
signals giving an example of a non-stationary noise.

2.1. Speech Signals

In automatic speech recognition, we model the human
speech production system using a simple source-system
model. The model consists of a variable response filter,
excited by either a white noise source or a periodic
pulse train source. We model unvoiced speech as the
output of the variable response filter excited by the white
noise source and voiced speech as the output of the
variable response filter excited by the periodic pulse train.
For speech recognition, we are typically interested in
extracting the magnitude response of the variable response
filter over time. We assume that this carries the speech
information sufficiently for accurate recognition.

Most of the popular speech recognition features, such
as LPCCs and MFCCs, are derived from an estimate of
the smooth power spectrum of the speech signal. We can
consider the smooth power spectrum in both of these cases
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Fig. 1. Decomposition of a 32 ms voiced speech frame, containing an /r/ sound. (a) The original logarithmic power
spectrum. (b) Autocorrelation sequence associated with the spectrum in (a). (c) The smooth logarithmic spectral envelope
computed by retaining the first 12 cepstral coefficients. (d) The autocorrelation sequence associated with the spectrum
shown in (c). (e) The logarithmic excitation spectrum. (f) Autocorrelation sequence associated with the logarithmic
spectrum shown in (e).

as being computed from the autocorrelation sequence.
In the LPCC algorithm, the smooth spectral estimate is
computed from the first few autocorrelation coefficients,
and in the MFCC algorithm, the smooth spectral estimate
is computed using the whole autocorrelation sequence. A
depiction of how the smooth spectral envelope informa-
tion is distributed in the autocorrelation sequence is shown
in Fig.1.

The logarithmic power spectrum of an /r/ sound is
shown in Fig.1(a). This shows the harmonic structure typ-
ical of voiced speech, along with the information-bearing
envelope. Plot (b) shows the autocorrelation sequence
associated with the spectrum in (a). By using cepstral
processing, we decomposed the spectrum in (a) into the
smooth spectrum in (c) and the excitation spectrum shown
in (e). The corresponding autocorrelation sequences of
these two spectrums are shown in (d) and (f), respectively.

Figure 1(d) shows that the smooth power spectrum
information is contained in a small number of autocor-
relation coefficients. The full autocorrelation sequence
shown in (b) can be considered as the convolution of the
autocorrelation sequences in (d) and (f). This process
demonstrates that the smooth power spectrum envelope
information is spread throughout the whole autocorrela-
tion sequence of the original speech signal frame. There-
fore, we should be free to estimate the smooth spectral
envelope using any region of the autocorrelation sequence.

2.2. Noise Signals

The autocorrelation sequences of noise signals vary much
more than the autocorrelation sequences of speech signals.
This variation can be attributed to the larger range of
production mechanisms for noise signals compared to the

simple production model applicable to speech signals.
Some general comments about autocorrelation sequences
are made below.

All autocorrelation sequences have the largest ab-
solute value at the zero lag location. This coefficient
represents the energy of the signal. The shape of the
autocorrelation envelope moving away from the zero lag
location is directly related to the noise source. Generally,
the envelope decays when moving away from the zero lag
coefficient. Some of the decay can be attributed to the
biased autocorrelation estimation algorithm, but generally,
the decay is faster than the algorithm imposed rate. As
an example of non-stationary noise, an emergency vehicle
siren and its analysis is shown in Fig.2. In this figure, plot
(a) shows the spectrogram for a two second segment of the
noise. Plots (b), (c) and (d) show the logarithmic power
spectrum at times 0.5, 1.0 and 1.5 seconds respectively.
Plots (e), (f) and (g) show the autocorrelation sequence
associated with the spectrums in plots (b), (c) and (d)
respectively.

When uncorrelated noise is added to a speech signal,
the combination in the autocorrelation domain can be
described as follows.

• The zero-lag coefficient is corrupted.

• The lower-lag coefficients are generally more cor-
rupted than the higher-lag coefficients.

If the spectral envelope information is sufficiently
contained in the higher-lag autocorrelation coefficients,
a more noise robust spectral estimate should result if
the more corrupt lower-lag coefficients are de-emphasised
during spectral estimation. The lower-lag coefficients can
be significantly attenuated by using a tapered window
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Fig. 2. Analysis of siren noise signal using 32 ms frames.
(a) Spectrogram of a 2 second sample of siren noise.
(b)(c)(d) The logarithmic power spectrum of frames taken
at 0.5, 1.0 and 1.5 seconds respectively. (e)(f)(g) The
autocorrelation sequences corresponding to the spectrums
in (b)(c)(d) respectively.

function. This also has the added effect of attenuating
the very high-lag coefficients, which have high estimation
variance.

3. SPECTRAL ESTIMATION FROM
HIGHER-LAG AUTOCORRELATION

Based on the previously discussed motivation, we com-
pute a spectral estimate as the magnitude spectrum of the
windowed one-sided autocorrelation sequence. A new
speech recognition feature is then computed by substitut-
ing the new spectral estimate for the power spectrum in
the MFCC algorithm.

To compute the new spectral estimate from the one-
sided autocorrelation sequence, we first designed a suit-
able high dynamic range window function. Since the
dynamic range of the magnitude spectrum of the autocor-
relation sequence is the same as the dynamic range of the
power spectrum of the time domain signal, we need to use
a window function on the autocorrelation sequence that
has twice the dynamic range of the window function that
is normally used on the time domain signal. We devised a
novel window function design method for this application
as an alternative to more complex general design methods
such as Kaiser or Dolph-Chebyshev.

A window function that has twice the dynamic range
of a seed window function can be computed as the
autocorrelation of the seed window. This technique also
results in a side-lobe profile of the new window that
matches the side-lobe profile of the seed window function.
In the following experiments, the window function used
on the autocorrelation sequence was computed as the
autocorrelation of a Hamming window.

4. RECOGNITION EXPERIMENTS

In these experiments, we compared the noise robustness of
the new speech recognition feature with MFCCs. For the
evaluation, we used the Aurora II database, recognition
scripts and the HTK software. We used a range of sta-
tionary and non-stationary noise samples, which included
Gaussian white noise, car noise, siren noise (as featured
in Fig.2), and an artificial chirp noise, which repeatedly
swept from 0 to 4 kHz in 32 ms.

Recognition accuracy curves for the four noise cases
are shown in Fig.3. These results show that the AMFCC
features performed as well as the MFCC features in clean
conditions. Secondly, these results show that the AMFCC
features are more noise robust than the MFCC features in
all the tested cases. The extent of the robustness improve-
ment shown by the AMFCCs appears to be dependent on
the type of noise. The least improvement was displayed
in the car noise case, and the most improvement was
displayed in the artificial chirp noise case.

The artificial chirp noise case shows a dramatic im-
provement in noise robustness for AMFCCs over MFCCs.
This type of signal produces large magnitude lower-
lag autocorrelation coefficients and very low magnitude
higher-lag coefficients over a short analysis window. This
explains the large improvement for AMFCCs for these
types of noise.

5. CONCLUSIONS

In this paper, we have introduced a new noise robust
spectral estimation technique for speech signals. This
method was computed as the magnitude spectrum of the
windowed one-sided higher-lag autocorrelation sequence.

We also introduced a new high dynamic range window
function design approach. This technique is specifically
suited to designing windows for the autocorrelation do-
main. This method involved computing the high dynamic
range window as the autocorrelation of a seed window
function used in the time domain.

The new spectral estimate was used in the MFCC
algorithm to produce speech recognition features called
AMFCCs. On the Aurora II database, the AMFCC
features gave higher recognition accuracy scores than
MFCCs over a range of SNRs using both stationary and
non-stationary noises.

6. REFERENCES

[1] Y. T. Chan and R. P. Langford, “Spectral estimation
via the high-order yule-walker equations,” IEEE
Trans. on ASSP, vol. ASSP-30, no. 5, pp. 689–698,
Oct. 1982.

[2] K. K. Paliwal, “A noise-compensated long correlation
matching method for ar spectral estimation of noisy
signals,” in Proc. ICASSP, 1986, pp. 1369–1372.

601



−5 0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100
(a) White

SNR (dB)

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

clean

MFCC
AMFCC

−5 0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100
(b) Siren

SNR (dB)

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

clean

MFCC
AMFCC

−5 0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100
(c) Car

SNR (dB)

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

clean

MFCC
AMFCC

−5 0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100
(d) Chirp

SNR (dB)

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

clean

MFCC
AMFCC

Fig. 3. Recognition accuracy results from the Aurora II database for MFCC and AMFCC features. (a) White Gaussian
noise. (b) Emergency vehicle siren noise. (c) Car noise. (d) Artificially generated chirp noise.
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