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Software Engineering and Scale-Free Networks
Lian Wen, R. Geoff Dromey, Member, IEEE, and Diana Kirk

Abstract—Complex-network theory is a new approach in study-
ing different types of large systems in both the physical and the
abstract worlds. In this paper, we have studied two kinds of
network from software engineering: the component dependence
network and the sorting comparison network (SCN). It is found
that they both show the same scale-free property under certain
conditions as complex networks in other fields. These results
suggest that complex-network theory can be a useful approach
to the study of software systems. The special properties of SCNs
provide a more repeatable and deterministic way to study the
evolution and optimization of complex networks. They also suggest
that the closer a sorting algorithm is to the theoretical optimal
limit, the more its SCN is like a scale-free network. This may
also indicate that, to store and retrieve information efficiently, a
concept network might need to be scale-free.

Index Terms—Concept network (CN), scale-free network, soft-
ware engineering, sorting algorithm.

I. INTRODUCTION

N EARLY ALL complex systems, which exist in both the
abstract world (AW) and the physical world (PW) as

described in the information-matter-energy model [28], can be
abstracted as a complex network, which connects a number of
subsystems and components using different types of relations
[4]. Examining the structure and evolution of the underlying
network provides us with a useful way of studying the system
[33]. In recent years, researchers have investigated complex
systems from different domains as complex networks [2], [32].
Networks studied include both those occurring in PW, for
example, neuron activity, cellular metabolisms, protein folding,
and electricity supply networks, and those in AW such as social
networks and the web hyperlink network. Even though they
represent totally different types of systems, they share many
common properties such as power-law degree distribution [2],
small-world property [33], and a high level of clustering [4],
[5], which are classified in a new network model, the scale-
free network [5]. The similarity between different complex
networks inspires the idea that network growth mechanisms
represent some basic natural tendency to create order from
chaos.
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The recent progress in complex-network theory motivates us
to study software systems as complex networks. A software
system can be treated as a network of components connected
by dependence relationships [34]. The importance of relation-
ships are stressed by the object-attribute-relation model [29]
in cognitive informatics (CI) [31], which shows that human
memory and knowledge are represented by connections of
synapses between neurons, rather than by the neurons them-
selves [31]. Network models are also addressed in concept
algebra [30] that describes a general-knowledge framework as
a dynamic and evolvable concept network (CN). Similarly, for
software systems, some high-level functions are realized by
the relationships of low-level components. In this paper, the
term component indicates an abstract form of software or even
hardware entities as in the behavior-tree approach [11]; simi-
larly, the relationship between two components is abstracted as
a dependence relationship. We call this network a component
dependence network (CDN), and it represents a view of the
architecture of a software system.

In our previous research [35], we have studied the degree
distributions of the CDNs of several Java libraries and applica-
tions. We have found that they all show evidence of a power-law
distribution. A similar result has been shown for applications
written in C++ and Smalltalk [7]. This result also provides some
evidence to support our initial conjecture that the evolution
of software systems is like that of other kinds of complex
systems. Not only does this result inspire some philosophical
consideration of software systems but it also has some practical
value. For example, it provides a measure to identify the most
important components in large and complex software systems
[35] based on a webmining technique [16].

In this paper, we have also studied another type of network,
the sorting comparison network (SCN). Sorting algorithms has
been one of the most interesting research topics since the begin-
ning of computer science, with more than 100 different sorting
algorithms invented to date [17]. Sorting is important both
from a theoretical perspective and for the study of information-
intensive applications such as databases [36] and CI [31]. For a
comparison-based sorting algorithm, if we treat each record as
a node and each comparison between two records as a directed
edge between the two nodes (from smaller to larger record), the
sorting process will generate a direct graph or a network, which
is called the SCN. A major contribution of this paper is that,
after comparing the SCNs of five different sorting algorithms,
we have discovered that the closer the comparison number
matches a theoretical lower bound of n log(n), the closer the
SCN matches a scale-free network. This indicates that there
is a possible connection between the optimization of sorting
algorithms and the evolution of a scale-free network, i.e., a
scale-free network may represent some kind of optimization. As
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Fig. 1. Power-law distribution y ∝ x−γ ; x is the number of connections, y is
the number of nodes, and γ is a constant.

for an SCN, which rearranges abstract records so required in-
formation can be retrieved more efficiently, a CN [30] organizes
different concepts into a relation network to form a complex
knowledge system. We conjecture that, for a highly optimized
CN, the topological structure may also be scale-free.

Most real-life large-scale networks, such as a human social
network, the World Wide Web, or power-supply networks, take
months, years, or even decades to evolve. It is very hard to
trace all the details of their evolution history. Furthermore, due
to uncontrollable factors that may affect the evolution of these
networks, they sometimes appear to grow stochastically. These
aspects make it difficult to use such networks as a basis for
studying the evolution of scale-free networks. However, for an
SCN, once the sorting algorithm and the input sequence are
given, the evolution of the SCN is determined. Therefore, the
SCN provides a much more repeatable and precise approach to
the study of scale-free networks.

We have developed tools to test both CDN and SCN; these
tools can be freely downloaded from the Internet [8], [23] and
used to replicate all the results shown in this paper.

The organization of this paper is as follows. In Section II,
we briefly introduce complex-network theory and scale-free
networks. In Section III, we present some evidence to support
the claim that CDNs are scale-free and some practical signif-
icance for this claim. In Section IV, we introduce the SCN
and show the testing results, which specify the relationship
between optimized sorting algorithms and scale-free networks.
Some discussion is provided in Section V, and finally, a brief
conclusion is presented.

II. SCALE-FREE NETWORKS

For many years, networks have been treated mainly as ran-
dom networks [4]. In random networks, edges linking vertices
are assumed to be randomly placed, and the number of edges
attached to each vertex (the degree) has been shown to follow a
normal distribution.

However, the traditional model (random networks) cannot
be used to explain many real large complex networks such as
human social networks. Therefore, a new network model, called
a scale-free network model [5], has been proposed.

The scale-free network model was introduced in the 1990s
[4]. The most important feature of a scale-free network is the
power-law degree distribution (see Fig. 1) on contra to the
normal distribution of a random network. The direct effect of a

power-law distribution is that there are a few nodes, called hubs,
with a much larger number of connections as compared with the
average; it seems that there is no upper limit of the possible
links a hub may have as the size of the network increases
and that is the reason why the property is called scale-free
[5]. A scale-free network usually exhibits the following prop-
erties [4].

1) Power-law degree distribution: The degree distribution
has a long decreasing tail, which follows the power law.

2) Hubs: A few nodes have a much larger number of links
than most other nodes.

3) Small world: The average distance between nodes in
a scale-free network is very small as compared to the
number of nodes in the network.

4) Clustering: The clustering coefficient1 of some scale-
free networks is found to be much larger than that of
a random network with the same number of nodes and
links.

5) Efficiency of spread: In a scale-free network, via the
hubs, information can spread through a network much
more efficiently than through a random network [4].

6) High error tolerance: A scale-free network can tolerate
a much higher error rate than a random network, if the
errors happen in randomly selected nodes or links.

7) Vulnerable to well-organized attacks: Scale-free net-
works are highly tolerant to random errors but may have
weak points: the hubs.

The significance of the scale-free network model is that
many real-world complex networks are discovered to comply
with this model. These networks include cellular metabolisms
[13], chemical-reaction networks, protein regulatory networks
[14], research-collaboration networks, social networks, and
the World Wide Web [5]. The fact that so many different
kinds of systems show strikingly similar topological properties
has spawned interest across many disciplines and has caused
researchers to postulate the existence of some basic organi-
zational principle. A breakthrough in the study of complex
networks may result in significant progress in the research of
many different fields. In this paper, we suggest that the scale-
free network property also exists in software systems. This
implies that the research results relating to complex networks in
other disciplines can also be relevant to software engineering.

III. CDNS

A software system can be treated as a network of compo-
nents connected by certain dependence relationships. Here, the
concept of a component is a high-level functional abstraction.
In Java and other object-oriented systems, we treat a public
class or a public interface as a component. In this section, we
have tested the CDN of eight Java libraries and applications.
All of them show scale-free properties. Combined with other
work on C++ and Smalltalk [7], these results support our initial
conjecture that a CDN is usually a scale-free network.

1In a network, for node i, let ki be the number of its connected nodes, ni

be the link number between those nodes, then Ci = 2 ni/ki(ki − 1). The
clustering coefficient is the average of Ci over all nodes.
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Fig. 2. CDN of Java package java.awt.

Fig. 3. Degree distribution of incoming links of package java.awt.

A. Test Results for Java Applications

We have developed a tool, which can be freely downloaded
from the Internet [8], to retrieve and study the topological
structure of CDNs of Java applications. Eight Java packages,
including five of Sun’s official Java libraries, an open-source
project apache ant [3], and two small Java projects written by
one of the authors of this paper, have been tested. All of them
show positively the characteristics of scale-free networks. A
detailed report of the tests can be found in [35]. In this section,
we only highlight some of our test results.

The CDN of the Java package “java.awt” is shown in Fig. 2,
where a node represents a public class or interface in the
package and an edge represents a dependence relationship
between two nodes. The positions of nodes in the CDN are
calculated using a force-directed algorithm [9]. The size of a
node is determined by the number of connections on that node.

Fig. 3 shows the incoming links degree distribution of the
CDN of “java.awt”. The diagram is shown in linear and loga-
rithmic scales. The x-axis represents the number of incoming
links on a node, and the y-axis represents the number of
nodes. The curved line shows the function of the power-law

distribution y = A × x−γ , where A and γ are constants for a
given distribution.

The highlights of the test are as follows.

1) The standard deviation of the degree distribution is about
three times the size of the average degree. Contrast this
to a normal distribution where the standard deviation is
equal to the mean.

2) The clustering coefficient is about 20 times larger than
p (p is the average degree over the size of the network),
whereas in a random network, the clustering coefficient is
approximately equal to p [2].

3) All the degree distributions, including incoming, outgo-
ing, and total, show long tails that follow a power law.

Because similar results were obtained from all eight pack-
ages tested, we conjecture that the CDN for most Java systems,
independent of the functionality of the systems, are scale-free
networks.

B. Identify Important Classes

Even though this research marks the early stages of the study
of a software system as a complex network, the knowledge that
a CDN is a scale-free network may have some practical value.
We propose that this knowledge may help people to identify
important components (classes) for legacy software systems.

Reverse engineering and software maintenance requires en-
gineers to study the properties of code in an attempt to identify
the key classes [37], the classification of subsystems [18], [26],
and the location of features [12].

The CDN of a large software system may include hundreds
or thousands of nodes, but as a scale-free network, it has only a
small number of highly connected nodes; we propose that those
nodes are more likely to be important components (classes).

A CDN is a directional network, so it can be useful to sepa-
rate the incoming connections from the outgoing connections.
A webmining technique [16] has been applied to obtain a more
sophisticated measure. The idea of the webmining technique is
not only to count the number of connections but also to evaluate
the quality of the connections. In a network, each node has two
associated values: the weight of hub and the weight of authority.
The details of how to calculate these values can be found in
[16]. A class with a high weight of authority means that it could
be an important class because it is referred to by many other
classes with a high weight of hub. A class with a high weight
of hub means that many classes with a high weight of authority
have been referred to by it. A recursive algorithm is applied to
obtain a stable value of the weight of authority and the weight
of hub.

Through our testing, we have discovered that, in the package
of “Java”, which includes more than 1000 classes and inter-
faces, some of most frequently used classes such as “String”,
“Object”, “IOEception”, and “System” are in the list of top five
of the highest weight-of-authority classes, while “Component”,
“Toolkit”, “Window”, “Container”, and “Font” are in the list of
top ten of the highest weigh-of-hub classes. In the package of
“java.awt”, which includes 345 classes and interfaces, “Compo-
nent”, “Toolkit”, “Point”, “Rectangle”, and “Event” are in the
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list of top ten of the highest weight-of-authority classes, while
“Component”, “Toolkit”, “Container”, and “Window” are in the
list of top five of the highest weight-of-hub classes. The results
support the idea that the scale-free property of a CDN helps to
identify some important classes and components (more details
of the testing result can be found in [35]).

In this section, a static approach has been proposed to
identify important components (classes) in a software system.
This approach is based on the assumption that, for a software
system, the CDN is usually a scale-free network and the degree
distribution follows a power-law distribution. This feature im-
plies that a small number of components have a much higher
number of connections and, therefore, have a high weight of
authority or a high weight of hub. This approach is also based
on the assumption that important components do usually have
a high weight of authority or a high weight of hub. The first
assumption has been supported by testing results shown in
Section III-A, and the second assumption has been validated
by a test on package “java” and “java.awt” in this section.

The static approach for identifying important components in
software systems is only one example that demonstrates the
practical usage of the complex-network theory in software en-
gineering. Some other possible practical benefits are suggested
in the conclusion section of this paper.

C. Distributed Software Systems

From our previous study [35] and independent research by
others [7], we argue that the CDNs of software systems are
likely to be scale-free. However, all the tests are based on a
software system running in one location. So far, there is no test
on distributed software systems. In this paper, we will provide
only some thoughts about this issue.

The overall detailed topological structure of distributed soft-
ware systems is more difficult to analyze because software
running in distributed locations could be written in different
software languages, running on different platforms, and de-
signed based on different architecture styles [24]. However, we
believe that similar rules operating for the evolution of other
large complex networks could also apply here. As we know,
hierarchy is a universal structure for building large systems,
that means similar structure could be applied on different
hierarchical levels.

Let us consider social networks. A social network for a
small group of people (e.g., a small club) is usually a complete
network, which means that there is a connection between any
two members in the group. However, as the number of people
increases, a social network of a national or a global level is a
scale-free network [4]. For large-scale social networks, if we
treat a group of people as one node (for example, a country as
one node, a relationship between two countries is a link), the
large network is simplified to a network with a much smaller
number of nodes, and it could become a complete network
again.

Study of social networks suggests that a network’s structure
is related to its size. For a small network, it is likely to be a com-
plete network. However, when the number of nodes increases,
to reduce the complexity, the network tends to be scale-free. To

Fig. 4. Example of an SCN for a sequence of five integers.

explain this phenomenon, consider the two extreme models of
networks. One is a tree, which has the minimum connections
(O(n)), and the other is a complete network, which has the
maximum connections (O(n2)). The advantage of a tree is its
simplicity. At the same time, it is fragile because only one
broken connection is needed to separate a tree into two parts.
Therefore, redundant connections are necessary to strengthen
a network. When the network is small, the difference between
O(n2) and O(n) is not significant, so it is affordable to maintain
a complete network as it provides the maximum flexibility and
strength. However, when the size of a network increases, the
cost to maintain a complete network increases much faster. A
tradeoff is to have a network model in the middle of a tree and
a complete network. A good candidate is a scale-free network
with probably O(n log(n)) connections.

If the evolution of the CDN of a distributed software system
follows the laws that control the evolution of a social network,
we may expect that the CDN of a distributed network is scale-
free as the system is large. If we treat software at one distributed
location as one node and the total number of distributed loca-
tions is small, then the dependence network of the distributed
locations could be a complete network.

IV. SCNS

A. Definitions

For a comparison-based sorting algorithm, the sorting
process is required to compare the key values of the records. Let
us define each record as a node and each comparison between
two records as a directed connection between the two corre-
sponding nodes (the direction is determined by comparison
result). Then, the sorting process will weave a network that is
called an SCN.

For example, consider a sequence of five distinct integers
n1n2n3n4n5 as input data and a sorting algorithm that executes
the following comparisons: n1 < n2, n1 < n5, n2 < n3, n4 <
n1, n4 < n5, n5 < n2, and n5 < n3. The corresponding SCN
is shown in Fig. 4.

In Fig. 4, there is a unique path n3 → n2 → n5 → n1 → n4

that travels in the same direction and visits each node once. This
path indicates the sorted sequence n3 > n2 > n5 > n1 > n4.

For a comparison-based sorting algorithm, the theoretical
lower bound for the number of comparisons in the worst case
is �log(n!)� [17], which approximately equals n log(n), where
n is the number of records in the input sequence. Different
sorting algorithm may result in different average numbers of
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Fig. 5. Number of comparisons required by the five different sorting algo-
rithms and four reference curves. Note: Curves are listed in decreasing order.
Curves (6), (7), and (8) are too close to be distinguishable.

comparisons. In this paper, a sorting algorithm is defined as bet-
ter than another algorithm if the first one requires less average
number of comparisons. A sorting algorithm is optimized if the
average number of comparisons is close to the theoretical lower
bound.

B. Comparisons

We investigated the SCNs of five different sorting algo-
rithms: Bubblesort, Heapsort, Quicksort, Binary Insertion Sort,
and Merge Insertion Sort (details of these sorting algorithms
can be found, e.g., in [17]). Fig. 5 shows the number of com-
parisons required by the five different sorting methods, which is
equivalent to the number of links in the respective SCN. These
numbers were obtained experimentally by averaging, for each
algorithm, the number of comparisons required for ten different
random input sequences. In Fig. 5, the x-axis is the number of
records, and the y-axis is the number of comparisons, which is
shown in logarithmic scale. Fig. 5 also includes four reference
curves for comparison: n, log(n!), n log(n), and n(n − 1)/2.

The curves in Fig. 5 confirm what one expects from the
known theory of sorting methods found in [17]. The number
of comparison in a Binary Insertion Sort and Merge Insertion
Sort matches the theoretical optimum log(n!). Quicksort and
Heapsort are close to n log(n), and Bubblesort requires many
more comparisons (O(n2)). Note that, in this paper, we are
counting only the number of comparisons and ignoring other
operations such as data movement. Otherwise, Quicksort and
Heapsort would rank better than Binary Insertion Sort and
Merge Insertion Sort and are preferred in practice.

Fig. 6 shows example SCNs of the five sorting algorithms;
the size of a node is determined by the number of connections
on that node. The length of the input sequence is 128. The
graphs are layered by a force-directed algorithm [9]. Fig. 6
shows that SCNs of different sorting algorithms have very
different structures. The SCN for Bubblesort is a very dense
graph, with essentially a single cluster. The SCNs for Binary
Insertion Sort and Quicksort show a distinct set of clusters. The
SCNs for Merge Insertion Sort and Heapsort show a structure
with one dense core and sparse outer layers.

In order to evaluate how close the SCNs of the sorting
algorithms match the structure of scale-free networks, we may
study the degree distribution of the SCNs.

Fig. 6. SCNs of the five different sorting algorithms.

Fig. 7. Degree distribution of SCNs from Bubblesort.

Figs. 7–9 show the degree distribution of the SCNs for
the five sorting algorithms. Each diagram was obtained by
averaging 1000 executions of the respective sort on independent
random sequences with the length of 256. The x-axis of each
feature shows the range of the degree found in the SCN, and
the y-axis indicates for each degree value the number of nodes
in the SCN with that degree. The black curves indicated show
an attempted approximation of the power-law distribution by a
function P (k) = ck−γ .

Among the five sorting algorithms, Bubblesort has the largest
number of comparisons. The corresponding degree distribution
(in Fig. 7) has an obvious bell shape that demonstrates the char-
acter of a normal distribution, which is found in a random net-
work. Quicksort and Heapsort perform better than Bubble sort.
Their corresponding SCN degree distribution (in Fig. 8) still
have a bell shape, but the shape has been significantly shifted
leftwards, so they have a long tail that matches the power-law
distribution. The two degree distributions from Quicksort and
Heapsort are very similar with the only obvious difference is
that the tail of Quicksort is much longer than that of Heapsort.

The best sorting algorithms in regard to the number of
comparisons in the five algorithms are Merge Insertion Sort and
Binary Insertion Sort. The average numbers of comparisons of
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Fig. 8. Degree distribution of SCNs from Quicksort and Heapsort.

Fig. 9. Degree distribution of SCNs from Merge Insertion Sorting and Binary
Insertion Sorting Algorithms.

both these algorithms are very close to the theoretical lower
bound, and the corresponding degree distributions (shown in
Fig. 9) are perfect scale-free networks.

The experimental results from Figs. 7–9, in conjunction
with Fig. 5, support our conjecture that the closer the num-
ber of comparisons in a sorting algorithm is to the lower
bound log(n!), the closer the respective SCN is to a scale-free
network.

The test results in this section imply that the scale-free
network structure provides an indication that the corresponding
sorting algorithm is an optimal one in relation to the number
of comparisons. This raises interesting questions about the
possibility that scale-free networks in other disciplines also
represent some kind of optimization.

C. Formalization of the Observations

In the previous section, we have compared the degree dis-
tribution of the SCNs of five different sorting algorithms.
Based on visual judgement, we conclude that the SCN of a
more optimized sorting algorithm is more like a scale-free

TABLE I
STATISTIC ATTRIBUTES OF DIFFERENT NETWORKS

Fig. 10. Simple example distribution.

network. In this section, we will compare some mathematical
attributes of the degree distributions to formalize this obser-
vation. The results are listed in Table I. It includes SCNs of
the five sorting algorithms and also the CDNs of three Java
packages.

For a scale-free network, the interesting part is the long
tail. Here, we define the middle point as the point where the
distribution reaches its maximum value; the distribution after
the middle point is called the tail; the distribution before the
middle point is called the head. In Table I, “n” is the number of
nodes in the network; “l” is the total number of links; “Rt”
is the link number over n log(n)(Rt = l/n log2(n)); “Tnr”
(tail–number ratio) is the ratio of node number in the tail
over the node number in the head; “T lr” (tail-length ratio)
is the ratio of the length of tail over the length of the head;
“Twr” (tail weighted ratio) is ratio of the weighted length. To
help to understand these concepts, consider the simple example
distribution shown in Fig. 10.

In Fig. 10, the middle point is five, and the other parameters
are calculated as follows:

Tnr = (4 + 3 + 2 + 1)/(3 + 5) = 1.25

T lr = (9 − 5)/(5 − 3) = 2

Twr = (4 × 1 + 3 × 2 + 2 × 3 + 1 × 4)/(5 × 1 + 3 × 2)

= 1.82.
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Fig. 11. Typical railway network and a typical airline network.

Because a normal distribution is symmetric, it is obvious
that all three tail ratios should be one for a restrict normal
distribution. For a scale-free network, due to its long tail, we
expect that the tail ratios should be larger than one. From
Table I, we can observe the following phenomena.

1) The tail ratios for Bubblesort are close to one.
2) As an index of the scale-free property, the tail weighted

ratio (Twr) is more consistent to the visual judgment.
3) When the Twr is about 50, the corresponding network

has a very good scale-free property.
4) For the CDNs, the Twrs for both “java.awt” and “java”

package are close to 50, but the Twr for package “ant” is
much lower. A possible reason is that, as a fundamental
Java library, package “java” and package “java.awt” are
better maintained in the structure than normal applica-
tions software.

5) Rt is in the range of 0.52–1.53 for all the tested networks
which are scale-free. It matches our expectation that
the number of connections of a scale-free network is
O(n log(n)).

V. DISCUSSION

A. Optimized Architecture

Without a clearly defined criterion, there is no possible way
to discuss the optimization of a system. A software system,
just like any other kind of organized system, includes two
opposite elements: freedom and restriction or, alternatively,
chaos and order. For a dependence network, there are two
extreme situations: One is with the maximum number of links,
and the other is with the minimum number of links. The first
is actually a complete network, which means that for any two
arbitrary nodes in the network, there is a link between them. The
other form is a tree, which means that between any two nodes
in the network, there is a unique path between them.2 When
the architecture of a software system becomes too complex,
we need to perform some antiregressive activities [19], [20] to
reduce the complexity of the system.

2A path is a sequence of connected links with no node occurring more than
once on it.

In a network, when a message is transferred from one node to
another node, it can go through one of many possible paths. The
number of possible paths can be defined as the freedom within
the network. In a complete network,3 the number of possible
paths reaches the maximum or has the maximum freedom.
In a tree, because there is only one path between any two
nodes, the freedom comes to the minimum. In a network with
less freedom, there are fewer choices for the message passing
between nodes, i.e., it is less ambiguous or easier to manage.
However, too few links may cause some links or nodes to
be overloaded and, in certain cases, may cause some paths to
be too long, eventually affecting the efficiency. An optimized
architecture of a dependence network needs to balance these
two factors.

The association between scale-free networks and optimized
sorting algorithms suggests that, for complex systems, an op-
timized architecture may have the scale-free property that lies
somewhere between a complete network and a tree.

B. Why Some Complex Networks Are Not Scale-Free

Many complex networks from different disciplines are dis-
covered to be scale-free, but there are still large complex
networks that are not scale-free. A good example is railway
networks (Fig. 11).

Fig. 11 shows a typical railway network and a typical airline
network. It is obvious that the structures of these two networks
are very different. The airline network has a few hubs, which
is the most significant feature of a scale-free network, but the
railway network does not have this feature. Consequently, we
may draw the conclusion that large airline networks are likely
to be scale-free networks but large railway networks are not.
Barabási and Bonabeau [5] claim that the U.S. highway system
is a random network but the U.S. airline system is a scale-free
network. This leads to a very interesting question. Both are
transport networks, but why does one show scale-free features
and the other not?

Our answer to this question is that, unlike an airline network,
a railway network is a planar graph [10] built on a 2-D surface.
Checking the railway network in Fig. 11, we discover that, for

3In a network, if for every pair of nodes there is a link between them, this
network is called a complete network.
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a railway network, even though the intersections of links are
not totally forbidden, it is very limited for links to intersect
in the 2-D network. From this, we have a conjecture, if a
network is built on a 2-D surface and the intersection of links
is prohibited, then this network will not be able to evolve
into a scale-free network. It could be difficult to prove this
conjecture in the general case, because there is no general
mathematical model for a scale-free network yet. However,
based on the observation, a common property of scale-free
networks is a high clustering coefficient [4], which means that
small groups of nodes may form complete graphs where every
pair of nodes in a group are directly connected. However,
based on a corollary of Euler’s formula, it is known that a
complete graph of five, which is denoted as K5, cannot be
contained in a planar graph [10]. It is therefore reasonable to
conjecture that a scale-free network cannot be drawn as a planar
graph.

The limitations of a scale-free network on a 2-D surface
inspire us to think about another interesting mathematical prob-
lem: the four-color mapping problem. The original problem is
that, for any map drawn on a 2-D surface, we need at most four
different colors to draw each area and guarantee that there exists
a drawing method so that no two neighboring areas (that means
there is a piece of mutual boundary between the two areas) are
drawn in the same color. This problem can be transferred into a
network problem. Each area can be treated as a node, and a link
between two nodes indicates that the two represented areas are
neighbors. The delicate part is that the network is built on a 2-D
surface, and no two links can be intersected.

If we shift the four-color mapping problem into a 3-D space,
what is the minimum number of colors that is sufficient to
make sure every two connected nodes are drawn with different
colors? The answer is obvious: No fixed number of colors can
guarantee that any connected nodes can be colored differently
for arbitrary networks built in a 3-D space. When the number
of nodes and the number of connections are increased, the
minimum number of colors required will be increased without
any limitation. This result indicates that a 3-D space is fun-
damentally different from a 2-D space in regard to the ability
to host complex networks. The four-color mapping problem
addresses a crucial restriction for the complexity of networks
that can be evolved in a 2-D space. Circuit-layout problems [27]
also reflect a similar limitation in a 2-D space. However, when
we consider a 3-D space, none of the discussed restrictions
exist. Networks of any topological structures can be built in
a 3-D space. Then, we come back to the original question in
this section, why are some large networks such as a railway
network not scale-free? The answer is that scale-free networks
can probably only be developed in a space of more than two
dimensions.

Many large scale-free networks are built in virtual space
where the dimension is hard to determine, such as the human-
relationship networks. However, physical complex networks
such as a brain, which is a network of nerve cells, are built in
a 3-D space. We may conjecture that, due to the limitations for
forming complex networks, objects of certain complexity such
as a life form can only be created (or evolve) in a universe of at
least three dimensions.

C. Three Searching Methods

Large networks evolve by incrementing of their size. During
the growth process, there are two essential operations. The first
is to add new nodes, and the second to create new connections
in the existing network. Here, we discuss only the creation of
new links.

After a node is created, it needs to be connected to other
nodes. The problem is how the new node can search for the
most suitable target node for it to connect with. Generally, there
are three types of searching methods.

1) Random searching: Where the new node tries to connect
to other nodes randomly and there is a chance that it may
find a suitable target. The chance increases if the new
node keeps trying. This method mostly relies on luck, and
may be applied in certain circumstances (perhaps Edison
adopted this methodology when he was trying to find a
suitable material for the thread in a light bulb). Usually, it
is not a good strategy and may take a long time to find a
suitable target and establish a useful connection.

2) External diverted searching: Here, a new node dis-
covers the best possible connection from an external
information provider. This searching method is based on
the assumption that there exists a most suitable target
node for the new node, and this knowledge is known by
someone. If the source node can acquire this knowledge,
it can directly make the best connection. For a small
system designed by an individual, that person has an
overall view of the system and total control over the
system; thus, the designer can be an external information
provider. However, for many real-world large systems,
these preconditions do not apply; the external information
provider either does not exist or is unapproachable. For
example, in a social network, if a person is looking for a
job, there may be a best job opportunity for him but the
problem is how he could find it.

3) Self-adjusting searching: Here, at the beginning, the
new node tries to determine a possible best node based on
its own knowledge and makes a testing connection (first, a
few test connections can be based on a random searching
method). After one or a few testing connections, the new
node will be able to collect some feedback from the
connected nodes. This feedback may help the new node
to narrow the search scope and find better testing nodes.
After trying the new testing nodes and getting new infor-
mation, the new node will eventually find a satisfied target
node and makes a link. This search method is obviously a
practical one and is adopted by most real networks. In
the job-search example, a possible scenario is that the
person may contact his most knowledgeable friend first;
his friend may advise him to try a job agent; the job agent
may recommend a potential employer, etc. Generally, this
searching method is a learning process. The more the new
node learns from the existing connections, the quicker it
is able to reach a suitable target node.

Here, we have discussed three different searching methods
for a new node to discover the most suitable target node. The
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topological structure of the network will be different for the
different searching methods.

If the random searching method is applied, the growing
network may have the structure of a random network. If the
external diverted searching method is applicable, the generated
network will not have redundant connections and it can be in its
simplest form, which is a tree.

In general, if the self-adjust searching method is adopted with
an optimized algorithm to use the information collected from
the testing connections, then we conjecture that the network
will be woven as a scale-free network. The study of the SCNs in
this paper supports this conjecture. A sorting algorithm uses the
self-adjust searching method to construct the SCN. After each
comparison, the new comparison will be selected based on the
previous comparison results. A more efficient sorting algorithm
simply means that it makes better use of the information
collected from the testing connections. An optimized sorting
algorithm can nearly maximize the usage of the information,
and in this situation, we know that the SCNs are scale-free.

For large software systems, since they are usually “grown”
rather than built [6], the information about the best connection
points for new components is usually not clear. The lack of
information leads to more connections than necessary, and the
growing process is similar to a network developed on a self-
adjusting searching method, and it is not surprising that the final
structure is usually a scale-free network.

D. Theoretical and Practical Values

Based on our test results and independent results from other
researchers [7], we conjecture that the CDNs for most software
systems may be scale-free networks. The result may have
following theoretical and practical values.

1) It suggests that the same laws are the foundation for
the evolution of software systems and other complex
networks, such as social and biological networks.

2) Based on the scale-free property, important components
can be identified in large software systems.

3) If the degree distribution of a software system’s CDN
drifts from a power law to normal, it may indicate that
the structure of the system has been overdeveloped, and a
major cleanup or antiregressive [19] process is required.

4) For a scale-free network, random errors may not cause
major crashes of the whole system. This may be why
many large software systems can function properly most
of the time even with software defects. However, if errors
happen at some critical points in a scale-free network, mi-
nor problems can cause the whole system to fail. There-
fore, to secure a large software system, extra precautions
are recommended for the relatively small number of key
components.

The discovery of the relationship between scale-free net-
works and optimized sorting algorithms provides an efficient
approach to study the evolution of large complex networks.

Many real-life large networks such as human social networks
take many years or decades to evolve, and the evolutionary
process is affected by so many uncontrollable factors that the
evolution seems to be stochastic. Therefore, it is very hard

to trace all the details of the whole evolution and do some
experiments that can be easily repeated. However, for an SCN,
once the sorting algorithm and the input sequence are given,
the evolution and the final structure of the SCN is determined.
Therefore, an SCN provides a more repeatable approach in
studying the nature of scale-free networks.

In CI, a CN shows how natural intelligence [31] stores and
retrieves knowledge. Besides the hierarchical, dynamic, and
evolvable nature [30] of the structure of a CN, the topological
details of a CN are still unknown. Because of the similarity
between a CN and an SCN (both of them are networks that
arrange records in a form so that the required information can
be retrieved efficiently), we conjecture that a CN could also be
a scale-free network.

VI. CONCLUSION

In this paper, we have studied the topological structures of
eight Java packages’ CDNs and five different sorting algo-
rithms’ SCNs in regard to a new network model, the scale-free
network [5]. Through this paper, we have made two discoveries.

The first discovery is that all the Java packages’ CDNs
clearly show scale-free properties. The second discovery is
the relationship between scale-free networks and optimized
sorting algorithms. These discoveries are interesting, because
they show the similarity of the structures of networks from
different domains.

Parallel studies between different disciplines frequently in-
spire new ideas. In recent years, people have started to research
the commonalities between software and biological evolution
[25], the similarity between a virtual society and real society
[1]. A number of interesting discoveries have been made. The
similarity between the topological structure of a CDN, an SCN,
and other types of complex networks implies that the laws,
which work behind the evolution of software systems, could
be the same as those working behind the evolution of other
complex systems such as human society and biological systems.
Continuing studies may reveal more commonalities among the
structure and evolution of those different complex systems and,
therefore, benefit complex system theory in general.
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