
 
 

1 

  

 

Dissipation and the Relaxation to Equilibrium 

 

Denis J. Evans,1 Debra J. Searles2 and Stephen R. Williams1 

 

1 Research School of Chemistry, Australian National University, Canberra, ACT 0200, 

Australia 

2  Queensland Micro- and Nanotechnology Centre and School of Biomolecular and Physical 

Sciences, Griffith University, Brisbane, Qld 4111 Australia 

 

Abstract 

 Using the recently derived Dissipation Theorem and a corollary of the Transient 

Fluctuation Theorem (TFT), namely the Second Law Inequality, we derive the unique time 

independent, equilibrium phase space distribution function for an ergodic Hamiltonian system 

in contact with a remote heat bath. We prove under very general conditions that any deviation 

from this equilibrium distribution breaks the time independence of the distribution. Provided 

temporal correlations decay, we show that any nonequilibrium distribution that is an even 

function of the momenta, eventually relaxes (not necessarily monotonically) to the equilibrium 

distribution.  Finally we prove that the negative logarithm of the microscopic partition 

function is equal to the thermodynamic Helmholtz free energy divided by the thermodynamic 

temperature and Boltzmann’s constant.  Our results complement and extend the findings of 

modern ergodic theory and show the importance of dissipation in the process of relaxation 

towards equilibrium.
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 The foundations of statistical mechanics are still not completely satisfactory.  

Textbook derivations of the canonical phase space distribution functions lag a long way 

behind modern ergodic theory but their derivations fall into two basic categories.  The first 

approach [1-3] is to propose a microscopic definition for the entropy and then to show that the 

standard canonical distribution function can be obtained by maximising the entropy subject to 

the constraints that the distribution function should be normalized and that the average energy 

is constant.  The choice of the second constraint is completely subjective due to the fact that at 

equilibrium, the average of any phase function is fixed.  This “derivation” is therefore flawed. 

 The second approach begins with Boltzmann’s postulate of equal a priori probability 

in phase space for the microcanonical ensemble [2-5] and then derives an expression for the 

most probable distribution of states in a small subsystem within a much larger microcanonical 

system.  A variation on this approach is to simply postulate a microscopic expression for the 

Helmholtz free energy [3] via the partition function. 

 The relaxation of systems to equilibrium is also fraught with difficulties.  The first 

reasonably general approach to this problem is summarized in the Boltzmann H-theorem.  

Beginning with the definition of the H-function, Boltzmann proved that the Boltzmann 

equation for the time evolution of the single particle probability density in an ideal gas, 

implies a monotonic decrease in the H-function [2, 4, 6] – see the review by Lebowitz [7] for a 

modern discussion of Boltzmann’s ideas.  However, there are at least two problems with 

Boltzmann’s treatment.  Firstly the Boltzmann equation is only valid for an ideal gas.  

Secondly and more problematically, unlike Newton’s equations the Boltzmann equation itself 

is not time reversal symmetric.  Much recent work on relaxation to equilibrium has been in the 

context of relating large deviations to relaxation phenomena and some links with fluctuation 

theorems have been discussed [8]. 
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 The early 1930’s saw significant progress in ergodic theory with the proof by 

Birkhoff of the Individual Ergodic Theorem (see [9] for a discussion).  Then in 1968 Arnold 

and Avez [10] showed that if dynamical systems are mixing then correlation functions of two 

zero mean variables vanish at long times, and furthermore if a dynamical system is ergodic 

and mixing then in the long time limit the system relaxes to a unique equilibrium state.  In 

1970 Sinai proved ergodicity for a number of different hard disc and hard sphere systems [9].  

He also proved that for these systems the equilibrium state is the usual microcanonical 

distribution. However it must be said that the ergodic theory of dynamical systems is highly 

technical and thus these results have largely been restricted to the mathematical physics 

community.  To this day very few dynamical systems have been proved to be mixing and 

ergodic. 

 In the present paper we employ a number of new relatively non-technical but exact 

results that provide new insight into the relaxation to equilibrium.  The Transient Fluctuation 

Theorem (TFT) of Evans and Searles [11, 12] has been derived and its predictions confirmed 

in laboratory experiments [13].  It is valid for arbitrary densities.  Most importantly it can be 

derived using time reversible microscopic dynamics.  The TFT is closely related to a number 

of Fluctuation Relations [14-16] however only the TFT is suited for studying relaxation to 

equilibrium from a nonequilibrium ensemble. 

 The TFT is remarkable in that it applies to nonequilibrium systems far from 

equilibrium.  It provides a generalized form of the 2nd Law of Thermodynamics that applies 

to small systems observed for short periods of time [11,12].  The TFT gave the first rigorous 

explanation of how irreversible macroscopic behaviour arises from time reversible 

deterministic dynamics and therefore resolves the long-standing Loschmidt paradox [6].  More 

recently it has been shown that the dissipation function that is the argument of the TFT is also 
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the argument of transient time correlation functions whose time integrals give exact 

expressions for the linear and nonlinear response [17] of many particle systems.  

 In the present paper we show how the dissipation function, the TFT and its corollary 

the Second Law Inequality [18] can be used to resolve certain issues surrounding the 

relaxation to equilibrium in classical systems. We show that the relaxation of ergodic systems 

to equilibrium need not be a monotonic process.  In spite of this, the relaxation to equilibrium 

will on average always occur in ergodic systems with finite correlation times. 

 Consider a classical system of N interacting particles in a volume V.  The 

microscopic state of the system is represented by a phase space vector of the coordinates and 

momenta of all the particles, {q
1
,q

2
,..q

N
,p

1
,..p

N
} ! (q,p) ! " where q

i
,p

i
 are the position and 

momentum of particle i.  Initially (at t = 0), the microstates of the system are distributed 

according to a normalized probability distribution function f (!,0) .  To apply our results to 

realistic systems, we separate the N particle system into a system of interest and a wall region 

containing N
W

 particles.  Within the wall a subset of N
th

, particles is subject to a fictitious 

thermostat.  The thermostat employs a switch, S
i
, which controls how many and which 

particles are thermostatted, S
i
= 0; 1! i ! (N " N

th
) , S

i
= 1;(N ! N

th
+1) " i " N ,N

th
" N

W
.  

We define the thermostat kinetic energy as 

 

 Kth ! Si
p
2

i

2mii=1

N

" , (1) 

 
and write the equations of motion for the composite N-particle system as 
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where F
i
(q) = !"#(q) / "q

i
 is the interatomic force on particle i, !(q)  is the interparticle 

potential energy, !S
i
"p

i
 is a deterministic time reversible Nosé-Hoover thermostat [19] used 

to add or remove heat from the particles in the reservoir region through introduction of an 

extra degree of freedom described by α, T
th

is the target parameter that controls the time 

averaged kinetic energy of the thermostatted particles, dC is the Cartesian dimension of the 

system and τ is the time constant for the Nosé-Hoover thermostat.  The force 

!
th
=
1

N
th

S
i
F
ii=1

N

"  ensures that the macroscopic momentum of the thermostatted particles is a 

constant of the motion, which we set to zero.  Note that the choice of thermostat is reasonably 

arbitrary, e.g. we could use some other choice of time reversible deterministic thermostat, such 

as one obtained by use of Gauss’ Principle of Least Constraint [19] to fix K
th

, and arrive at 

essentially the same results.  In order to simplify the notation we introduce an extended phase 

space vector 
 
!
*
! (!," )  and from here on represent this implicitly using ! .  In the absence of 

the thermostatting terms the (Newtonian) equations of motion preserve the phase space 

volume, 
 
! " (# #$)i !$ = 0 : a condition known as the adiabatic incompressibility of phase 

space, or AIΓ   [14].  The equations of motion for the particles in the system of interest are 

quite natural.  The equations of motion for the thermostatted particles are supplemented with 

unnatural thermostat and force terms.  Equations (2) are time reversible and heat can be either 

absorbed or given out by the thermostat.  Similar constructions have been applied in various 
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studies (see, for example, [16, 20]).  Of course, if S
i
= 1  for all i, we obtain a homogeneously 

thermostatted system that is often studied [19]. 

 The derivation of the Evans-Searles TFT [11,12] considers the response of a system 

that is initially described by some phase space distribution.  The initial distribution is not 

necessarily at equilibrium however we assume it is an even function of the momenta.  We 

write the initial distribution as 

 

 f (!,0) =
exp["F(!)]

d!*

# exp["F(!)]
, (3) 

 

where F(!)  is a single valued real function which is even in the momenta.  The TFT states 

that provided the system satisfies the condition of ergodic consistency [11], the time averaged 

dissipation function !
t
("(0)) , defined as 

 

 

ds !("(s)
0

t

# ) $ ln
f ("(0),0)
f ("(t),0)

%
&'

(
)*
+ ds ,("(s))

0

t

#

$ !t ("(0))t,

 (4) 

 

satisfies the following time reversal symmetry [11]:  

 

 p(!t = A)

p(!t = "A)
= exp[At] . (5) 

 

The derivation of the TFT using the exact Liouville equation is straightforward and has been 

reviewed a number of times [11]. 
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 By differentiating (4), the instantaneous dissipation function can be written as, 

 

!(") = #
$

$"
i !"(") # !"(")i

$

$"
ln f (",0) .  It is important to remember that the existence of the 

dissipation function !("(0))  at a phase point !(0) , requires that f (!(0),0) " 0 .  The 

existence of the integrated form of the dissipation function requires that the dynamics is 

ergodically consistent (i.e. f (!(t),0) " 0  for all !(0) and t for which f (!(0),0) " 0 ).  There 

are systems that fail to satisfy this condition [17].  The existence of the dissipation function (4) 

only requires that the initial distribution is normalizable and that ergodic consistency holds.  

To prove (5) requires two additional conditions: the dynamics must be time reversal 

symmetric and the initial distribution function must be an even function of the momenta.   

 The TFT leads to a number of corollaries such as the Second Law Inequality [18], 

 

 !t f (" ,0)
# 0, $ t, f (",0) , (6) 

 

and the NonEquilibrium Partition Identity [21], i.e. 
 

e
!"t t

f (!,0)
= 1, # t > 0 .  The notation 

...
f (! ,0)

 implies that the ensemble average is taken over the ensemble defined by the initial 

distribution f (!,0) , Eq. (3).  

 We have recently derived the Dissipation Theorem [17], a generalization of 

response theory to handle arbitrary initial distributions, which shows that, as well as being the 

subject of the TFT, the dissipation function is also the central argument of both linear (i.e. 

Green-Kubo theory) and nonlinear response theory.  Here we give a simple derivation of the 

N-particle distribution function that was obtained in that work.  Solving the Liouville 

equation, 
 
d f (!,t) / d t = !"(!) f (!,t) , gives 

 

f (!(t),t) = exp[" ds
0

t

# $(!(s))] f (!(0),0)  where 

!  is the phase space compression rate defined above.  Rewriting the definition of the 
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dissipation function, (4), we see 
 

f (!(0),0) = f (!(t),0)exp ds
0

t

! "(!(s)) + #(!(s))$
%&

'
()

, and 

combining these results gives: 

 
 

f (!(t),t) = exp ds
0

t

! "(!(s))#
$%

&
'(
f (!(t),0), )!(t) . (7) 

 

Realising that 
 
!(t)  is just a dummy variable,  the following exact expression for the time 

dependent N-particle distribution function is obtained: 

 
 

f (!(0),t) = exp ! ds
0

! t

" #(!(s))$
%&

'
()
f (!(0),0) . (8) 

 

The result can be understood qualitatively as follows: you want to know the probability 

density at time t, at a phase !(0) . The only density that is known is the density at time zero - 

because it is given (3). So you must trace backwards in time a duration t, along a trajectory in 

phase space that ends at !(0) . Hence you go backwards in time to the phase point 

!("t)when you know the probability density.   

 This expression is valid for systems that are driven away from equilibrium by an 

external field (i.e. mechanical systems) or, as in this paper, systems that have no externally 

applied field but that may initially have nonequilibrium distributions (i.e. thermal systems).  It 

is also exact for systems that are, as in our case, thermostatted or systems that are adiabatic 

(i.e. unthermostatted).  In fact for the special case of adiabatic mechanical systems, equation 

(8) was first derived by Yamada and Kawasaki in 1967 [22].  It was first derived for 

thermostatted mechanical systems by Evans and Morriss in 1985 [23] and confirmed in highly 

precise computer simulations in 1995 [12]. An important observation arises from equation (8).  

The necessary and sufficient condition for a distribution function to be time independent is 

that:  



 

9 

• for ergodic systems [24], the dissipation function must be zero everywhere in the 

occupied phase space and,  

• for nonergodic systems, the dissipation function must be zero everywhere within the 

ergodic subdomain in which a given sample system (i.e. an individual physical system) is 

trapped. 

 In reference [17] (also see [21, 25]) we proved that using (8), we can write averages 

of arbitrary phase functions in terms of a Transient Time Correlation Function [19], 

 

 
 

B(t)
f (!,0)

= B(0)
f (!,0)

+ ds
0

t

! "(0)B(s)
f (!,0)

. (9) 

 

The derivation of (8),(9) from (4) is called the Dissipation Theorem.  This Theorem is 

extremely general.  Like the TFT it is valid arbitrarily far from equilibrium.  As in the 

derivation of the TFT the only unphysical terms in the derivation are the thermostatting terms 

within the wall region.  However, because these thermostatting particles can be moved 

arbitrarily far from the system of interest, the precise mathematical details of the thermostat 

are unimportant. 

 For the Nosé-Hoover dynamics (2), consider the initial distribution 

 

 
 

f (!,0) ! fC (!) =
" (pth )exp[#$thHE (!)]

d! " (pth )exp[#$thHE (!)]%
, (10) 

 

where H
0
(!)  is the internal energy of the system, 

 
H

E
(!) = H

0
(!)+ 1

2
d
C
(N

th
!1)k

B
T
th
"
2
#
2  

is the so called extended Nosé-Hoover Hamiltonian, k
B
T
th
! "

th

#1 ,  and 

! (pth ) " ! Si pxi#( )! Si pyi#( )....! Si pdCi#( )  fixes the total momenta of the thermostatted 
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particles in each Cartesian dimension at zero.  We shall call this the canonical distribution 

even though it includes extra degrees of freedom for the thermostat multiplier ! . 

 It is trivial to show that for this distribution and the dynamics (2) the dissipation 

function, 
 
!

C
(!) , is identically zero at all points sampled by the canonical distribution (10) 

  

 
 
!

C
(!) = 0, "!  (11) 

 

and from (8) we see that this initial distribution is preserved 

 

  f(!,t) = fC (!), !!,t . (12) 

 
For ergodic systems [26] we call distributions that are time independent and dissipationless, 

equilibrium distributions.  From (4), it can be shown that exp !
t
("(0))t( ) is equal to the ratio 

of probability of seeing an infinitesimal set of phase space trajectories centred on !(0)  

compared to the probability of observing (in the same distribution) the conjugate set of anti-

trajectories centred on MT
!(t)  where MT

(q,p) ! (q,"p)  is the time reversal map of the 

phase point [21]. Therefore the dissipation can only be zero everywhere in the phase space 

when these probabilities are equal (i.e. in an equilibrium system). By definition, in an 

equilibrium system you cannot distinguish the direction of time [27]. 

 Now consider an arbitrary deviation from the canonical distribution 

 

 f (!,0) "
# (pth )exp[$%thHE (!)$ & g(!)]

d!' # (pth )exp[$%thHE (!)$ & g(!)]
, (13) 
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where g(!)  is an arbitrary integrable real function that, since f (!,0)  must be an even 

function of the momenta, 
 
g(!)  is also even in the momenta. Without loss of generality we 

assume 0 ! " . 

 For such a system evolving under our dynamics (2), the instantaneous dissipation 

function is 

 

   
!(!(t)) = " #g(!(t))#!•

!!(!(t))  (14) 

 

and (8) becomes  

 

 
 
f (!(0),t) = exp[!"#g(!(0),!t)] f (!(0),0) . (15) 

 
where 

 
!g(!(0),t) " g(!(t))# g(!(0)) .  Thus, if g is not a constant of the motion there is 

dissipation and the distribution function cannot be an equilibrium distribution.  If the system is 

ergodic the only possible unchanging distribution function will be that where 

 
g(!(t)) = 0, !!(0),t . If there are constants of the motion that are not factored into the 

distribution (10), the system cannot be ergodic since the phase space can, be broken down into 

a number of phase space subdomains characterized by different fixed values of these constants 

of the motion.  Furthermore we can change the distribution function away from the canonical 

distribution (10), by choosing the deviation function 
 
g(!) , to be a sum of these constants of 

the motion and still have zero dissipation. 

 Summarising: if the system is ergodic there is a unique time symmetric, 

equilibrium state characterized by being dissipationless everywhere in the phase space (11).  

For the system considered here that distribution is the canonical distribution (10). Thus we 

have derived an expression for the unique equilibrium state corresponding to the thermostatted 
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equations of motion and shown that it takes on the standard form for the canonical 

distribution, modulo the facts that: in the thermostatting region the momentum is a constant of 

the motion that is set to zero, and that there is an extended degree of freedom for the 

thermostat. 

 This completes our first-principles derivation of the equilibrium distribution function.  

We now consider the question of relaxation towards equilibrium. 

 The dissipation function satisfies the Second Law Inequality (6): 

 

 

! "g(!(0),t) = dA
#$

$

% Ap[!"g(!(0),t) = A]

= dA
0

$

% A(1# e#A )p[!"g(!(0),t) = A]

& 0,

 (16) 

 

which can only take on a value of zero when !"g(#(0),t) = 0, $#(0) . In (16) equation (5) has 

been used to go from the first to the second line.  The proof that 
 
!g(!(0),t)  must be zero 

everywhere in the phase space sampled by (12) is obvious from the second line of (16) (i.e. if 

 
p[!"g(!(0),t) = A]  is non-zero for any A > 0, then 

 
p[!"g(!(0),t) = A]A(1# e#A ) > 0  and the 

integrand as well as the integral will be positive).  Thus in an ergodic system if the initial 

distribution differs in any way from the canonical distribution there will be dissipation and on 

average this dissipation is positive.  This remarkable result is true for arbitrary γ, g(!) .   

   We assume the system is ergodic and apply the Dissipation Theorem.  Substituting 

(14) into (9) gives: 

 

 
  

!g(!(0),t)
f (!(0),0)

= " ds
0

t

# !g(0)g(s)
f (!,0)

$ 0,  (17) 

 

where the ensemble averages are taken with respect to the distribution function (13). 



 

13 

 We assume that at sufficiently long time, t
c
 temporal correlations have decayed to 

zero, so that for t > tc,  we can write : 

 

 

  

!g(!(0),t)
f (!,0)

= " ds
0

tc

# !g(0)g(s)
f (!,0)

+ " ds
tc

t

# !g(0)
f (!,0)

g(s)
f (!,0)

= " ds
0

tc

# !g(0)g(s)
f (!,0)

= !g(!(0),tc ) f (!,0)

$ 0.

(18) 

 

The last term on the first line is zero since 
 
g(!)  is an even function of the momenta and 

therefore 
  
!g(0)

f (!,0)
= 0 .  This means that 

  
!g(t)

f (!,0)
= 0, t > tc  and g(t) , t > t

c
 does not 

change with time, i.e.
 
g(t)

f (!,0)
= const, t > tc . If we take t

c
 to be a new time origin then the 

system has no average dissipation after this time, and as discussed after equation (16) the 

system must be in equilibrium.   

 From (13) we see that if the perturbation relaxes conformally in phase space (i.e. the 

deviation function simply scales by a single time dependent parameter ! (t) ), we see that in 

order to increase the value of g(t)
f (! ,0)

 we must decrease the magnitude of the scale 

parameter γ, implying that the system is moving closer to the equilibrium distribution.  This 

also means that we can continuously redefine a new time origin. In this case equation (18) 

implies there is a monotonic relaxation to equilibrium. 

 We have seen above that for ergodic systems the dissipationless distribution is the 

unique equilibrium state. Because the average integrated dissipation is positive, even in the 

non-conformal case the system must initially move towards equilibrium; in fact from (17) we 

can prove that 
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lim
t!0

+

!g(t)
f (!,0)

= " !g2 (0)
f (!,0)

# 0 . (19) 

This proves that initially, on average, the system must move towards, rather than away from, 

equilibrium.  At later times the system may move, for a short time, away from equilibrium 

(e.g. as in the case of an under-damped oscillator) but such movement is never enough to 

make the time integrated average dissipation negative.  The time integrated average 

dissipation from the initial state to any intermediate state (including the final equilibrium state) 

is non-negative.  At any sufficiently later instant in the relaxation process, the instantaneous 

dissipation may be negative.  This shows that, in general, the relaxation process may not be 

monotonic in time.  Such non-monotonic relaxation is extremely common in Nature. 

 If the system is not ergodic then by definition the system relaxes to a number of 

possible quasi-equilibrium states.  Such states break up phase space into ergodic subdomains 

within which the relative probabilities are canonically distributed but between which, the 

relative weights are history dependent and non-Boltzmann distributed [28]. 

 This completes our first-principles derivation of the relaxation towards equilibrium.  

We call this proof, the Relaxation Theorem.  The theorem was proved assuming, time 

reversible microscopic dynamics, ergodicity, ergodic consistency, the initial distribution is 

even under a time reversal mapping and the decay of correlations.  This latter condition may 

be relaxed to merely require the convergence of the transient time correlation integrals in (17).  

In this case equilibrium will be approached in the limit of infinite time.  If the transient time 

correlation integral in (17) diverges, the system cannot be expected to ever relax to 

equilibrium. 

 It is reassuring that the conditions for the Relaxation Theorem to apply are effectively 

the same conditions as are known from ergodic theory to lead to the relaxation to equilibrium 

states [8].  However, the result is obtained using quite a different approach.  In addition we 
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have learned more about the relaxation process than ergodic theory approach has taught us so 

far.  

 In summary we have demonstrated that for any ergodic Hamiltonian system of fixed 

volume and fixed number of particles, in contact with a heat reservoir whose initial 

(nonequilibrium) distribution is even under time reversal symmetry: 

 •     there is a unique dissipationless state, and this state has the canonical 

distribution, (10) [Although a Nosé-Hoover thermostat was used in this derivation, essentially 

the same result is obtained with other thermostatting mechanisms such as a Gaussian 

isokinetic thermostat]; 

 • in ergodic systems with finite temporal correlations the system eventually 

relaxes to equilibrium; 

 • this relaxation towards equilibrium is not necessarily monotonic [We note that 

the Boltzmann H-theorem that applies to dilute gases only, implies a monotonic relaxation to 

equilibrium, thus the Relaxation Theorem allows for much more complex behaviour as seen 

experimentally] and, 

 • the inequality, Eq. (17), for the time integrated average dissipation shows that 

!g("(0),t)
f (" (0),0)

# 0   , and if the deviation function relaxes conformally, the system will 

relax to equilibrium monotonically; 

 • equality (19) shows that the initial ensemble average response is always 

towards, rather than away from, equilibrium. 

 We have also shown quite generally that for ergodic dynamical systems obeying time 

reversible dynamics, states have properties that are time reversal symmetric (i.e. probabilities 

of observing any set of trajectories and its conjugate set of antitrajectories are equal) if and 

only if the dissipation function is zero everywhere in phase space.  If there is dissipation 
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anywhere in the phase space the distribution function is time dependent and the system cannot 

be in equilibrium. 

 Our last task is to connect our equilibrium distribution function with 

thermodynamics.  Some textbooks [4] use circular arguments to prove the connection between 

thermodynamic and statistical mechanical variables while most textbooks [5], apply a sort of 

pattern recognition to achieve this purpose. Here we give a simple and direct derivation.  

 We postulate that,  

 

 

 

A(T = Tth ,N ,V ) =Q(Tth ,N ,V )

! "kBTth ln d!# $ (pth )exp["%thHE (!)]&
'

(
).

 (20) 

 

That is when T
th
= T  the Helmholtz free energy A(T), at the thermodynamic temperature T, is 

equal to the value of the statistical mechanical expression Q(T
th
)  that is defined in (20).  From 

thermodynamics we note that the Helmholtz free energy satisfies the differential equation 

 

 U = A !T
"A

"T
,   (21) 

 

where U is the internal energy. Whereas if we differentiate Q with respect to T
th

 we see that 

 

 H
E

=Q !T
th

"Q

"T
th

. (22) 

 

Since U = H
E

 (internal energy is an entirely mechanical quantity as the First Law shows)  

and noting that when T = T
th
= 0 , that A(0) =U(0) =Q(0) , we observe, treating T ,T

th
 as 
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integration parameters x, that A and Q satisfy the same differential equation with the same 

initial x = 0 condition and therefore A(T ) =Q(T
th
)  and our hypothesis (20) is proved [29, 30]. 

 We have shown that the Evans-Searles Fluctuation Theorem, the Second Law 

Inequality and the Dissipation Theorem provide useful insights into the relaxation to 

equilibrium.  These relations can be combined to prove the Relaxation Theorem that shows, 

subject to ergodicity and the decay of correlations, that nonequilibrium distributions that are 

even functions of the momenta, relax on average to equilibrium.  Although these conditions 

are essentially the same as those used in ergodic theory to predict the relaxation to 

equilibrium, our results explicitly admit the possibility that the relaxation to equilibrium, in 

accord with common experience, may not proceed monotonically. Our theory also shows that 

initially, a nonequilibrium system must on average move towards, rather than away from, 

equilibrium. Our results show that the dissipation function is a key function in both defining 

the nature of equilibrium and in describing, via transient time correlation functions, the 

process of relaxation to equilibrium.  That same function is also the argument of both the 

Evans-Searles Fluctuation Theorem and the Dissipation Theorem. 
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