
Integrating Safety and Security Requirements into Design of an Embedded 
System 

 
 

Saad Zafar 
Griffith University 

s.zafar@griffith.edu.au 

R. G. Dromey 
Griffith University 

g.dromey@griffith.edu.au
 

 
Abstract 

 
Most modern embedded systems are now required 

to satisfy seemingly divergent critical properties like 
safety and security. It is therefore becoming 
increasingly important that any systems development 
methodology employed should support modeling of 
system requirements in a manner that it facilitates 
validation and verification of such critical properties. 
In the paper we present the result of applying the 
Genetic Software Engineering (GSE) method to design 
an ambulatory infusion pump (AIP) which must satisfy 
a number of safety and security properties. The safety 
and security requirements are integrated with the rest 
of the systems requirements in the form of integrated 
behavior tree (IBT), which is systematically refined 
into a design behavior tree (DBT). The integrated 
behavioral view of the requirements provides a 
platform for requirements conflict resolution, defect 
detection and requirements validation. The formal 
semantics of the behavior tree (BT) notation, used to 
specify the requirements, makes formal verification of 
critical properties in the final design possible. 

 
1. Introduction 

 
Modern embedded systems are required to satisfy 

different critical properties like safety and security [1]. 
Software based controllers in automobiles, airplanes 
and medical devices are examples of such systems. As 
reliance on such systems is increasing, the 
consequences of failures are becoming more serious 
[2]. Therefore, developers of these systems are now 
required to provide an acceptable level of assurance 
regarding the critical services they provide [3, 4]. 

In the past, it has been a common practice to 
perform safety and security requirements engineering 
in isolation from each other and in isolation from more 
general systems engineering. It has been argued that 
this practice may lead to a number of problems because 
it assumes that safety and security problems can be 
analyzed in isolation from each other and from other 
systems requirements [5]. These problems include 

inadequate understanding of safety and security 
semantics [6], lack of common terminology and 
disparate processes, which makes it difficult to take 
advantage of commonality between the two disciplines 
[7]. Furthermore, the separation of safety and security 
requirements engineering may also lead to 
incompleteness in requirements, incompleteness in 
essential requirements characteristics like verifiability 
and ambiguity in requirements [8].  

At the same time both safety and security are being 
recognized as highly related disciplines [3, 4]. In both 
the disciplines, the overall objective is to protect 
valuable assets from harm [8]. Both safety and security 
requirements are generally specified as constraints on 
the system and are considered system-level properties 
that typically require a very high level of assurance [2].   

Therefore, both safety and security requirements 
must be integrated with the rest of the system 
requirements for validation and verification from the 
early stages of the systems development [9]. They 
cannot be simply added on at a later stage. To this end 
an integrated and uniform systems engineering 
approach is required that not only facilitates integration 
of safety and security requirements with other 
requirements but also supports easy validation and 
formal verification of these requirements. 

The GSE method aims to address these needs by 
introducing a simple and systematic systems design 
approach that not only seeks to bridge the gap between 
informal and formal representation of requirements but 
also provides for formal verification of requirements 
[10]. A simple graphical notation, called behavior trees 
(BT), is used to make the requirements easy to 
formally specify and validate. An integrated view of 
the system is first generated by integrating all the 
individually specified requirements into a single tree, 
referred to as integrated behavior tree (IBT) before 
deriving the system design in the form design behavior 
tree (DBT) by systematically refining the IBT. The 
automated translation of a DBT into other formal 
specification languages like Communication Sequential 
Process (CSP) [11] and Symbolic Analysis Laboratory 
(SAL) [12] makes it possible to formally verify the 



critical system properties like safety and security 
conditions, liveness, deadlocks, etc. A component-
based architecture and component behavior may be 
derived from the DBT in the form component 
interaction network (CIN) and component behavior 
tree (CBT) diagrams. 

In this paper we present results of applying the GSE 
method to design a medical device called an 
ambulatory infusion pump (AIP). The AIP system has 
a number of safety and security concerns. Violation of 
any of these safety and security conditions may cause 
serious injury or death to patients. We formally verify 
the critical properties of our design by model checking 
the automated translation of the AIP’s DBT into SAL 
specification. 

The rest of the paper is organized as follows. 
Section 2, illustrates the basic GSE design process 
using examples from the AIP case study. Section 3, 
illustrates how the safety and security properties were 
modeled in the specified design. In section 4, we 
present the results of formal verification of safety and 
security properties. In section 5, we conclude our 
discussion and describe other related research work 
along with future direction of our research. 

 
2. An overview of GSE method  

 
In this section we provide a brief overview of the 

GSE method and use the AIP case study as a running 
example to illustrate the various steps in the method.  

The GSE development process may be summarized 
as follows: 1) A given set of informal requirements is 
first formally specified as RBTs.  A number of 
ambiguities and incompleteness defects are typically 
resolved at this stage. 2) All the individual RBTs are 
integrated into an IBT to generate an in integrated view 
of requirements. All the requirements integration 
defects are resolved at this stage. 3) The IBT is 
systematically refined into a DBT. The impact of each 
design decision on the complete system is readily 
visualized as the changes are applied to the integrated 
view of the requirements. 4) The IBT and/or DBT may 
be translated into SAL or CSP for formal verification 
of the specifications. 5) Finally, a component-based 
architecture and individual component behavior can be 
derived from the DBT, which are typically represented 
in the form of CIN and CBT diagrams. 

The tool support for the GSE method is under 
development.  At present, a Behavior Tree Editor 
(BTE) is available for drawing and editing BTs [13] in 
a graphical environment. The tool stores the BT 
specification in XML format and supports automated 
translation of the BT specification into SAL 
specification language and CSP representation. 

 

2.1 Introduction to the case study 
 
An ambulatory infusion pump (AIP) is a medical 

device used for drug therapy for patients who are away 
from direct care of health professionals.  The device is 
programmable to allow health professionals to 
configure it to meet the patient’s needs.  The hazards 
associated with the device are drug non-delivery or 
under-delivery, drug overdose and a serious medical 
condition called air embolism which is caused by 
accidental injection of air bubbles through the device.   

 
Table 1: AIP requirements 

No Requirement 

R1 The system is turned on when the batteries are put in and is turned off 
when the batteries are out. 

R2 To start the pump, when in stopped state, start-stop button is held down 
until it beeps three times and (… … …) is displayed on the screen. 

R3 To stop the pump, when in running state, start-stop button is held down 
until it beeps three times and (… … …) is displayed on the screen. 

R4 When the battery is low, the system sends three beeps and displays 
battery low message on the screen. 

R5 Every time the system pumps 1 ml of drug when the battery is low it 
sends a single beep alarm. 

R6 After a set time pump activates to pump 1ml of drug through the line. 

R7 When the volume reaches 5ml the system does three beeps and 
displays volume low message every 1ml as it counts down to empty. 

R8 When there is no drug left, the pump enters stopped mode and the 
system sounds a continuous beeping alarm. 

R9 When the line is closed/blocked or kinked the system does a constant 
alarm beeping if it is in the running mode. 

R10 The security mode of the pump can be changed as follows: 1) the pump 
must be in stopped mode, 2) the current security mode is displayed by 
pressing the lock button, 3) the up and down arrow buttons are used to 
select the desired security mode (patient, clinic or program), 4) the enter 
is pressed to save the selected mode, 5) once the enter button is 
pressed 000 appears on the screen, 6) the up and down arrow buttons 
are used to select the correct password, 7) the enter button is used to 
select the displayed password and as a result displayed security mode 
is also selected as the current security mode. 

R11 The pump’s volume can be reset to a preset value as follows: 1) The 
pump must be in stopped mode, 2) the pump can be in any of the 
security modes, 3) the next is used to display volume on the screen, 4) 
pressing the enter button resets the volume to a preset value. 

R12 The pump’s upper limits of the pump’s infusion rate can be set as 
follows: 1) The pump must be in stopped mode, 2) the security mode on 
the pump must be set to program mode, 3) the next button is used to 
display Infusion Rate Upper Limit on the screen, 4) the up and down 
arrow buttons are used to select the desired infusion rate, 5) pressing 
the enter button sets infusion rate upper limit to the displayed limit on 
the screen. 

R13 The pump’s infusion rate can be set as follows: 1) The pump must be in 
stopped mode, 2) The security mode of the pump must be set to clinic 
mode, 3) The next button is used to display Infusion Rate on the screen, 
4) The up and down arrow button are used to select the desired infusion 
rate, 5) Pressing the enter button sets the infusion rate to the infusion 
rate displayed on the screen 

R14 The amount of drug given can be cleared as follows: 1) The pump must 
be in stopped mode, 2) The security mode of the pump must be set to 
clinic mode, 3) The next button is used to display given on the screen, 4) 
Pressing the enter button clears the given amount to zero 

R15 Whenever air is detected in the line, by the air detector sensor, the 
pump is stopped and the beeper a continuous beep 

R16 The main screen displays the pump status (running/stopped), battery 
status (normal/low) and drug volume. 

R17 If no key is pressed for 2 minutes then the screen is reset to the main 
screen 

The drug non-delivery or under-delivery may be 
caused by an infusion rate lower than required or by an 
undetected blockage of the line.  Similarly, a higher 



rate of infusion may lead to the hazard of drug 
overdose. A discrepancy between the actual amount of 
drug infused and the amount of drug calculated as 
given by the AIP controller may also lead to the hazard 
of drug under-delivery or over-delivery. All of these 
hazards may lead to serious illness or death of the 
patient.  The safety and security concerns related with 
the device are discussed in detail in section 3. 

The requirements for AIP in this case study have 
been derived from the user manual of a commercial 
product CADD-Legacy ® Ambulatory Infusion Pump 
[14]. The requirements have been simplified to make 
the case study easy to understand (table 1). 

 
2.2. Requirements specification 

 
One of the most difficult parts in systems 

engineering is recognized to be capturing and 
preserving the intent behind building the system in the 
system specification [15]. Another challenge is 
bridging the gap between informally specified 
requirements and their formal representation [4]. The 
GSE approach aims to address these issues by building 
the system right out-of-its-requirements by 
systematically translating one given requirement at a 
time [10].  

Figure 1, illustrates the BT representation of the 
first requirements from table 1. The “^” symbol on one 
of the leaf nodes in the example is a reversion symbol 
to indicate that the system reverts back to a state higher 
in the tree. A summary of syntax of BT notation is 
provided in figure 2.  

 

R1 Batteries
?? In ??

R1 AIP ^
[Off]

R1 AIP
[Off]

R1 Batteries
?? Out ??R1 AIP

[On]

 
Figure 1: Requirements translation into BT 
 

2.3. Requirements Integration 
 
The process of integrating individual RBTs into an 

evolving IBT is analogous to putting the pieces of a 
jig-saw-puzzle together. The process involves locating 
where the root node of one BT occurs in another tree 
and grafting the two trees together at that point [10]. 
The process continues until all the RBTs have been 
grafted together into a single IBT. However, it is not 
always possible to integrate all the RBTs together. The 
requirements will only perfectly integrate if all the pre- 
and post-conditions have been clearly defined and 
there is no incompleteness in the requirements. 
Therefore, the integration step also plays an important 

role in early detection of defects by forcing us to 
resolve requirements problems like incompleteness and 
inconsistency. The integration techniques along with 
integration axioms are presented in [10]. 

 
Tag Component

?? Event ?? Tag Component
? Condition ?Tag Component

[State]

Tag Component
< Data out > Tag Component

<< Screen Output >>Tag Component
> Data in <

Tag Component
[Attribute := Value] Tag Component ^

[State]

A state realization An event A decision

Data-in Data-out Screen output

An attribute assignment A reversion node  
Figure 2: A summary of BT syntax 

 
Once the IBT has been developed, it is 

systematically refined into a DBT. The process is 
aimed at assisting us in bridging the gap between 
problem domain (represented by the IBT) and solution 
domain (represented by the DBT). The impact of all 
the design decisions is readily visualized as the 
changes are applied to an integrated view of the whole 
system. This step reduces the complexity in the 
development process by reducing the information that 
needs to be kept in mind during requirements 
refinement process [10].  

The DBT can play a significant role in development 
of mission critical systems as the critical requirements 
like safety and security are analyzed, refined and 
implemented throughout the development process. In 
the next sections we discuss how the safety and 
security requirements for the AIP system are modeled 
using BTs. 

 
2.4. Deriving system design from requirements 

 
A number of refinement techniques are used to 

refine the IBT in an evolving DBT. These include, 
decoupling of operator, sensor and actuator behavior, 
separation of synchronous and asynchronous message 
passing, identification of atomic actions, identification 
of critical regions and interrupt handling, among 
others. Asynchronous messages to passive components 
in a DBT are depicted by leaf nodes in the tree. The 
atomic actions with causal dependencies are specified 
by joining the BT nodes using a line with no arrow, 
while atomic actions with no causal dependency are 
specified by boxing the BT nodes together.  

In the case study we were able to find a number of 
defects of a critical nature in the AIP’s requirements 
during the refinement process. These include the 
missing requirement for calculating the amount of 
remaining drug if the pump operation is aborted to 
ensure that there is no discrepancy between the amount 
of drug calculated as given and the actual drug infused. 
Other missing requirements include displaying critical 



state changes during the pump operation like ‘line 
blocked’ and ‘air in line’, etc. Due to lack of space a 
reduced form of the complete DBT is presented in 
figure 7. The figure is only intended to give the reader 
a feel of size and structure of the final design.   

 
2.5 Model checking 

 
The static analysis of GSE models is possible by 

automated translation of the BT specification into a 
SAL specification language. SAL is an integrated 
environment of static analysis tools that include tools 
for model checking and theorem proving [16]. In the 
SAL environment the systems are specified using a 
description language for state transition. The system 
properties of interest are calculated from SAL based on 
the system expressed as a transition system in this 
description language. In the SAL environment a 
number of tools provide support for abstraction, 
program analysis, theorem proving and, model 
checking. A detailed description of SAL translation 
rules is provided in [12]. Figure 3 provides a simple 
example of BT translation into SAL specification. 

 

R1 Batteries
?? In ??

R1 AIP ^
[Off]

R1 AIP
[Off]

R1 Batteries
?? Out ??R1 AIP

[On]

SAL Specification

...INITIALIZATION
pc1=1;pc2=0
TRANSITION
[
A1: pc1=1
              -->aIP'=off;

pc1'=2;
[]
A2: pc2=1 AND batteriesOut
              -->batteries'=out;

pc1'=2;
pc2'=0;
aIP'=off;

[]
A3: pc1=2 AND batteriesIn
              -->pc1'=3;
                 batteries'=in;

pc2'=1;
aIP'=on;

[]…

A1

A2

A3

 
Figure 3: Translation of BT into SAL 

 
The SAL specification can be checked for 

deadlocks using dead-lock-checker tool. Useful 
properties of the system can be specified using linear 
temporal logic (LTL) or computation tree logic (CTL). 
These properties can then be model checked using sal-
smc and sal-bmc tools. A BT specification can also be 
translated into a CSP representation [11]. The FDR 
model-checker can be used to model check the CSP 
specification to verify the BT model. 

 
3. Integrating safety and security 
requirements 
 

An important aspect of designing mission critical 
systems is that the important systems concerns are not 
only implemented but are readily apparent in the 
design to ensure easy and effective validation and 
verification of critical requirements [4]. In this section 
we briefly describe how the safety and security 
properties are modeled in the DBT of the AIP system. 

We also present the results of formal verification of 
critical properties of the system. 

 
3.1 Modeling safety properties 

 
The safety requirements of the AIP system include 

1) the pump must be stopped if air is detected in the 
line, 2) the pump must be stopped if there is blockage 
in the line, and 3) there should not be any discrepancy 
between the amount of drug calculated as given and the 
actual amount infused. 

In the design these conditions are implemented 
during the drug pumping operation when the pump is 
in running state. This pumping operation occurs in a 
loop which is controlled by a timer component named 
‘Timer {Pump}’. The timer activates the pump every 
time it counts up to ‘pump-time’. The calculation of 
value for pump-time is based on the programmed 
infusion rate of the pump. At ‘pump-time’ the 
controller sends a signal to the pump to infuse 1ml of 
drug every time. Once the drug has been pumped, 1ml 
is subtracted from the amount of drug volume. The 
user is warned if the remaining drug level is low or the 
drug has reached the finished state.  

In parallel to the pump operation described above, 
we have specified three threads that wait for; 1) the air-
detector sensor to sense air in the line, 2) the occlusion 
sensor to sense a blockage in the line, and 3) start-stop 
button to stop the pump operation. The first two 
threads immediately interrupt the pump operation and 
the last thread only interrupts the pump operation if the 
button is held long enough.  

 
If-and-when the controller air in the
line, then:

1. Interrupt the pump operation thread
by changing the guard condition on
the pump operation thread.

2. Send an asynchronous signal to
the pump to stop pumping and beeper
to sound a continuous beep.

3. Kill the thread that is monitoring the state of
start-stop button.

4. Calculate the 'Given' amount and the remaining
volume

5. Update volume remaining on the screen

6. Display 'Air in Line' message on the screen

7. Revert the system back to the stopped stateR15 AIP ^
[Pump [Stopped]]

R15- Pump
> Stopped <

R15- AIP
?? AS-Line [Air] ??

R14-
AIP

[Given:= Given +
Calculated Given Amount]

R7-
AIP

[Vol := Vol - Volume
Pumped]

R15-
AIP

<< Message [Air In Line]
>>

R15 BEEPER
> Continuous Beep <

R15- AIP
<Drug [Stop Pumping]>

R16- AIP
<< Status [Vol] >>

R15-
AIP --

?? Start-Stop Button [Held]
??

R15- AIP
[Pump [Abort]]

Figure 4: Modeling safety properties in BT 
Figure 4, illustrates the BT representation of the 

first thread. If and when the controller detects presence 
of air in the line it interrupts the pump operation by 
changing the ‘AIP [Pump [Running]]’ state to AIP 
‘[Pump [Abort]]’. The thread running the pump 



operation can only proceed if the ‘AIP [Pump]’ state is 
set to running. In addition, the interrupting thread 
sends asynchronous signal to the pump to stop and 
beeper to sound a continuous sound. The thread 
monitoring the stop-stop button is also killed (using the 
"--" operator). The amount of drug given and the 
remaining volume of the drug are calculated.  The 
remaining volume is displayed on the screen along 
with ‘air in line’ message before the system reverts 
back to the ‘AIP [Pump [Stopped]] ^’ state. 

This interrupt handling satisfies the first safety 
conditioned mentioned above. The second safety 
condition is specified in the similar manner. To ensure 
that there is no discrepancy between the actual amount 
infused and the amount calculated by the controller, the 
amount of drug pumped is calculated either at the end 
of normal cycle of pumping or when the pump 
operation is interrupted. If the pump operation is 
interrupted the amount of drug calculated as a function 
of time since the last pump time (recorded by the 
‘Timer {Pump}’ component).   

 
3.2 Modeling access control 
 

The ability to verify that no rights are leaked to 
unauthorized user is an important characteristic of an 
access control model. To support verification of access 
control models, constraint expressions are typically 
added to the model [17]. These constraints describe the 
access control requirements of a configuration to 
ensure that access is not granted to any unauthorized 
user. Figures 5 and 6 illustrate how these constraints 
are expressed in a BT model.  

 
Table 2: Access control table for AIP functions 

Patient Clinic Mode Program Mode 

Buttons Buttons Buttons Screen 

         

IR Upper 
Limit 

x x x x x x Set Inc. Dec. 

IR x x x Set Inc. Dec. x x x 

Given x x x Clear x x x x x 

Legend:  = Enter,  = Arrow-up,  = Arrow-down, IR = Infusion rate 

 
The advantage of using a BT to model access rights 

is two-fold; the often complex constraints are 
expressed graphically, which makes it is easier to 
specify and comprehend and that the constraints can be 
formally verified to ensure the correctness of the 
model. Furthermore, we get an integrated view of the 
complete system on which the access control is applied 
so that the impact of the security requirements is 
readily understood. Table 2 summarizes the access 
control for various AIP programming functions. The 
access to critical functions in clinic mode and program 

mode is protected through pre-programmed password 
in the controller. 

In our design we have modeled the access control 
requirements by factoring out the constraints on each 
of the programming function. Figure 5, illustrates the 
constraint on setting upper limit for infusion rate. The 
root node in the diagram serves as the constraint for the 
all the behavior that proceeds the node. If the pump is 
in program mode (AIP ?Mode[Program]?) and the 
screen is set to display infusion rate upper limit (AIP 
?Message[IR Limit]?) only then the limit can be 
changed using arrow up and arrow down keys or it can 
be set to the value displayed on the screen using the 
enter key.  

 

R12-
AIP

?? Enter Button [Pressed]
??

R12 AIP &
? Mode [Program] ?

R12-
AIP

[IR Limit := Message  [IR
Limit]]

R12-
AIP

?? Arrow Up Button
[Pressed] ??

R12-
AIP

<< Message [IR Limit
[Decrease]] >>

R12-
AIP

?? Arrow Down Button
[Pressed] ??

R12-
AIP

<< Message [IR Limit
[Increase]] >>

R12 AIP &
? Message [IR  Limit] ?

Protected Functions

 
Figure 5: Functions accessible in program 

mode 
 

The access control for clinic mode is modeled in a 
similar fashion by factoring out the constraints on the 
function (see figure 6). In the clinic mode (AIP 
?Mode[Clinic]?) the user can increase or decrease the 
infusion rate or set the infusion rate of the pump to the 
rate displayed on the screen (AIP ?Message[Infusion 
Rate]?). The other function that is accessible in the 
clinic mode is clearing of the amount of drug given to 
the patient. Clearing the amount means setting the 
‘Given’ attribute in the controller to zero. The 
constraints on this function are that the pump should be 
in clinic mode (AIP ?Mode[Clinic]?) and the screen 
should be displaying the amount of drug given (AIP 
?Message[Given]?). 

 
R13 AIP &

? Mode [Clinic] ?

R13
AIP &

? Message [Infusion Rate]
?

R13-
AIP

?? Enter Button [Pressed]
??

R13-
AIP

[Infusion Rate := Message
[Infusion Rate]]

R13-
AIP

<< Message [Infusion
Rate [Decrease]] >>

R13-
AIP

?? Arrow Up Button
[Pressed] ??

R13-
AIP

?? Arrow Down Button
[Pressed] ??

R13-
AIP

<< Message [Infusion
Rate  [Increase]] >>

R14 AIP &
? Message [Given] ?

R14-
AIP

?? Enter Button [Pressed]
??

R14 AIP
[ Given := 0  ]

Protected Functions

 
Figure 6: Functions accessible in clinic mode 

 



R1
Batt er ies
?? In ??

R1-
AIP

[Init ializ e]

R1
AI P ^

[Of f]

R1
AIP

[ Off]

R1
Batter ies

?? Out  ??

R17-
Ti mer {Sc reen}

[Start]

R2-
AIP

[ Pump [St opped]]

R2-
AIP

?? Start- Stop Button [Held]

??

R17+
Ti mer {Sc reen}

[Reset]

R2+
R3+

USER =

?? Start- Stop But ton Held

??

R2-
R3-

START- STOP BUTTON

[Held]

R2-
R3-

AIP

[Start- Stop Button [Held]]

R2-
R3-

START- STOP BUTTON

[...]

R2+
R3+

USER =

?? Start- Stop But ton

Released ??

R2+
R3+

USER =

?? Start- Stop Button
Rel eas ed??

R2-
R3-

START- STOP BUTTON

[ Released]

R2-
R3-

AIP

[ Start- Stop Button

[ Released]

R2+
R3+

USER =

?? Start- Stop But ton Held
??

R2+
Ti mer {Beeper}

[Start]

R2-
AIP

<< Mes sage [... .. . ...]  >>

R2+
Ti mer {Beeper}

?? Beep D elay ?? R2-
AIP

?? Start- Stop Button

[Releas ed]  ??

R2+
Ti mer {Beeper}

[St op]

R2
AIP ^

[ Pump [ St opped]] R2+
Beeper

[Stopped]

R2+
Ti mer {Beeper}

[Stop]

R3
AIP

[Pump [Running]]

R3-
AIP

?? Start- Stop Button [Held]

??

R3+
Ti mer {Beeper}

[Start ]

R3
Beeper

[3 Beeps]

R3+
Ti mer {Beeper}

?? Beep Delay ??R3-
AI P

?? Start- Stop Button
[Released]  ??

R3+
Ti mer {Beeper}

[Stop]

R3
AIP ^

[ Pump [ Running]]

R3+
AIP ^

[Pump [Stopped]]

R3+
Beeper

[Stopped]

R3+
Timer {Beeper}

[Stop]

R3-
AIP

<< Mess age [ ... .. . . ..] >>

R6+
Timer {Pump}

[Start]

R6+
AIP

[Pump Ti me := Calculat ed

Pump Ti me]

R11+
User =

?? Press  Next  Button??

R11-
NEXT BUTTON

[.. .]

R11-
NEXT BUTTON

[Press ed]

R11-
AIP

Next Button [Pres sed]

R11+
User =

?? Release Next Butt on ??

R11+
Us er =

?? Releas e Next Button??

R11-
NEXT BU TTON

[Released]

R11-
AIP

Next Button [ Rel eased]

R11+
Us er =

?? Press  Next Button ??

R10+
Us er =

?? Pres s Enter B utton??

R10-
ENTER B UTTON

[ ...]

R10-
ENTER BUTTON

[Pressed]

R10-
AIP

Enter Butt on [ Press ed]

R10+
Us er =

?? Releas e Ent er Button ??

R10+
Us er =

?? Releas e Enter Button??

R10-
ENTER B UTTON

[Released]

R10-
AIP

Enter Butt on [Rel eas ed]

R10+
Us er =

?? Pres s Enter B utton ??

R10+
User =

?? Press  Arrow Up

Button??

R10-
ARRO W UP BUTTON

[... ]

R10-
ARROW UP BUTTON

[Pres sed]

R10-
AIP

Arrow Up Button [ Pressed]

R10+
User =

?? Releas e Arrow Up

Button ??

R10+
User =

?? Releas e Arrow Up

Butt on??

R10-
ARROW UP BUTTON

[Released]

R10-
AIP

Arrow Up Button

[Released]

R10+
User =

?? Press Arrow Up Butt on

??

R10+
User =

?? Press  Arrow Down
Button??

R10-
Arrow Down Butt on

[ ...]

R10-
Arrow Down Butt on

[Pressed]

R10-
AIP

Arrow Down Butt on

[Pressed]

R10+
User =

?? Releas e Arrow Down

But ton ??

R10+
Us er =

?? Releas e Arrow Down

Butt on??

R10-
Arrow Down Button

[Releas ed]

R10-
AI P

Arrow Down Button

[Releas ed]

R10+
Us er =

?? Pres s Arrow Down

Button ??

R10+
User =

?? Press Loc k Butt on??

R10-
LOCK BUTTON

[. ..]

R10-
LOCK BUTTON

[ Pressed]

R10-
AIP

Loc k Button [Pres sed]

R10+
User =

?? Releas e Loc k Button ??

R10+
User =

?? Releas e Loc k Butt on??

R10-
LOCK BUTTON

[Released]

R10-
AIP

Loc k Button [Released]

R10+
User =

?? Pres s Loc k Button ??

R9+
LINE =

?? Bloc ked ??

R9-
OCCLUSI ON SE NSOR

< Blocked >

R9-
OCCLUSI ON SENSOR

[... ]

R9-
AIP

[ OS- Line [Blocked]

R9+
LINE =

?? Not Bloc ked ??

R9-
OCCLUSI ON SENSOR

< Not Bloc k ed >

R9-
AIP

[OS- Line [ Clear]]

R9+
LINE =

?? Not Bloc ked?? R9+
LI NE =

?? Bloc ked ??

R15+
LINE =

?? Ai r??

R15+
AIR DETE CTOR

SENSOR

< Air >

R15-
AIR  DETE CTOR

SENSOR

[... ]

R15-
AIP

[ AS- Line [Air ]]

R15+
LINE =

?? No Ai r??

R15+
AIR DETECTOR

SENSOR

< No Air  >

R15-
AIP

[AS- Line [C lear]]

R15
LINE =

?? No Air?? R15
LINE =

?? Air  ??

R10-
AIP

?? Loc k But ton [Pres sed]

??

R10-
AIP

<< Mess age [Dis play

Mode]] >>

R10
AIP ^

[Pump [Stopped]]

R10-
AIP

? Mess age [Dis pl ay

Mode]?

R10-
AIP

?? Enter B utton [P ress ed]

??

R10-
AIP

<< Mess age [ Pas s word

[000] ]>>

R10
AIP ^

[Pump [St opped]]

R10-
AIP

<< Message [Previous

Dis play Mode]  >

R10
AIP ^

[Pump [ Stopped]

R10-
AIP

?? Arrow Up But ton

[Pres sed] ??
R10-

AIP

?? Arrow Down Button

[Pressed] ??

R10-
AIP

<< Message [Next D isplay

Mode] >>

R10
AI P ^

[Pump [St opped]

R17+
Ti mer {Sc reen}

[Reset]

R17+
Ti mer {Sc reen}

[Reset] R17+
Timer {Sc reen}

[Reset ] R17+
Ti mer {Screen}

[Reset]

R10-
AIP

? Mess age [Pass word] ?

R10-
AIP

?? Arrow Down B utton

[ Pres sed] ??
R10-

AIP

?? Arrow Up Butt on

[Pressed] ??
R10-

AI P

?? Enter B utton [P ress ed]

??

R10
AIP

? Correct Pas s word ? R10
AI P

? Incorrec t Pass word ?

R10
AIP ^

[ Pump [ St opped]]

R10-
AIP

? D isplay Mode [C linical ] ?

R10
AIP

[Mode [C li nical ]]

R10-
AIP

? D isplay Mode [Patient] ?

R10
AIP

[Mode [Patient ]]

R10
AIP ^

[Pump [Stopped]] R10
AI P ^

[Pump [St opped]]

R10-
AIP

? Di splay M ode [ Program]

?

R10
AIP

[ Mode [Program]]

R10
AIP ^

[Pump [St opped] ]

R10-
AI P

<< Mes sage [Di s play

Mode] >>

R10-
AIP

<< Mes sage [Pas s word

[Previous Digit] ] >>

R10
AIP ^

[ Pump [St opped]]

R10-
AIP

<<Mess age [ Pas s word

[Next Digit] ] >>

R10
AIP ^

[Pump [Stopped]

R17+
Ti mer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Reset]

R11-
AIP

?? Enter B utt on [ Press ed]

??

R11
AIP

? Mess age [ Volume] ?

R11-
AIP

<< Mess age [ Vol ] >>

R11
AIP

[ Vol := Pres et Value]

R11
AI P ^

[Pump [Stopped]]

R12-
AIP

?? Enter Button [Pres sed]

??

R12
AIP &

? Mode [P rogram] ?

R12-
AIP

[ IR Li mit := Mes sage  [ I R

Li mi t]]

R12
AIP ^

[Stopped]

R12-
AIP

?? Arrow Up Butt on

[Press ed]  ??

R12-
AIP

<< Mess age [ IR Li mit

[Decrease]] >>

R12
AIP ^

[Pump [Stopped]]

R12-
AIP

?? Arrow Down Button

[Pressed] ??

R12-
AIP

<< Message [ IR Li mi t

[I ncrease]]  >>

R12
AI P ^

[Pump [St opped]]

R12
AIP &

? Mes sage [ IR Limit] ?

R13
AIP &

? Mode [C linic ] ?

R13
AIP &

? Mess age [ Infusi on Rat e]

?

R13-
AIP

?? Enter Button [Pres sed]

??

R13-
AIP

[Infus ion Rate := M ess age

[Inf usion Rate]]

R13
AIP ^

[ St opped]

R13-
AI P

<< M essage [I nfusion

Rate [Dec rease]] >>

R13
AIP ^

[Pump [St opped] ]

R13-
AI P

?? Arrow Up Button

[Pres sed] ??
R13-

AI P

?? Arrow Down But ton

[ Pres sed] ??

R13-
AI P

<< Mes sage [Inf us ion

Rate  [ Incr eas e]] >>

R13
AIP ^

[Pump [St opped]]

R14
AI P &

? Message [Given]  ?

R14-
AI P

?? Enter B utton [P ress ed]

??

R14
AI P

[ Gi ven := 0  ]

R14
AIP ^

[Stopped]

R14-
AI P

<< Mes sage [Gi ven]  >>

R11-
AIP

? Mess age [M ain]  ?

R11-
AIP

<< Mes sage [Vol ume]  >>

R11
AIP ^

[Pump [St opped] ]

R12-
AIP

? M ess age[Vol ume] ?

R12-
AIP

<<Mess age [ I R LI mit ] >>

R12
AIP ^

[ Pump [ St opped]]

R13-
AIP

? Message [ I R Li mit] ?

R13-
AIP

<< Message [Infusion

Rate] >>

R13
AIP ^

[Pump [St opped]]

R14-
AIP

? Mess age [ Infusi on

Rate]?

R14-
AIP

<<Mess age [M ai n] >>

R14
AIP ^

[Pump [St opped]]

R11-
AIP

?? Next B utton [P ressed]

??

R17+
Ti mer {Sc reen}

[Reset]

R17+
Timer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Reset] R17+
Ti mer {Screen}

[Reset] R17+
Timer {Sc reen}

[Res et] R17+
Timer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Res et] R17+
Ti mer {Sc reen}

[Reset ]

R17+
Ti mer {Sc reen}

[ Res et]

R4+
BATTERI ES =

?? Charge [Low] ??

R4-
AIP

[Bat ter ies  [ Low]]

R4-
VOLTAGE DETECTOR

[.. .]

R4+
BATTERI ES =

?? Charge [ Nor mal] ??

R4-
AI P

[Batteries [ Normal]]

R4-
VOLTAGE  DETE CTOR

< Low Batt eries > R4-
VOLTAGE DETECTOR

< Normal Bat ter i es >

R4+
BATTERI ES =

?? Charge [Low]  ??R4+
BATTERI ES =

?? Charge [Norm al] ??

R1
AIP
[On]

R4-
AIP =

?? Batteries  [Low]  ??

R4-
AIP

<< Message [Bat teri es

Low] >>

R17+
Ti mer {Sc reen}

?? 2 mi n ??

R16-
AIP

<< Status:  >>

: Pump Stat us

; Batter ies Status

; Volume

R17+
Ti mer {Sc reen}

[Reset]

R4
Beeper

[3 Beeps]

R10-
AIP

[ Display Mode]  := AIP

[Mode]

R2
Beeper

[3 Beeps]

R4-
AIP =

?? Batter ies  [Normal ] ??

R17-
Timer {Sc reen} ^

?? 2 min ??

R6+
Timer {Pump}

?? Pump Time ??

R6
AIP

<Drug [Pump 1m ]]>

R6
Pump

[Pumping]

R6
Line

< D rug >

R6+
Us er {Pati ent}

> D rug <

R6+
Timer {Pump}

[Reset]

R7
AIP

? Vol <= 5 ml ?

R7+
AIP

? Else?

R7
Beeper

[3 Beeps ]

R14-
R7-

AIP =

Drug [Pumped]

R7
AIP

? Volume [ Low] ?

R7-
AIP

<< Mess age [ Vol ume Low]

>>

R7-
AIP

<< Message [Volume Low ]

>>

R7
AIP

Volume [Empty]

R7
AIP

[Volume [Low]]

R7+
AIP

? Vol > 5 ml ?

R7+
AIP

Volume [Normal]

R7+
AIP

? Vol > 0 ?

R6+
AI P ^

[Pump [Runni ng]]

R6+
AIP ^

[Pump [Running]]

R6+
AI P ^

[Pump [Running]]

R8
AIP ^

[Pump [St opped] ]

R8
Beeper

[ Conti nuous Beep]

R7
AIP

? Vol <= 0 ?

R5-
AIP

? Batter ies [Low] ?

R5
Beeper

[Single Beep]

R9-
AIP

?? OS- Line [Bloc ked] ??

R14-
AIP

[Gi ven : = Gi ven +

Calc ulated Given Amount]

R9-
Pump

[Stopped]

R15
AIP ^

[Pump [ Stopped]]

R15-
Pump

[Stopped]

R15-
AIP

?? AS- Line [Air ] ??

R14-
AIP

[Gi ven:= Given +

Calc ulat ed Gi ven A mount]

R9
AIP ^

[Pump [Stopped]]

R7-
AIP

[Vol := Vol + Volume

Pumped]

R9-
AIP

<< Message [Line

Bloc ked] > >

R8-
AIP

<< Mess age [E mpt y] >>

R15-
AIP

<< M essage [Air  In Line]

>>

R7-
AIP

[ Vol : = Vol + Volume

Pumped]

R14-
R7-

AIP

Drug [Not Pumped]

R9
Beeper

[ Continuous Beep] R15
BEEPER

[Cont inuous Beep]

R9-
AIP

<Drug [Stop Pumping>

R15-
AIP

<Drug [ St op Pumping]>

R3-
AIP

<Drug [Stop Pumping]>

R3-
Pump

[Stopped]

R3-
AIP

[Given := Gi ven +

Calc ulated Given A mount]

R3-
AIP

<< Status [ Vol ] >>

R3-
AIP

<< Mess age [Pump

Stopped] > >

R2-
AIP

<< Mes sage [Pump

Running] >>

R16-
AIP

<< Status [Runni ng] >>

R16-
AIP

<< St atus  [Low] > >

R16-
AIP =

?? Batt er ies [Nor mal] ??

R16-
AIP

<< St atus  [Normal]  >>

R16-
AIP =

?? Batteri es  [Low]  ??

R16-
AIP

<< Status  [Stopped] >>

R7-
AIP

[Vol := Vol + Volume

Pumped]

R16-
AIP

<< Status  [ Vol ] >> R16-
AIP

<< Status [ Vol ] >>

R15-
R9-

AIP

? Pump [Running] ?

R15-
R9-

AIP
? Pump [Runni ng] ?

R15-
R9-

AIP

? Pump [Runni ng] ?
R15-
R9-

AIP

? Pump [Running]  ?

R15-
R9-

AIP

? Pump [Running] ?R15-
R9-

AIP

? Pump [Running]  ?

R15-
R9-

AIP

? Pump [Running] ?

R15-
AIP --

?? Start- Stop Button [Held]

??
R15-

AIP --

?? Start- Stop Button [Held]

??

R3-
AIP

[Pump [Abort]]

R9-
AIP

[Pump [Abort]]
R15-

AIP
[Pump [Abort]]

R15-
R9-

AIP

? Pump [ Running] ?

R15-
R9-

AIP

? Pump [Running] ?

R16-
AIP

[Bat ter ies  Status  [M onitor]

R14-
R7-

AIP

? Drug [Pumped] ?

R7-
AIP

Vol := Vol - 1ml

R14-
AIP

[Gi ven := Gi ven + 1ml ]

R14-
R7-

AIP

? Drug [ Not Pum ped] ?

R16-
AIP

<< Stat us [ Vol ]  >>

R14-
R7-

AI P =

Drug [ Pumped]

R8-
AIP

<Drug [Stop Pum ping]>

R8-
Pump

[Stopped]

Modeling Safety Properties
1. Pump operation thread
2. Thread monitoring presence 

of air in the line.  Interrupts 
thread 1 when air is 
detected.

3. Thread monitoring line 
blockage.  Interrupts thread 1 
when line is blocked.

4. Thread monitoring start-stop 
button.  Interrupts thread 1 
when button is held long 
enough.

AIP Initialization

Threads monitoring user and sensor inputs

Threads monitoring 
batteries status and 
screen update timer

AIP programming functions 

AIP’s
behavior in 
‘stopped’
state

AIP’s
behavior in 
‘running’
state

1234

1 2 3 4 5 6 7

Screen Mode Button Effect

1 Any Any Lock Display  current mode

2 Mode Any Display  passw ord screen

Display  prev ious mode

Display  nex t mode

3 Passw or
d Any

1. Set the display ed mode if passw ord is
correct, or
2. Display  the selected mode

Display  prev ious digit

Display  nex t digit

4 Volume Any Reset volume

5 IR Limit Prog. Set IR limit

Increment IR limit

Decrement IR limit

6 IR Clinic Set IR

Increment IR

Decrement IR

Giv en Clinic Clear given amount

7 Any Any Nex t Scroll through av ailable screens

Modeling Access Control

R1
Batt er ies
?? In ??

R1-
AIP

[Init ializ e]

R1
AI P ^

[Of f]

R1
AIP

[ Off]

R1
Batter ies

?? Out  ??

R17-
Ti mer {Sc reen}

[Start]

R2-
AIP

[ Pump [St opped]]

R2-
AIP

?? Start- Stop Button [Held]

??

R17+
Ti mer {Sc reen}

[Reset]

R2+
R3+

USER =

?? Start- Stop But ton Held

??

R2-
R3-

START- STOP BUTTON

[Held]

R2-
R3-

AIP

[Start- Stop Button [Held]]

R2-
R3-

START- STOP BUTTON

[...]

R2+
R3+

USER =

?? Start- Stop But ton

Released ??

R2+
R3+

USER =

?? Start- Stop Button
Rel eas ed??

R2-
R3-

START- STOP BUTTON

[ Released]

R2-
R3-

AIP

[ Start- Stop Button

[ Released]

R2+
R3+

USER =

?? Start- Stop But ton Held
??

R2+
Ti mer {Beeper}

[Start]

R2-
AIP

<< Mes sage [... .. . ...]  >>

R2+
Ti mer {Beeper}

?? Beep D elay ?? R2-
AIP

?? Start- Stop Button

[Releas ed]  ??

R2+
Ti mer {Beeper}

[St op]

R2
AIP ^

[ Pump [ St opped]] R2+
Beeper

[Stopped]

R2+
Ti mer {Beeper}

[Stop]

R3
AIP

[Pump [Running]]

R3-
AIP

?? Start- Stop Button [Held]

??

R3+
Ti mer {Beeper}

[Start ]

R3
Beeper

[3 Beeps]

R3+
Ti mer {Beeper}

?? Beep Delay ??R3-
AI P

?? Start- Stop Button
[Released]  ??

R3+
Ti mer {Beeper}

[Stop]

R3
AIP ^

[ Pump [ Running]]

R3+
AIP ^

[Pump [Stopped]]

R3+
Beeper

[Stopped]

R3+
Timer {Beeper}

[Stop]

R3-
AIP

<< Mess age [ ... .. . . ..] >>

R6+
Timer {Pump}

[Start]

R6+
AIP

[Pump Ti me := Calculat ed

Pump Ti me]

R11+
User =

?? Press  Next  Button??

R11-
NEXT BUTTON

[.. .]

R11-
NEXT BUTTON

[Press ed]

R11-
AIP

Next Button [Pres sed]

R11+
User =

?? Release Next Butt on ??

R11+
Us er =

?? Releas e Next Button??

R11-
NEXT BU TTON

[Released]

R11-
AIP

Next Button [ Rel eased]

R11+
Us er =

?? Press  Next Button ??

R10+
Us er =

?? Pres s Enter B utton??

R10-
ENTER B UTTON

[ ...]

R10-
ENTER BUTTON

[Pressed]

R10-
AIP

Enter Butt on [ Press ed]

R10+
Us er =

?? Releas e Ent er Button ??

R10+
Us er =

?? Releas e Enter Button??

R10-
ENTER B UTTON

[Released]

R10-
AIP

Enter Butt on [Rel eas ed]

R10+
Us er =

?? Pres s Enter B utton ??

R10+
User =

?? Press  Arrow Up

Button??

R10-
ARRO W UP BUTTON

[... ]

R10-
ARROW UP BUTTON

[Pres sed]

R10-
AIP

Arrow Up Button [ Pressed]

R10+
User =

?? Releas e Arrow Up

Button ??

R10+
User =

?? Releas e Arrow Up

Butt on??

R10-
ARROW UP BUTTON

[Released]

R10-
AIP

Arrow Up Button

[Released]

R10+
User =

?? Press Arrow Up Butt on

??

R10+
User =

?? Press  Arrow Down
Button??

R10-
Arrow Down Butt on

[ ...]

R10-
Arrow Down Butt on

[Pressed]

R10-
AIP

Arrow Down Butt on

[Pressed]

R10+
User =

?? Releas e Arrow Down

But ton ??

R10+
Us er =

?? Releas e Arrow Down

Butt on??

R10-
Arrow Down Button

[Releas ed]

R10-
AI P

Arrow Down Button

[Releas ed]

R10+
Us er =

?? Pres s Arrow Down

Button ??

R10+
User =

?? Press Loc k Butt on??

R10-
LOCK BUTTON

[. ..]

R10-
LOCK BUTTON

[ Pressed]

R10-
AIP

Loc k Button [Pres sed]

R10+
User =

?? Releas e Loc k Button ??

R10+
User =

?? Releas e Loc k Butt on??

R10-
LOCK BUTTON

[Released]

R10-
AIP

Loc k Button [Released]

R10+
User =

?? Pres s Loc k Button ??

R9+
LINE =

?? Bloc ked ??

R9-
OCCLUSI ON SE NSOR

< Blocked >

R9-
OCCLUSI ON SENSOR

[... ]

R9-
AIP

[ OS- Line [Blocked]

R9+
LINE =

?? Not Bloc ked ??

R9-
OCCLUSI ON SENSOR

< Not Bloc k ed >

R9-
AIP

[OS- Line [ Clear]]

R9+
LINE =

?? Not Bloc ked?? R9+
LI NE =

?? Bloc ked ??

R15+
LINE =

?? Ai r??

R15+
AIR DETE CTOR

SENSOR

< Air >

R15-
AIR  DETE CTOR

SENSOR

[... ]

R15-
AIP

[ AS- Line [Air ]]

R15+
LINE =

?? No Ai r??

R15+
AIR DETECTOR

SENSOR

< No Air  >

R15-
AIP

[AS- Line [C lear]]

R15
LINE =

?? No Air?? R15
LINE =

?? Air  ??

R10-
AIP

?? Loc k But ton [Pres sed]

??

R10-
AIP

<< Mess age [Dis play

Mode]] >>

R10
AIP ^

[Pump [Stopped]]

R10-
AIP

? Mess age [Dis pl ay

Mode]?

R10-
AIP

?? Enter B utton [P ress ed]

??

R10-
AIP

<< Mess age [ Pas s word

[000] ]>>

R10
AIP ^

[Pump [St opped]]

R10-
AIP

<< Message [Previous

Dis play Mode]  >

R10
AIP ^

[Pump [ Stopped]

R10-
AIP

?? Arrow Up But ton

[Pres sed] ??
R10-

AIP

?? Arrow Down Button

[Pressed] ??

R10-
AIP

<< Message [Next D isplay

Mode] >>

R10
AI P ^

[Pump [St opped]

R17+
Ti mer {Sc reen}

[Reset]

R17+
Ti mer {Sc reen}

[Reset] R17+
Timer {Sc reen}

[Reset ] R17+
Ti mer {Screen}

[Reset]

R10-
AIP

? Mess age [Pass word] ?

R10-
AIP

?? Arrow Down B utton

[ Pres sed] ??
R10-

AIP

?? Arrow Up Butt on

[Pressed] ??
R10-

AI P

?? Enter B utton [P ress ed]

??

R10
AIP

? Correct Pas s word ? R10
AI P

? Incorrec t Pass word ?

R10
AIP ^

[ Pump [ St opped]]

R10-
AIP

? D isplay Mode [C linical ] ?

R10
AIP

[Mode [C li nical ]]

R10-
AIP

? D isplay Mode [Patient] ?

R10
AIP

[Mode [Patient ]]

R10
AIP ^

[Pump [Stopped]] R10
AI P ^

[Pump [St opped]]

R10-
AIP

? Di splay M ode [ Program]

?

R10
AIP

[ Mode [Program]]

R10
AIP ^

[Pump [St opped] ]

R10-
AI P

<< Mes sage [Di s play

Mode] >>

R10-
AIP

<< Mes sage [Pas s word

[Previous Digit] ] >>

R10
AIP ^

[ Pump [St opped]]

R10-
AIP

<<Mess age [ Pas s word

[Next Digit] ] >>

R10
AIP ^

[Pump [Stopped]

R17+
Ti mer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Reset]

R11-
AIP

?? Enter B utt on [ Press ed]

??

R11
AIP

? Mess age [ Volume] ?

R11-
AIP

<< Mess age [ Vol ] >>

R11
AIP

[ Vol := Pres et Value]

R11
AI P ^

[Pump [Stopped]]

R12-
AIP

?? Enter Button [Pres sed]

??

R12
AIP &

? Mode [P rogram] ?

R12-
AIP

[ IR Li mit := Mes sage  [ I R

Li mi t]]

R12
AIP ^

[Stopped]

R12-
AIP

?? Arrow Up Butt on

[Press ed]  ??

R12-
AIP

<< Mess age [ IR Li mit

[Decrease]] >>

R12
AIP ^

[Pump [Stopped]]

R12-
AIP

?? Arrow Down Button

[Pressed] ??

R12-
AIP

<< Message [ IR Li mi t

[I ncrease]]  >>

R12
AI P ^

[Pump [St opped]]

R12
AIP &

? Mes sage [ IR Limit] ?

R13
AIP &

? Mode [C linic ] ?

R13
AIP &

? Mess age [ Infusi on Rat e]

?

R13-
AIP

?? Enter Button [Pres sed]

??

R13-
AIP

[Infus ion Rate := M ess age

[Inf usion Rate]]

R13
AIP ^

[ St opped]

R13-
AI P

<< M essage [I nfusion

Rate [Dec rease]] >>

R13
AIP ^

[Pump [St opped] ]

R13-
AI P

?? Arrow Up Button

[Pres sed] ??
R13-

AI P

?? Arrow Down But ton

[ Pres sed] ??

R13-
AI P

<< Mes sage [Inf us ion

Rate  [ Incr eas e]] >>

R13
AIP ^

[Pump [St opped]]

R14
AI P &

? Message [Given]  ?

R14-
AI P

?? Enter B utton [P ress ed]

??

R14
AI P

[ Gi ven := 0  ]

R14
AIP ^

[Stopped]

R14-
AI P

<< Mes sage [Gi ven]  >>

R11-
AIP

? Mess age [M ain]  ?

R11-
AIP

<< Mes sage [Vol ume]  >>

R11
AIP ^

[Pump [St opped] ]

R12-
AIP

? M ess age[Vol ume] ?

R12-
AIP

<<Mess age [ I R LI mit ] >>

R12
AIP ^

[ Pump [ St opped]]

R13-
AIP

? Message [ I R Li mit] ?

R13-
AIP

<< Message [Infusion

Rate] >>

R13
AIP ^

[Pump [St opped]]

R14-
AIP

? Mess age [ Infusi on

Rate]?

R14-
AIP

<<Mess age [M ai n] >>

R14
AIP ^

[Pump [St opped]]

R11-
AIP

?? Next B utton [P ressed]

??

R17+
Ti mer {Sc reen}

[Reset]

R17+
Timer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Reset] R17+
Ti mer {Screen}

[Reset] R17+
Timer {Sc reen}

[Res et] R17+
Timer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Res et] R17+
Ti mer {Sc reen}

[Reset ]

R17+
Ti mer {Sc reen}

[ Res et]

R4+
BATTERI ES =

?? Charge [Low] ??

R4-
AIP

[Bat ter ies  [ Low]]

R4-
VOLTAGE DETECTOR

[.. .]

R4+
BATTERI ES =

?? Charge [ Nor mal] ??

R4-
AI P

[Batteries [ Normal]]

R4-
VOLTAGE  DETE CTOR

< Low Batt eries > R4-
VOLTAGE DETECTOR

< Normal Bat ter i es >

R4+
BATTERI ES =

?? Charge [Low]  ??R4+
BATTERI ES =

?? Charge [Norm al] ??

R1
AIP
[On]

R4-
AIP =

?? Batteries  [Low]  ??

R4-
AIP

<< Message [Bat teri es

Low] >>

R17+
Ti mer {Sc reen}

?? 2 mi n ??

R16-
AIP

<< Status:  >>

: Pump Stat us

; Batter ies Status

; Volume

R17+
Ti mer {Sc reen}

[Reset]

R4
Beeper

[3 Beeps]

R10-
AIP

[ Display Mode]  := AIP

[Mode]

R2
Beeper

[3 Beeps]

R4-
AIP =

?? Batter ies  [Normal ] ??

R17-
Timer {Sc reen} ^

?? 2 min ??

R6+
Timer {Pump}

?? Pump Time ??

R6
AIP

<Drug [Pump 1m ]]>

R6
Pump

[Pumping]

R6
Line

< D rug >

R6+
Us er {Pati ent}

> D rug <

R6+
Timer {Pump}

[Reset]

R7
AIP

? Vol <= 5 ml ?

R7+
AIP

? Else?

R7
Beeper

[3 Beeps ]

R14-
R7-

AIP =

Drug [Pumped]

R7
AIP

? Volume [ Low] ?

R7-
AIP

<< Mess age [ Vol ume Low]

>>

R7-
AIP

<< Message [Volume Low ]

>>

R7
AIP

Volume [Empty]

R7
AIP

[Volume [Low]]

R7+
AIP

? Vol > 5 ml ?

R7+
AIP

Volume [Normal]

R7+
AIP

? Vol > 0 ?

R6+
AI P ^

[Pump [Runni ng]]

R6+
AIP ^

[Pump [Running]]

R6+
AI P ^

[Pump [Running]]

R8
AIP ^

[Pump [St opped] ]

R8
Beeper

[ Conti nuous Beep]

R7
AIP

? Vol <= 0 ?

R5-
AIP

? Batter ies [Low] ?

R5
Beeper

[Single Beep]

R9-
AIP

?? OS- Line [Bloc ked] ??

R14-
AIP

[Gi ven : = Gi ven +

Calc ulated Given Amount]

R9-
Pump

[Stopped]

R15
AIP ^

[Pump [ Stopped]]

R15-
Pump

[Stopped]

R15-
AIP

?? AS- Line [Air ] ??

R14-
AIP

[Gi ven:= Given +

Calc ulat ed Gi ven A mount]

R9
AIP ^

[Pump [Stopped]]

R7-
AIP

[Vol := Vol + Volume

Pumped]

R9-
AIP

<< Message [Line

Bloc ked] > >

R8-
AIP

<< Mess age [E mpt y] >>

R15-
AIP

<< M essage [Air  In Line]

>>

R7-
AIP

[ Vol : = Vol + Volume

Pumped]

R14-
R7-

AIP

Drug [Not Pumped]

R9
Beeper

[ Continuous Beep] R15
BEEPER

[Cont inuous Beep]

R9-
AIP

<Drug [Stop Pumping>

R15-
AIP

<Drug [ St op Pumping]>

R3-
AIP

<Drug [Stop Pumping]>

R3-
Pump

[Stopped]

R3-
AIP

[Given := Gi ven +

Calc ulated Given A mount]

R3-
AIP

<< Status [ Vol ] >>

R3-
AIP

<< Mess age [Pump

Stopped] > >

R2-
AIP

<< Mes sage [Pump

Running] >>

R16-
AIP

<< Status [Runni ng] >>

R16-
AIP

<< St atus  [Low] > >

R16-
AIP =

?? Batt er ies [Nor mal] ??

R16-
AIP

<< St atus  [Normal]  >>

R16-
AIP =

?? Batteri es  [Low]  ??

R16-
AIP

<< Status  [Stopped] >>

R7-
AIP

[Vol := Vol + Volume

Pumped]

R16-
AIP

<< Status  [ Vol ] >> R16-
AIP

<< Status [ Vol ] >>

R15-
R9-

AIP

? Pump [Running] ?

R15-
R9-

AIP
? Pump [Runni ng] ?

R15-
R9-

AIP

? Pump [Runni ng] ?
R15-
R9-

AIP

? Pump [Running]  ?

R15-
R9-

AIP

? Pump [Running] ?R15-
R9-

AIP

? Pump [Running]  ?

R15-
R9-

AIP

? Pump [Running] ?

R15-
AIP --

?? Start- Stop Button [Held]

??
R15-

AIP --

?? Start- Stop Button [Held]

??

R3-
AIP

[Pump [Abort]]

R9-
AIP

[Pump [Abort]]
R15-

AIP
[Pump [Abort]]

R15-
R9-

AIP

? Pump [ Running] ?

R15-
R9-

AIP

? Pump [Running] ?

R16-
AIP

[Bat ter ies  Status  [M onitor]

R14-
R7-

AIP

? Drug [Pumped] ?

R7-
AIP

Vol := Vol - 1ml

R14-
AIP

[Gi ven := Gi ven + 1ml ]

R14-
R7-

AIP

? Drug [ Not Pum ped] ?

R16-
AIP

<< Stat us [ Vol ]  >>

R14-
R7-

AI P =

Drug [ Pumped]

R8-
AIP

<Drug [Stop Pum ping]>

R8-
Pump

[Stopped]

R1
Batt er ies
?? In ??

R1-
AIP

[Init ializ e]

R1
AI P ^

[Of f]

R1
AIP

[ Off]

R1
Batter ies

?? Out  ??

R17-
Ti mer {Sc reen}

[Start]

R2-
AIP

[ Pump [St opped]]

R2-
AIP

?? Start- Stop Button [Held]

??

R17+
Ti mer {Sc reen}

[Reset]

R2+
R3+

USER =

?? Start- Stop But ton Held

??

R2-
R3-

START- STOP BUTTON

[Held]

R2-
R3-

AIP

[Start- Stop Button [Held]]

R2-
R3-

START- STOP BUTTON

[...]

R2+
R3+

USER =

?? Start- Stop But ton

Released ??

R2+
R3+

USER =

?? Start- Stop Button
Rel eas ed??

R2-
R3-

START- STOP BUTTON

[ Released]

R2-
R3

R1
Batt er ies
?? In ??

R1-
AIP

[Init ializ e]

R1
AI P ^

[Of f]

R1
AIP

[ Off]

R1
Batter ies

?? Out  ??

R17-
Ti mer {Sc reen}

[Start]

R2-
AIP

[ Pump [St opped]]

R2-
AIP

?? Start- Stop Button [Held]

??

R17+
Ti mer {Sc reen}

[Reset]

R2+
R3+

USER =

?? Start- Stop But ton Held

??

R2-
R3-

START- STOP BUTTON

[Held]

R2-
R3-

AIP

[Start- Stop Button [Held]]

R2-
R3-

START- STOP BUTTON

[...]

R2+
R3+

USER =

?? Start- Stop But ton

Released ??

R2+
R3+

USER =

?? Start- Stop Button
Rel eas ed??

R2-
R3-

START- STOP BUTTON

[ Released]

R2-
R3-

AIP

[ Start- Stop Button

[ Released]

R2+
R3+

USER =

?? Start- Stop But ton Held
??

R2+
Ti mer {Beeper}

[Start]

R2-
AIP

<< Mes sage [... .. . ...]  >>

R2+
Ti mer {Beeper}

?? Beep D elay ?? R2-
AIP

?? Start- Stop Button

[Releas ed]  ??

R2+
Ti mer {Beeper}

[St op]

R2
AIP ^

[ Pump [ St opped]] R2+
Beeper

[Stopped]

R2+
Ti mer {Beeper}

[Stop]

R3
AIP

[Pump [Running]]

R3-
AIP

?? Start- Stop Button [Held]

??

R3+
Ti mer {Beeper}

[Start ]

R3
Beeper

[3 Beeps]

R3+
Ti mer {Beeper}

?? Beep Delay ??R3-
AI P

?? Start- Stop Button
[Released]  ??

R3+
Ti mer {Beeper}

[Stop]

R3

-

AIP

[ Start- Stop Button

[ Released]

R2+
R3+

USER =

?? Start- Stop But ton Held
??

R2+
Ti mer {Beeper}

[Start]

R2-
AIP

<< Mes sage [... .. . ...]  >>

R2+
Ti mer {Beeper}

?? Beep D elay ?? R2-
AIP

?? Start- Stop Button

[Releas ed]  ??

R2+
Ti mer {Beeper}

[St op]

R2
AIP ^

[ Pump [ St opped]] R2+
Beeper

[Stopped]

R2+
Ti mer {Beeper}

[Stop]

R3
AIP

[Pump [Running]]

R3-
AIP

?? Start- Stop Button [Held]

??

R3+
Ti mer {Beeper}

[Start ]

R3
Beeper

[3 Beeps]

R3+
Ti mer {Beeper}

?? Beep Delay ??R3-
AI P

?? Start- Stop Button
[Released]  ??

R3+
Ti mer {Beeper}

[Stop]

R3
AIP ^

[ Pump [ Running]]

R3+
AIP ^

[Pump [Stopped]]

R3+
Beeper

[Stopped]

R3+
Timer {Beeper}

[Stop]

R3-
AIP

<< Mess age [ ... .. . . ..] >>

R6+
Timer {Pump}

[Start]

R6+
AIP

[Pump Ti me := Calculat ed

Pump Ti me]

R11+
User =

?? Press  Next  Button??

R11-
NEXT BUTTON

[.. .]

R11-
NEXT BUTTON

[Press ed]

R11-
AIP

Next Button [Pres sed]

R11+
User =

?? Release Next Butt on ??

R11+
Us er =

?? Releas e Next Button??

R11-
NEXT BU TTON

[Released]

R11-
AIP

Next Button [ Rel eased]

R11+
Us er =

?? Press  Next Button ??

R10+
Us er =

?? Pres s Enter B utton??

R10-
ENTER B UTTON

[ ...]

R10-
ENTER BUTTON

[Pressed]

AIP ^

[ Pump [ Running]]

R3+
AIP ^

[Pump [Stopped]]

R3+
Beeper

[Stopped]

R3+
Timer {Beeper}

[Stop]

R3-
AIP

<< Mess age [ ... .. . . ..] >>

R6+
Timer {Pump}

[Start]

R6+
AIP

[Pump Ti me := Calculat ed

Pump Ti me]

R11+
User =

?? Press  Next  Button??

R11-
NEXT BUTTON

[.. .]

R11-
NEXT BUTTON

[Press ed]

R11-
AIP

Next Button [Pres sed]

R11+
User =

?? Release Next Butt on ??

R11+
Us er =

?? Releas e Next Button??

R11-
NEXT BU TTON

[Released]

R11-
AIP

Next Button [ Rel eased]

R11+
Us er =

?? Press  Next Button ??

R10+
Us er =

?? Pres s Enter B utton??

R10-
ENTER B UTTON

[ ...]

R10-
ENTER BUTTON

[Pressed]

R10-
AIP

Enter Butt on [ Press ed]

R10+
Us er =

?? Releas e Ent er Button ??

R10+
Us er =

?? Releas e Enter Button??

R10-
ENTER B UTTON

[Released]

R10-
AIP

Enter Butt on [Rel eas ed]

R10+
Us er =

?? Pres s Enter B utton ??

R10+
User =

?? Press  Arrow Up

Button??

R10-
ARRO W UP BUTTON

[... ]

R10-
ARROW UP BUTTON

[Pres sed]

R10-
AIP

Arrow Up Button [ Pressed]

R10+
User =

?? Releas e Arrow Up

Button ??

R10+
User =

?? Releas e Arrow Up

Butt on??

R10-
ARROW UP BUTTON

[Released]

R10-
AIP

Arrow Up Button

[Released]

R10+
User =

?? Press Arrow Up Butt on

??

R10+
User =

?? Press  Arrow Down
Button??

R10-
Arrow Down Butt on

[ ...]

R10-
Arrow Down Butt on

[Pressed]

R10-
AIP

Arrow Down Butt on

[Pressed]

R10+

R10-
AIP

Enter Butt on [ Press ed]

R10+
Us er =

?? Releas e Ent er Button ??

R10+
Us er =

?? Releas e Enter Button??

R10-
ENTER B UTTON

[Released]

R10-
AIP

Enter Butt on [Rel eas ed]

R10+
Us er =

?? Pres s Enter B utton ??

R10+
User =

?? Press  Arrow Up

Button??

R10-
ARRO W UP BUTTON

[... ]

R10-
ARROW UP BUTTON

[Pres sed]

R10-
AIP

Arrow Up Button [ Pressed]

R10+
User =

?? Releas e Arrow Up

Button ??

R10+
User =

?? Releas e Arrow Up

Butt on??

R10-
ARROW UP BUTTON

[Released]

R10-
AIP

Arrow Up Button

[Released]

R10+
User =

?? Press Arrow Up Butt on

??

R10+
User =

?? Press  Arrow Down
Button??

R10-
Arrow Down Butt on

[ ...]

R10-
Arrow Down Butt on

[Pressed]

R10-
AIP

Arrow Down Butt on

[Pressed]

R10+
User =

?? Releas e Arrow Down

But ton ??

R10+
Us er =

?? Releas e Arrow Down

Butt on??

R10-
Arrow Down Button

[Releas ed]

R10-
AI P

Arrow Down Button

[Releas ed]

R10+
Us er =

?? Pres s Arrow Down

Button ??

R10+
User =

?? Press Loc k Butt on??

R10-
LOCK BUTTON

[. ..]

R10-
LOCK BUTTON

[ Pressed]

R10-
AIP

Loc k Button [Pres sed]

R10+
User =

?? Releas e Loc k Button ??

R10+
User =

?? Releas e Loc k Butt on??

R10-
LOCK BUTTON

[Released]

R10-
AIP

Loc k Button [Released]

R10+
User =

?? Pres s Loc k Button ??

R9+
LINE =

?? Bloc ked ??

R9-
OCCLUSI ON SE NSOR

< Blocked >

User =

?? Releas e Arrow Down

But ton ??

R10+
Us er =

?? Releas e Arrow Down

Butt on??

R10-
Arrow Down Button

[Releas ed]

R10-
AI P

Arrow Down Button

[Releas ed]

R10+
Us er =

?? Pres s Arrow Down

Button ??

R10+
User =

?? Press Loc k Butt on??

R10-
LOCK BUTTON

[. ..]

R10-
LOCK BUTTON

[ Pressed]

R10-
AIP

Loc k Button [Pres sed]

R10+
User =

?? Releas e Loc k Button ??

R10+
User =

?? Releas e Loc k Butt on??

R10-
LOCK BUTTON

[Released]

R10-
AIP

Loc k Button [Released]

R10+
User =

?? Pres s Loc k Button ??

R9+
LINE =

?? Bloc ked ??

R9-
OCCLUSI ON SE NSOR

< Blocked >

R9-
OCCLUSI ON SENSOR

[... ]

R9-
AIP

[ OS- Line [Blocked]

R9+
LINE =

?? Not Bloc ked ??

R9-
OCCLUSI ON SENSOR

< Not Bloc k ed >

R9-
AIP

[OS- Line [ Clear]]

R9+
LINE =

?? Not Bloc ked?? R9+
LI NE =

?? Bloc ked ??

R15+
LINE =

?? Ai r??

R15+
AIR DETE CTOR

SENSOR

< Air >

R15-
AIR  DETE CTOR

SENSOR

[... ]

R15-
AIP

[ AS- Line [Air ]]

R15+
LINE =

?? No Ai r??

R15+
AIR DETECTOR

SENSOR

< No Air  >

R15-
AIP

[AS- Line [C lear]]

R15
LINE =

?? No Air?? R15
LINE =

?? Air  ??

R10-
AIP

?? Loc k But ton [Pres sed]

??

R10-
AIP

<< Mess age [Dis play

Mode]] >>

R9-
OCCLUSI ON SENSOR

[... ]

R9-
AIP

[ OS- Line [Blocked]

R9+
LINE =

?? Not Bloc ked ??

R9-
OCCLUSI ON SENSOR

< Not Bloc k ed >

R9-
AIP

[OS- Line [ Clear]]

R9+
LINE =

?? Not Bloc ked?? R9+
LI NE =

?? Bloc ked ??

R15+
LINE =

?? Ai r??

R15+
AIR DETE CTOR

SENSOR

< Air >

R15-
AIR  DETE CTOR

SENSOR

[... ]

R15-
AIP

[ AS- Line [Air ]]

R15+
LINE =

?? No Ai r??

R15+
AIR DETECTOR

SENSOR

< No Air  >

R15-
AIP

[AS- Line [C lear]]

R15
LINE =

?? No Air?? R15
LINE =

?? Air  ??

R10-
AIP

?? Loc k But ton [Pres sed]

??

R10-
AIP

<< Mess age [Dis play

Mode]] >>

R10
AIP ^

[Pump [Stopped]]

R10-
AIP

? Mess age [Dis pl ay

Mode]?

R10-
AIP

?? Enter B utton [P ress ed]

??

R10-
AIP

<< Mess age [ Pas s word

[000] ]>>

R10
AIP ^

[Pump [St opped]]

R10-
AIP

<< Message [Previous

Dis play Mode]  >

R10
AIP ^

[Pump [ Stopped]

R10-
AIP

?? Arrow Up But ton

[Pres sed] ??
R10-

AIP

?? Arrow Down Button

[Pressed] ??

R10-
AIP

<< Message [Next D isplay

Mode] >>

R10
AI P ^

[Pump [St opped]

R17+
Ti mer {Sc reen}

[Reset]

R17+
Ti mer {Sc reen}

[Reset] R17+
Timer {Sc reen}

[Reset ] R17+
Ti mer {Screen}

[Reset]

R10-
AIP

? Mess age [Pass word] ?

R10-
AIP

?? Arrow Down B utton

[ Pres sed] ??
R10-

AIP

?? Arrow Up Butt on

[Pressed] ??
R10-

R10
AIP ^

[Pump [Stopped]]

R10-
AIP

? Mess age [Dis pl ay

Mode]?

R10-
AIP

?? Enter B utton [P ress ed]

??

R10-
AIP

<< Mess age [ Pas s word

[000] ]>>

R10
AIP ^

[Pump [St opped]]

R10-
AIP

<< Message [Previous

Dis play Mode]  >

R10
AIP ^

[Pump [ Stopped]

R10-
AIP

?? Arrow Up But ton

[Pres sed] ??
R10-

AIP

?? Arrow Down Button

[Pressed] ??

R10-
AIP

<< Message [Next D isplay

Mode] >>

R10
AI P ^

[Pump [St opped]

R17+
Ti mer {Sc reen}

[Reset]

R17+
Ti mer {Sc reen}

[Reset] R17+
Timer {Sc reen}

[Reset ] R17+
Ti mer {Screen}

[Reset]

R10-
AIP

? Mess age [Pass word] ?

R10-
AIP

?? Arrow Down B utton

[ Pres sed] ??
R10-

AIP

?? Arrow Up Butt on

[Pressed] ??
R10-

AI P

?? Enter B utton [P ress ed]

??

R10
AIP

? Correct Pas s word ? R10
AI P

? Incorrec t Pass word ?

R10
AIP ^

[ Pump [ St opped]]

R10-
AIP

? D isplay Mode [C linical ] ?

R10
AIP

[Mode [C li nical ]]

R10-
AIP

? D isplay Mode [Patient] ?

R10
AIP

[Mode [Patient ]]

R10
AIP ^

[Pump [Stopped]] R10
AI P ^

[Pump [St opped]]

R10-
AIP

? Di splay M ode [ Program]

?

R10
AIP

[ Mode [Program]]

R10
AIP ^

[Pump [St opped] ]

R10-
AI P

<< Mes sage [Di s play

Mode] >>

R10-
AIP

<< Mes sage [Pas s word

[Previous Digit] ] >>

R10
AIP ^

[ Pump [St opped]]

R10-
AIP

<<Mess age [ Pas s word

[Next Digit] ] >>

R10
AIP ^

[Pump [Stopped]

AI P

?? Enter B utton [P ress ed]

??

R10
AIP

? Correct Pas s word ? R10
AI P

? Incorrec t Pass word ?

R10
AIP ^

[ Pump [ St opped]]

R10-
AIP

? D isplay Mode [C linical ] ?

R10
AIP

[Mode [C li nical ]]

R10-
AIP

? D isplay Mode [Patient] ?

R10
AIP

[Mode [Patient ]]

R10
AIP ^

[Pump [Stopped]] R10
AI P ^

[Pump [St opped]]

R10-
AIP

? Di splay M ode [ Program]

?

R10
AIP

[ Mode [Program]]

R10
AIP ^

[Pump [St opped] ]

R10-
AI P

<< Mes sage [Di s play

Mode] >>

R10-
AIP

<< Mes sage [Pas s word

[Previous Digit] ] >>

R10
AIP ^

[ Pump [St opped]]

R10-
AIP

<<Mess age [ Pas s word

[Next Digit] ] >>

R10
AIP ^

[Pump [Stopped]

R17+
Ti mer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Reset]

R11-
AIP

?? Enter B utt on [ Press ed]

??

R11
AIP

? Mess age [ Volume] ?

R11-
AIP

<< Mess age [ Vol ] >>

R11
AIP

[ Vol := Pres et Value]

R11
AI P ^

[Pump [Stopped]]

R12-
AIP

?? Enter Button [Pres sed]

??

R12
AIP &

? Mode [P rogram] ?

R12-
AIP

[ IR Li mit := Mes sage  [ I R

Li mi t]]

R12
AIP ^

[Stopped]

R12-
AIP

?? Arrow Up Butt on

[Press ed]  ??

R12-
AIP

<< Mess age [ IR Li mit

[Decrease]] >>

R12
AIP ^

[Pump [Stopped]]

R12-
AIP

?? Arrow Down Button

[Pressed] ??

R12-
AIP

<< Message [ IR Li mi t

[I ncrease]]  >>

R12
AI P

R17+
Ti mer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Reset]

R11-
AIP

?? Enter B utt on [ Press ed]

??

R11
AIP

? Mess age [ Volume] ?

R11-
AIP

<< Mess age [ Vol ] >>

R11
AIP

[ Vol := Pres et Value]

R11
AI P ^

[Pump [Stopped]]

R12-
AIP

?? Enter Button [Pres sed]

??

R12
AIP &

? Mode [P rogram] ?

R12-
AIP

[ IR Li mit := Mes sage  [ I R

Li mi t]]

R12
AIP ^

[Stopped]

R12-
AIP

?? Arrow Up Butt on

[Press ed]  ??

R12-
AIP

<< Mess age [ IR Li mit

[Decrease]] >>

R12
AIP ^

[Pump [Stopped]]

R12-
AIP

?? Arrow Down Button

[Pressed] ??

R12-
AIP

<< Message [ IR Li mi t

[I ncrease]]  >>

R12
AI P ^

[Pump [St opped]]

R12
AIP &

? Mes sage [ IR Limit] ?

R13
AIP &

? Mode [C linic ] ?

R13
AIP &

? Mess age [ Infusi on Rat e]

?

R13-
AIP

?? Enter Button [Pres sed]

??

R13-
AIP

[Infus ion Rate := M ess age

[Inf usion Rate]]

R13
AIP ^

[ St opped]

R13-
AI P

<< M essage [I nfusion

Rate [Dec rease]] >>

R13
AIP ^

[Pump [St opped] ]

R13-
AI P

?? Arrow Up Button

[Pres sed] ??
R13-

AI P

?? Arrow Down But ton

[ Pres sed] ??

R13-
AI P

<< Mes sage [Inf us ion

Rate  [ Incr eas e]] >>

R13
AIP ^

[Pump [St opped]]

R14
AI P &

? Message [Given]  ?

R14-
AI P

?? Enter B utton [P ress ed]

??

R14
AI P

[ Gi ven := 0  ]

R14
AIP ^

[Stopped]

R14-
AI P

<< Mes sage [Gi ven]  >>

R11-
AIP

? Mess age [M ain]  ?

R11-
AIP

<< Mes sage [Vol ume]  >>

^

[Pump [St opped]]

R12
AIP &

? Mes sage [ IR Limit] ?

R13
AIP &

? Mode [C linic ] ?

R13
AIP &

? Mess age [ Infusi on Rat e]

?

R13-
AIP

?? Enter Button [Pres sed]

??

R13-
AIP

[Infus ion Rate := M ess age

[Inf usion Rate]]

R13
AIP ^

[ St opped]

R13-
AI P

<< M essage [I nfusion

Rate [Dec rease]] >>

R13
AIP ^

[Pump [St opped] ]

R13-
AI P

?? Arrow Up Button

[Pres sed] ??
R13-

AI P

?? Arrow Down But ton

[ Pres sed] ??

R13-
AI P

<< Mes sage [Inf us ion

Rate  [ Incr eas e]] >>

R13
AIP ^

[Pump [St opped]]

R14
AI P &

? Message [Given]  ?

R14-
AI P

?? Enter B utton [P ress ed]

??

R14
AI P

[ Gi ven := 0  ]

R14
AIP ^

[Stopped]

R14-
AI P

<< Mes sage [Gi ven]  >>

R11-
AIP

? Mess age [M ain]  ?

R11-
AIP

<< Mes sage [Vol ume]  >>

R11
AIP ^

[Pump [St opped] ]

R12-
AIP

? M ess age[Vol ume] ?

R12-
AIP

<<Mess age [ I R LI mit ] >>

R12
AIP ^

[ Pump [ St opped]]

R13-
AIP

? Message [ I R Li mit] ?

R13-
AIP

<< Message [Infusion

Rate] >>

R13
AIP ^

[Pump [St opped]]

R14-
AIP

? Mess age [ Infusi on

Rate]?

R14-
AIP

<<Mess age [M ai n] >>

R14
AIP ^

[Pump [St opped]]

R11-
AIP

?? Next B utton [P ressed]

??

R17+
Ti mer {Sc reen}

[Reset]

R17+
Timer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Reset] R17+
Ti mer {Screen}

[Reset] R17+
Timer {Sc reen}

[Res et] R17+
Timer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Res et]

R11
AIP ^

[Pump [St opped] ]

R12-
AIP

? M ess age[Vol ume] ?

R12-
AIP

<<Mess age [ I R LI mit ] >>

R12
AIP ^

[ Pump [ St opped]]

R13-
AIP

? Message [ I R Li mit] ?

R13-
AIP

<< Message [Infusion

Rate] >>

R13
AIP ^

[Pump [St opped]]

R14-
AIP

? Mess age [ Infusi on

Rate]?

R14-
AIP

<<Mess age [M ai n] >>

R14
AIP ^

[Pump [St opped]]

R11-
AIP

?? Next B utton [P ressed]

??

R17+
Ti mer {Sc reen}

[Reset]

R17+
Timer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Reset] R17+
Ti mer {Screen}

[Reset] R17+
Timer {Sc reen}

[Res et] R17+
Timer {Sc reen}

[Reset ] R17+
Ti mer {Sc reen}

[Res et] R17+
Ti mer {Sc reen}

[Reset ]

R17+
Ti mer {Sc reen}

[ Res et]

R4+
BATTERI ES =

?? Charge [Low] ??

R4-
AIP

[Bat ter ies  [ Low]]

R4-
VOLTAGE DETECTOR

[.. .]

R4+
BATTERI ES =

?? Charge [ Nor mal] ??

R4-
AI P

[Batteries [ Normal]]

R4-
VOLTAGE  DETE CTOR

< Low Batt eries > R4-
VOLTAGE DETECTOR

< Normal Bat ter i es >

R4+
BATTERI ES =

?? Charge [Low]  ??R4+
BATTERI ES =

?? Charge [Norm al] ??

R1
AIP
[On]

R4-
AIP =

?? Batteries  [Low]  ??

R4-
AIP

<< Message [Bat teri es

Low] >>

R17+
Ti mer {Sc reen}

?? 2 mi n ??

R16-
AIP

<< Status:  >>

:

R17+
Ti mer {Sc reen}

[Reset ]

R17+
Ti mer {Sc reen}

[ Res et]

R4+
BATTERI ES =

?? Charge [Low] ??

R4-
AIP

[Bat ter ies  [ Low]]

R4-
VOLTAGE DETECTOR

[.. .]

R4+
BATTERI ES =

?? Charge [ Nor mal] ??

R4-
AI P

[Batteries [ Normal]]

R4-
VOLTAGE  DETE CTOR

< Low Batt eries > R4-
VOLTAGE DETECTOR

< Normal Bat ter i es >

R4+
BATTERI ES =

?? Charge [Low]  ??R4+
BATTERI ES =

?? Charge [Norm al] ??

R1
AIP
[On]

R4-
AIP =

?? Batteries  [Low]  ??

R4-
AIP

<< Message [Bat teri es

Low] >>

R17+
Ti mer {Sc reen}

?? 2 mi n ??

R16-
AIP

<< Status:  >>

: Pump Stat us

; Batter ies Status

; Volume

R17+
Ti mer {Sc reen}

[Reset]

R4
Beeper

[3 Beeps]

R10-
AIP

[ Display Mode]  := AIP

[Mode]

R2
Beeper

[3 Beeps]

R4-
AIP =

?? Batter ies  [Normal ] ??

R17-
Timer {Sc reen} ^

?? 2 min ??

R6+
Timer {Pump}

?? Pump Time ??

R6
AIP

<Drug [Pump 1m ]]>

R6
Pump

[Pumping]

R6
Line

< D rug >

R6+
Us er {Pati ent}

> D rug <

R6+
Timer {Pump}

[Reset]

R7
AIP

? Vol <= 5 ml ?

R7+
AIP

? Else?

R7
Beeper

[3 Beeps ]

R14-
R7-

AIP =

Drug [Pumped]

R7
AIP

? Volume [ Low] ?

R7

Pump Stat us

; Batter ies Status

; Volume

R17+
Ti mer {Sc reen}

[Reset]

R4
Beeper

[3 Beeps]

R10-
AIP

[ Display Mode]  := AIP

[Mode]

R2
Beeper

[3 Beeps]

R4-
AIP =

?? Batter ies  [Normal ] ??

R17-
Timer {Sc reen} ^

?? 2 min ??

R6+
Timer {Pump}

?? Pump Time ??

R6
AIP

<Drug [Pump 1m ]]>

R6
Pump

[Pumping]

R6
Line

< D rug >

R6+
Us er {Pati ent}

> D rug <

R6+
Timer {Pump}

[Reset]

R7
AIP

? Vol <= 5 ml ?

R7+
AIP

? Else?

R7
Beeper

[3 Beeps ]

R14-
R7-

AIP =

Drug [Pumped]

R7
AIP

? Volume [ Low] ?

R7-
AIP

<< Mess age [ Vol ume Low]

>>

R7-
AIP

<< Message [Volume Low ]

>>

R7
AIP

Volume [Empty]

R7
AIP

[Volume [Low]]

R7+
AIP

? Vol > 5 ml ?

R7+
AIP

Volume [Normal]

R7+
AIP

? Vol > 0 ?

R6+
AI P ^

[Pump [Runni ng]]

R6+
AIP ^

[Pump [Running]]

R6+
AI P ^

[Pump [Running]]

R8
AIP ^

[Pump [St opped] ]

R8
Beeper

[ Conti nuous Beep]

R7
AIP

? Vol <= 0 ?

R5-
AIP

? Batter ies [Low] ?

R5
Beeper

[Single Beep]

R9-
AIP

?? OS- Line [Bloc ked] ??

R14-
AIP

[Gi ven : = Gi ven +

Calc ulated Given Amount]

R9-
Pump

-
AIP

<< Mess age [ Vol ume Low]

>>

R7-
AIP

<< Message [Volume Low ]

>>

R7
AIP

Volume [Empty]

R7
AIP

[Volume [Low]]

R7+
AIP

? Vol > 5 ml ?

R7+
AIP

Volume [Normal]

R7+
AIP

? Vol > 0 ?

R6+
AI P ^

[Pump [Runni ng]]

R6+
AIP ^

[Pump [Running]]

R6+
AI P ^

[Pump [Running]]

R8
AIP ^

[Pump [St opped] ]

R8
Beeper

[ Conti nuous Beep]

R7
AIP

? Vol <= 0 ?

R5-
AIP

? Batter ies [Low] ?

R5
Beeper

[Single Beep]

R9-
AIP

?? OS- Line [Bloc ked] ??

R14-
AIP

[Gi ven : = Gi ven +

Calc ulated Given Amount]

R9-
Pump

[Stopped]

R15
AIP ^

[Pump [ Stopped]]

R15-
Pump

[Stopped]

R15-
AIP

?? AS- Line [Air ] ??

R14-
AIP

[Gi ven:= Given +

Calc ulat ed Gi ven A mount]

R9
AIP ^

[Pump [Stopped]]

R7-
AIP

[Vol := Vol + Volume

Pumped]

R9-
AIP

<< Message [Line

Bloc ked] > >

R8-
AIP

<< Mess age [E mpt y] >>

R15-
AIP

<< M essage [Air  In Line]

>>

R7-
AIP

[ Vol : = Vol + Volume

Pumped]

R14-
R7-

AIP

Drug [Not Pumped]

R9
Beeper

[ Continuous Beep] R15
BEEPER

[Cont inuous Beep]

R9-
AIP

<Drug [Stop Pumping>

R15-
AIP

<Drug [ St op Pumping]>

R3-
AIP

<Drug [Stop Pumping]>

R3-
Pump

[Stopped]

R3-

[Stopped]

R15
AIP ^

[Pump [ Stopped]]

R15-
Pump

[Stopped]

R15-
AIP

?? AS- Line [Air ] ??

R14-
AIP

[Gi ven:= Given +

Calc ulat ed Gi ven A mount]

R9
AIP ^

[Pump [Stopped]]

R7-
AIP

[Vol := Vol + Volume

Pumped]

R9-
AIP

<< Message [Line

Bloc ked] > >

R8-
AIP

<< Mess age [E mpt y] >>

R15-
AIP

<< M essage [Air  In Line]

>>

R7-
AIP

[ Vol : = Vol + Volume

Pumped]

R14-
R7-

AIP

Drug [Not Pumped]

R9
Beeper

[ Continuous Beep] R15
BEEPER

[Cont inuous Beep]

R9-
AIP

<Drug [Stop Pumping>

R15-
AIP

<Drug [ St op Pumping]>

R3-
AIP

<Drug [Stop Pumping]>

R3-
Pump

[Stopped]

R3-
AIP

[Given := Gi ven +

Calc ulated Given A mount]

R3-
AIP

<< Status [ Vol ] >>

R3-
AIP

<< Mess age [Pump

Stopped] > >

R2-
AIP

<< Mes sage [Pump

Running] >>

R16-
AIP

<< Status [Runni ng] >>

R16-
AIP

<< St atus  [Low] > >

R16-
AIP =

?? Batt er ies [Nor mal] ??

R16-
AIP

<< St atus  [Normal]  >>

R16-
AIP =

?? Batteri es  [Low]  ??

R16-
AIP

<< Status  [Stopped] >>

R7-
AIP

[Vol := Vol + Volume

Pumped]

R16-
AIP

<< Status  [ Vol ] >> R16-
AIP

<< Status [ Vol ] >>

R15-
R9-

AIP

? Pump [Running] ?

R15-
R9-

AIP
? Pump [Runni ng] ?

R15-
R9-

AIP

? Pump [Runni ng] ?
R15-
R9-

AIP

? Pump [Running]  ?

AIP

[Given := Gi ven +

Calc ulated Given A mount]

R3-
AIP

<< Status [ Vol ] >>

R3-
AIP

<< Mess age [Pump

Stopped] > >

R2-
AIP

<< Mes sage [Pump

Running] >>

R16-
AIP

<< Status [Runni ng] >>

R16-
AIP

<< St atus  [Low] > >

R16-
AIP =

?? Batt er ies [Nor mal] ??

R16-
AIP

<< St atus  [Normal]  >>

R16-
AIP =

?? Batteri es  [Low]  ??

R16-
AIP

<< Status  [Stopped] >>

R7-
AIP

[Vol := Vol + Volume

Pumped]

R16-
AIP

<< Status  [ Vol ] >> R16-
AIP

<< Status [ Vol ] >>

R15-
R9-

AIP

? Pump [Running] ?

R15-
R9-

AIP
? Pump [Runni ng] ?

R15-
R9-

AIP

? Pump [Runni ng] ?
R15-
R9-

AIP

? Pump [Running]  ?

R15-
R9-

AIP

? Pump [Running] ?R15-
R9-

AIP

? Pump [Running]  ?

R15-
R9-

AIP

? Pump [Running] ?

R15-
AIP --

?? Start- Stop Button [Held]

??
R15-

AIP --

?? Start- Stop Button [Held]

??

R3-
AIP

[Pump [Abort]]

R9-
AIP

[Pump [Abort]]
R15-

AIP
[Pump [Abort]]

R15-
R9-

AIP

? Pump [ Running] ?

R15-
R9-

AIP

? Pump [Running] ?

R16-
AIP

[Bat ter ies  Status  [M onitor]

R14-
R7-

AIP

? Drug [Pumped] ?

R7-
AIP

Vol := Vol - 1ml

R14-
AIP

[Gi ven := Gi ven + 1ml ]

R14-
R7-

AIP

? Drug [ Not Pum ped] ?

R16-
AIP

<< Stat us [ Vol ]  >>

R15-
R9-

AIP

? Pump [Running] ?R15-
R9-

AIP

? Pump [Running]  ?

R15-
R9-

AIP

? Pump [Running] ?

R15-
AIP --

?? Start- Stop Button [Held]

??
R15-

AIP --

?? Start- Stop Button [Held]

??

R3-
AIP

[Pump [Abort]]

R9-
AIP

[Pump [Abort]]
R15-

AIP
[Pump [Abort]]

R15-
R9-

AIP

? Pump [ Running] ?

R15-
R9-

AIP

? Pump [Running] ?

R16-
AIP

[Bat ter ies  Status  [M onitor]

R14-
R7-

AIP

? Drug [Pumped] ?

R7-
AIP

Vol := Vol - 1ml

R14-
AIP

[Gi ven := Gi ven + 1ml ]

R14-
R7-

AIP

? Drug [ Not Pum ped] ?

R16-
AIP

<< Stat us [ Vol ]  >>

R14-
R7-

AI P =

Drug [ Pumped]

R8-
AIP

<Drug [Stop Pum ping]>

R8-
Pump

[Stopped]

Modeling Safety Properties
1. Pump operation thread
2. Thread monitoring presence 

of air in the line.  Interrupts 
thread 1 when air is 
detected.

3. Thread monitoring line 
blockage.  Interrupts thread 1 
when line is blocked.

4. Thread monitoring start-stop 
button.  Interrupts thread 1 
when button is held long 
enough.

AIP Initialization

Threads monitoring user and sensor inputs

Threads monitoring 
batteries status and 
screen update timer

AIP programming functions 

AIP’s
behavior in 
‘stopped’
state

AIP’s
behavior in 
‘running’
state

1234

1 2 3 4 5 6 7

Screen Mode Button Effect

1 Any Any Lock Display  current mode

2 Mode Any Display  passw ord screen

Display  prev ious mode

Display  nex t mode

3 Passw or
d Any

1. Set the display ed mode if passw ord is
correct, or
2. Display  the selected mode

Display  prev ious digit

Display  nex t digit

4 Volume Any Reset volume

5 IR Limit Prog. Set IR limit

Increment IR limit

Decrement IR limit

6 IR Clinic Set IR

Increment IR

Decrement IR

Giv en Clinic Clear given amount

7 Any Any Nex t Scroll through av ailable screens

Modeling Access Control

 
Figure 7: AIP’s DBT with integrated safety and security requirements 

 
Modeling access control by factoring out the 

constraints serves two important purposes. The 
constraints on various functions clearly stands out at 
the beginning of the functions, which improves 
readability and can assist in validation of requirements. 
The other benefit is from a usability point of view. 
Often the user interface functionality is context driven. 
For instance, in the case of AIP the enter button, 
arrow-up, and down-arrows have multiple functions. 
By modeling the constraints in the manner shown in 
figures 5 and 6, the context of the buttons is readily 
apparent making the implementation from usability 
point of view easier. A snapshot of the DBT that 
models the access control for AIP is illustrated in 
figure 7. 

 
4. Formal verification of security and 
safety properties 
 

The AIP case study presented in this paper is a 
simplified version of a typical modern embedded 
system. As in most modern embedded systems the 
consequences of failure in this system are very serious. 
Therefore, it is important that the design of such a 
system must be formally verified. 

Let us consider the hazard of drug non/under-
delivery. This hazard may occur due to violation of 
number of safety and security properties. The hazard 
may occur as a result of; 1) the pump is not stopped if 
there is a blockage in the line, 2) the controller 

software calculates the drug given more that the drug 
actually infused, and 3) pump’s infusion rate is set to a 
rate slower than the required infusion rate by an 
unauthorized user. These conditions correspond to the 
AIP properties 2, 3, 7 and 9 listed in table 3. 

The first safety property is represented as LTL 
formula (Th2 in table 4). This LTL formula states that 
it is globally true (represented with ‘G’ operator) that 
when there is a line blockage (line=blocked) then in 
the next step (represented by ‘X’ operator), the pump 
should be stopped (pump=pStopped). Using the sal-
smc tool in the SAL environment we were able to 
prove this formula. Similarly, the safety property 3 was 
proved using LTL formula th3 (table 4).  

The other condition that may lead to the hazard is 
the violation of security properties number 7 and 9 
(table 3). These properties state that infusion rate must 
not be allowed to change when the pump is either in 
patient mode or program mode, i.e. it must only be set 
in clinic mode. The corresponding LTL formulas (Th7 
and Th9) verified that our design does not violate these 
conditions. 

Similarly, the hazard of drug overdose may be 
caused by violation of one or more safety and security 
properties. In this case, the properties 3, 5 and 8 must 
be ensured in the system to mitigate the risks of drug 
overdose. In addition, the violation of security 
properties 6 and 10 may also lead to drug overdose 
hazard. As illustrated in table 4, the LTL formulas for 
these properties were proved in the SAL environment. 



Table 3: Safety and security properties for AIP 
No. Property Ref. 

Safety Properties 

1. If there is air in the line the pump should not pump Th1. 

2. If there is blockage of the line the pump should not pump  Th2. 

3. If the pump is stopped then the drug volume must be re-
calculated 

Th3. 

4. If the drug volume is zero then pump must not pump the 
drug 

Th4. 

Security Properties 

5. The upper limit for infusion rate cannot be set in patient 
mode 

Th5. 

6. The amount of drug ‘given’ must not be reset in patient 
mode 

Th6. 

7. The infusion rate must not be set in patient mode Th7. 

8. The upper limit for infusion rate cannot be set in clinic 
mode 

Th8. 

9. The infusion rate must not be set in program mode Th9. 

10. 
The amount of drug ‘given’ must not be reset in program 
mode 

Th10. 

 
Table 4: Formal verification of AIP Design  

Ref. LTL Formula Outcome 

Safety Properties 

Th1. G((line=air) => (X(pump=pStopped))) Proved 

Th2. G((line=blocked) => (X (pump=pStopped)) Proved 

Th3. G((aIP__Drug=stopPumping) => 
(aIP__Vol=vCalculated)) 

Proved 

Th4. G((pump=running) => NOT (aIP__Volume = 
empty)) 

Not Proved 

Security Properties 

Th5. G((aIP__Mode=patient) => NOT 
(aIP__IRLimit=setLimit AND aIP__MSG=mIRLimit)) 

Proved 

Th6. G((aIP__Mode=patient) => NOT 
(aIP__Given=reset) AND aIP__MSG=mGiven)) 

Proved 

Th7. G((aIP__Mode=patient) => NOT 
(aIP__InfusionRate=setInfusionRate) AND 
(aIP__MSG=mInfustionRate)) 

Proved 

Th8. G((aIP__Mode=clinic) => NOT 
(aIP__IRLimit=setLimit AND aIP__MSG=mIRLimit)) 

Proved 

Th9. G((aIP__Mode=program) => NOT 
(aIP__InfusionRate=setInfusionRate) AND 
(aIP__MSG=mInfustionRate)) 

Proved 

Th10. G((aIP__Mode=program) => NOT 
(aIP__Given=reset) AND aIP__MSG=mGiven)) 

Proved 

 
The last hazard identified in the case study is the 

hazard of air embolism. The safety property to avoid 
this hazard requires the pump to be stopped if there is 
air detected in the line (safety property 1). This 
property was verified using LTL formula (Th1). 
However, during safety analysis another safety 
property was identified which requires that the pump 
should not attempt to infuse drug if the pump runs out 
of drug. If the system attempts to pump when no drug 
is present in the drug cartridge then the hazard of air 
embolism may occur (safety property 4). This is only 

possible in combination of violation of safety property 
1, i.e. the air in the line is not detected. We were not 
able to prove the corresponding LTL formula (Th4) 
due to flaw in our design. There is no guard to prevent 
system from stop pumping when there is no drug left in 
the drug cartridge. 

The fact we were able to uncover a design flaw in 
the DBT during formal verification reinforces the 
importance of using formal methods in design of 
critical applications. Another important observation 
from the case study is that an integrated view of safety 
and security requirements has the potential to play a 
crucial role in safety and security analysis of system. 
For instance, in the AIP system we identified both 
safety and security properties that must be 
implemented in the system to avoid the drug overdose 
hazard.  

 
5. Conclusion 

 
Safety and security engineering is an iterative 

process that is performed through out the systems 
development process. The requirements are 
continuously analyzed and refined during the process. 
Isolation of safety and/or security requirements 
engineering from systems engineering may result in 
incomplete understanding and late resolution of 
problems. An integrated and uniform approach to 
support this process should be aimed at resolving 
conflicts between competing requirements as early as 
possible. 

In this paper we have presented the process of 
designing a safety critical medical device using the 
GSE method. The integrated view generated using the 
method provided a useful platform for integrating 
safety and security requirements. The IBT and DBT 
can potentially play an important role in the designs of 
critical systems as the impact of each requirement on 
the complete system is readily apparent in the 
integrated view. The simple graphical notation can 
play an important role in validation of requirements 
and formal semantics of the notation leads to formal 
verification of critical properties of the system. The 
gap between the informal requirements specification 
and their formal representation was bridged by the 
systematic translation technique and transition from 
problem domain to solution domain was achieved by 
methodically refining the IBT into the final DBT.  

The fact that we were able to uncover a subtle 
design flaw in the DBT during formal verification 
reinforces the importance of using formal methods in 
design of critical applications. Another important 
observation from the case study is that integrated 
analysis of critical properties like safety and security is 
necessary for effective mitigation of risks associated 
with the system. 



The research work in the area of integration of 
safety and security requirements have been either on 
conceptual level [6, 8] or limited to using techniques 
from one discipline to another [7].  The KAOS 
framework [18] and the DISCOS methodology [5] 
attempt to integrate safety and security requirements 
engineering with more general requirements 
engineering.  The GSE method distinguishes itself 
from these and other similar approaches on the basis of 
its support for translation of informal requirements into 
formal specification, presenting an integrated view of 
requirements and facilitating the design process in a 
systematic manner. 

Our future research work is aimed at providing 
support for hazard and threats analyses in the GSE 
method. The support for timing and performance 
analysis of DBT is also being investigated. In related 
work, an automated failure mode and effect analysis is 
being developed to support safety analysis in the GSE 
method [12]. 

 
Acknowledgement 

 
This work is partially funded by Australian 

Research Council (ARC) under the ARC Centers of 
Excellence program. We would also like to 
acknowledge the contribution of Dr. Lars Grunske and 
Nisansala Yatapanage for their assistance in model 
checking our design specification using SAL 
specification language. 
 
References 
 
[1] J. C. Knight, "Safety Critical Systems: Challenges and 

Directions," presented at 24th International Conference 
on Software Engineering, ICSE 2002, Orlando, Florida, 
2002. 

[2] N. G. Leveson, Safeware: System Safety and 
Computers: Addison-Wesley Publishing Company, 
1995. 

[3] P. T. Devanbu and S. G. Stubblebine, "Software 
Engineering for Security: A Roadmap," presented at 
International Conference on Software Engineering 
(ICSE 2000) - Future of SE Track, 2000. 

[4] R. Lutz, "Software engineering for safety: A roadmap," 
presented at The Future of Software Engineering, 2000. 

[5] I. Sommerville, "An Integrated Approach to 
Dependability Requirements Engineering," presented at 
11th Safety-Critical Systems Symposium, Bristol, 2003. 

[6] A. Burns, J. McDermid, and J. Dobson, "On the 
Meaning of Safety and Security," Computer Journal, 
vol. 35, pp. 3-15, 1992. 

[7] J. Rushby, "Critical System Properties: Survey and 
Taxonomy," Computer Science Laboratory, SRI 
International SRI-CSL-93-1, 1994. 

[8] D. G. Firesmith, "Common Concepts Underlying 
Safety, Security, and Survivability Engineering," 
Software Engineering Institute, Carnegie Mellon 
University CMU/SEI-2003-TN-033, December 2003. 

[9] N. G. Leveson, "Intent Specifications: An Approach to 
Building Human-Centered Specifications," IEEE 
Transactions on Software Engineering, vol. SE-26, 
2000. 

[10] R. G. Dromey, "Genetic Design: Amplifying Our 
Ability to Deal With Requirements Complexity," 
Lecture Notes in Computer Science, vol. 3466, pp. 95-
108, 2005. 

[11] K. Winter, "Formalising Behavior Trees with CSP," 
presented at International Conference on Integrated 
Formal Methods, IFM'04, 2004. 

[12] L. Grunske, P. Lindsay, N. Yatapanage, and K. Winter, 
"An Automated Failure Mode and Effect Analysis 
based on High-Level Design Specification with 
Behavior Trees," accepted in Fifth International 
Conference on Integrated Formal Methods (IFM2005), 
Eindhoven, The Netherlands, 2005. 

[13] C. Smith, K. Winter, I. Hayes, R. G. Dromey, P. 
Lindsay, and D. Carrington, "An Environment for 
Building a System Out of Its Requirements," presented 
at Tools  Track, 19th IEEE International Conference on 
Automated Software Engineering, Linz, Austria, 2004. 

[14] Deltec, "Operator's Manual, CADD-Legacy ® 1 
Ambulatory Infusion Pump, Model 6400," vol. 2005: 
Smiths Medical MD, Inc., 2005. 

[15] F. P. Brooks, "No Silver Bullet: Essence and Accidents 
of Software Engineering," Computer, vol. 20, pp. 10-
19, 1987. 

[16] N. Shankar, "Combining Theorem Proving and Model 
Checking through Symbolic Analysis," presented at 
CONCUR'00: Concurrency Theory, 2000. 

[17] T. Jaeger and J. E. Tidswell, "Practical Safety in 
Flexible Access Control Models," ACM Transactions 
on Information and System Security, vol. 4, pp. 158-
190, 2001. 

[18] C. Ponsard, P. Massonet, A. Rifaut, J. F. Molderez, A. 
v. Lamsweerde, and H. T. Van, "Early Verification and 
Validation of Mission-Critical Systems," presented at 
FMICS’04, Linz, Austria, 2004. 

 


