TwigBuffer: Avoiding Useless Intermediate
Solutions completely in Twig Joins

Jiang Li and Junhu Wang

School of Information and Communication Technology
Griffith University, Gold Coast, Australia
Jiang.li@student.griffith.edu.au, J.Wang@griffith.edu.au

Abstract. Twig pattern matching plays a crucial role in XML data
processing. TwigStack [2] is a holistic twig join algorithm that solves the
problem in two steps: (1) finding potentially useful intermediate path
solutions, (2) merging the intermediate solutions. The algorithm is opti-
mal when the twig pattern has only //-edges, in the sense that no useless
partial solutions are generated in the first step (thus expediting the sec-
ond step and boosting the overall performance). However, when /-edges
are present, a large set of useless partial solutions may be produced,
which directly downgrades the overall performance. Recently, some im-
proved versions of the algorithm (e.g., TwigStackList and iTwigJoin)
have been proposed in an attempt to reduce the number of useless par-
tial solutions when /-edges are involved. However, none of the algorithms
can avoid useless partial solutions completely. In this paper, we propose
a new algorithm, TwigBuffer, that is guaranteed to completely avoid the
useless partial solutions. Our algorithm is based on an ingenious strategy
to buffer and manipulate elements in stacks and lists. Experiments show
that TwigBuffer significantly outperforms previous algorithms when ar-
bitrary /-edges are present.

1 Introduction

The importance of fast processing of XML data is well known. Twig pattern
matching, which is to find all matchings of a query tree pattern in an XML data
tree, lies in the center of all XML processing languages. Therefore, finding efficient
algorithms for twig pattern matching is an important research problem.

Over the last few years, many algorithms have been proposed to perform
twig pattern matching. Most of these algorithms find twig pattern matching in
two phases. In the first phase, a query tree is decomposed into smaller pieces,
and solutions against these pieces are found. In the second phase, all of these
partial solutions are joined together to generate the final results. Binary struc-
tural join(e.g.,[1]) and holistic twig join(e.g., [2-5]) are two important types of
two-phase twig pattern matching algorithms. Holistic twig join algorithms have
significantly reduced the number of useless intermediate path solutions compared
with structural join algorithms. When only //-edges are present in a query tree,



al 2
e EiR

cl /a2\ @C/\b

2 b1

Fig. 1. An example to basic ideas of TwigBuffer

all of the intermediate paths will definitely appear in the final solutions. How-
ever, if /-edges are involved, none of them can completely eliminate the useless
intermediate path solutions.

In this paper, we present a novel holistic twig join algorithm,TwigBuffer,
that completely avoids the useless partial solutions for arbitrary twig patterns.
With ingenious manipulation of data elements in buffer stacks and result lists,
the algorithm also ensures the linear worst-case complexity in the first phase.
Our experiments show that this algorithm significantly outperforms previous
algorithms when arbitrary /-edges are present in the twig pattern.

The rest of the paper is organized as follows. TwigBuffer is presented in
detail in Section 2. In Section 3, we show TwigBuffer correctly finds all twig
matchings with low worse-case complexity. The experiment results are reported
in Section 4. Finally, Section 5 concludes this paper.

2 TwigBuffer: our holistic twig join algorithm

2.1 Overview of TwigBuffer

We explain the basic ideas used in TwigBuffer using the example in Fig. 1.

TwigBuffer avoids useless partial solutions by doing a thorough check of
the P-C relationships, so that the current element of node n is regarded useful
only if it has a descendant in T} for each child j of n, and it has a child in
T; for each child i of n that has the P-C relationship with n, and every child
of n recursively satisfies the above condition. Like TwigStackList, it buffers
elements read from the streams in order to check the P-C relationships; but
unlike TwigStackList, it uses two different buffering policies. The first buffering
policy, PCBuffering, is used to buffer ancestors elements (and to some extent
this is similar to the buffering in TwigStackList). To conduct thorough checking
of the P-C relationships, when the buffer stack is not empty, it will check the
top element only. To ensure no useful element is abandoned, a second type of
buffering, Sbuffering, is used to buffer elements that are potentially descendants
of elements in the stack, so that these elements can be checked later for A-D or
P-C relationships with the elements in the parent stack.

In the example above, a; and as will be buffered using the first buffering
policy because they are ancestors of b;. Now the current element of node a is aq
(note: in TwigStackList, the current element is a;).After this step, the current
elements of query nodes become ao, ¢; and by, but we cannot abandon c; yet,



because we cannot conclude that it is not in a final solution (e.g., if a; has a
b-child too). Therefore, we use a second buffering policy to buffer ¢; and co. Now
the current elements become as, co and by, and they are a solution of the twig
pattern. After popping up as, we go back to process a;. Since a; does not have
a b-child, we know it can be abandoned.

2.2 Notation and Data structures

Similar with other holistic twig pattern matching algorithms (e.g. TwigStack,
TwigStackList), the Containment labels of the elements with the same value are
stored or organized in one stream for access. For each stream T,,, there exist
a pointer PT,, pointing to the current element. The function Advance(T),,) can
make the pointer PT,, to point to the next element in the stream T,. In addition,
we can use isEnd(T,) to judge whether PT,, points to the position after the last
element in the stream T;,.

There are two major types of data structures used in TwigBuffer. One is
stacks for buffering elements read from the streams. The other is lists used for
compactly storing and representing partial root-to-leaf solutions. Elements in a
buffer stack are arranged in ascending order of the start value from bottom to
top, but unlike TwigStackList, they may not be strictly nested. The elements
in a result list are also in ascending order and strictly nested. An element is an
ancestor of the elements after it.

For the buffer stacks, the basic operations are: isEmpty, length, pop, push, top
and bottom. The functions built on the lists are: head, tail, removeTuail, isEmpty
and insert. The function insert should be noted. With it, an element can be
inserted into a result list and the ascending order of elements is maintained.
Similar to the linked stack in TwigStack, each element in the list contains a
pointer pointing to an element in the parent list (See Fig. 1).

During query processing, the current element of each query node should
be known. The basic rule is that if the buffer stack is not empty, the current
element should stand at the top of the stack. Otherwise the current element will
be the one in the stream pointed to by PT,. Based on this rule, the function
getElement(n) will return the current element of node n for processing, and the
function proceed(n) will make the current element to be the next one:

getElement(n): returns top(Sy,) if S, is not empty;
returns getElementFromStream(n) otherwise.

proceed(n): pop(Sy) if Sy, is not empty, advance(T,) otherwise.
For the nodes in twig pattern @Q, the functions isRoot(n) and isLeaf (n) checks
whether node n is the root and is the leaf respectively, parent(n) and chil-
dren(n) returns the parent of n and the set of children of n, respectively, and
isPCChild(n) returns TRUE if n is not the root and n is connected to its parent
by a /-edge.

For any two elements e; and ez in data tree ¢, the function isAD(eq,e2)
returns TRUE iff e; is an ancestor of es. The function subtree Nodes(q) returns
all of the roots of ¢’s subtrees.



2.3 TwigBuffer

The getNext(n) function The function getNexzt(n), shown in Algorithm 1,
is a core function of TwigBuffer. The function takes a query node n as input ,
and returns a query node that may be n itself or a descendant of n.

Algorithm 1 getNext(n)

if isLeaf(n) then
return n

: for all node n; in children(n) do

if isPCChild(n;) AND isAD(getElement(n), getElement(n;)) then
PCBuf fering(n,n;)

r; = get Next(n;)

if r; # n; then
return r;

©

Nomin = MANAT Gy, c chitdren(n) Jet Element(n;).start
! Mamaz = MATATGn, cchildren(n) et Element(n;).start
. if ~isEmpty(BS,) AND —isEmpty(BSh,,,,) then
while get Element(nm:n).end < get Element(n).start do
SBuf fering(n, nmin)
if getElement(nmn).end < getElement(n).start then
Proceed(n)

: if —isEmpty(BSn,,..) AND —isEmpty(BS,) then
if getElement(n).end < getElement(nmaz).start then
return n.,qz

el el el el
© XD TR 2O

: while getElement(n).end < getElement(nmaz).start do
Proceed(n)

: PCBuf fering(n, nmag)

! Manin = MINAT Gy, cchildren(n) et Element(n;).start

. if getElement(nmin).start < getElement(n).start then
return n,in

. if ret := getNotSatisfyPC(n) then

return ret

: else

return n

N NN NNDNDND N

Before explaining the details of getNext(n), we need to introduce the buffering
schemes, which play an essential role in the matching process. Generally, there
are two situations that buffering will happen:

First, if the query node n has the P-C relationship with its child n;, and the
current element in 7}, is an ancestor of the current element in 7,,, then buffering
will occur and the general rule is:

PCBuffering: Given a query node p and its P-C child c, suppose the current
element of c is e.. In the stream T),, all of the elements that are ancestors of
e. will be buffered. The elements that are not ancestors of e. will be skipped



because they will not contribute to the final solutions. Apply this rule recursively
on parent(p) if p is also a P-C child.

Second, a different buffering occurs when the pointer of a stream needs to
advance, but its parent’s buffer stack is not empty. In other words, the current
element in the stream can not be abandoned at current stage because it may be
in the final solutions. The buffering rule is:

SBuffering: Given a query node p and its child c, suppose some elements
are buffered (through PCBuffering or SBuffering) in the buffer stack BS, of
the node p. In the stream T., all of the elements whose start value lies in the
range (bottom(BS) ).start, top(BS),).start) will be buffered in BS. firstly, and
then, the first set of strictly nested elements whose start value lies in the range
(top(BSp).start, top(BSy).end) will also be buffered. After buffering, all of the
elements in T}, on the left of the nested elements just mentioned above are skipped
because they will not contribute to fianl solutions. The buffering process above
may change the current element of node ¢, which means the PCBuffering on p
may become invalid if ¢ is a P-C child, so PCBuffering on p needs redo.

In the explanation below, we use current(n) to denote the current element
of node n.

Algorithm 2 Subroutines

1: procedure PCBUFFERING(p, ¢)
2: ep = getElement fromStream(p)
ec = getElement(c)
while e,.start < e..start do
if ep.end > ec.end then
ClearBuf ferStack(p, ep)
MovetoBuf ferStack(p, ep)

Advance(T))

9: if isPCChild(p) AND isAD(getElement(parent(p)),getElement(p)) then
10: PCBuf fering(parent(p),p)

11: procedure SBUFFERING(p,c)

12: Buffer all the elements of node ¢ in  the range of
(Bottom(BS)).start, Top(BSp).start)
13: Buffer the first set of nested elements of node ¢ in the range of

(Top(BSy).start, Top(BSy).end)
14: if there are elements buffered AND isPCChild(c) then
15: PCBuf fering(p, c)
16: while get Element fromStream(p).end < getElement(c).start do
17: Advance(T))

18: procedure GETNOTSATISFYPC(n)

19: for all node n; in children(n) do

20: if isPCChild(n;) then

21: if getElement(n;).level — getElement(n).level # 1 then
22: return n;




In Algorithm 1, lines 11 to 15 is an important step, which deals with the
situation that both buffer stacks of a query node n and its child n,,;, are not
empty. Nin is the child node whose current element has the minimum start
value. The current element of node n should proceed if its start position is
greater than the end position of the current element of node 7., because it
can not contribute to any useful path solutions in the future. Lines 16 to 18 deal
with the situation that both buffer stacks of query node n and m,,,, are not
empty.

Line 18 returns nm,q, because current(nmq,) cannot contribute to the final
solution. Lines 19 to 20 check whether current(n) lies to the left of the current
element of at least one of n’s children, and if so, it cannot contribute to the final
solution, and will be skipped. Line 21 should be noted. If the node n proceeds
in the last step, the PCBuffering on the node n needs redone. All the ancestors
of current element of node n,,4, will be buffered. Line 22 is used for re-acquire
the nin, because ny,;, may change due to the buffering actions.

The main algorithm Algorithm 3 presents the details of the main algorithm.
It iteratively invokes getNext(n) to get the appropriate query node for further
processing. If ancestors or parents can be found in the parent result list, the
current element of the returned node will be moved into the result list. Otherwise,
the returned node can not contribute to final solutions in the future, so its current
element should be abandoned.

Line 4 should be noted. It is used for cleaning self result list to guarantee the
elements are strictly nested. Additionally, when an element is inserted into the
result list, the ascendant order in start value should be always kept. It should be
noted that the action of clean parent’s result list does not exist in TwigBuffer,
but it exists in TwigStack and TwigStackList. This change is mainly because
TwigBuffer adopts more complex buffering schemes, clean parent’s result list
may cause some elements removed too early.

3 Correctness and complexity of TwigBuffer

Due to the limit of space, the correctness proof is not included. This part can be
found in the full paper. For complexity, since TwigBuffer uses more compli-
cated buffering schemes to avoid useless partial solutions, one would naturally
wonder whether the first phase of the algorithm has become computationally too
expensive. We point out that although the element manipulation in TwigBuffer
is more complex, the worse-case time complexity remains linear in the sum of
the number of nodes in () and the lengths of the output list.

4 Experiments

4.1 Experimental set-up

We implement TwigStack, TwigStackList and TwigBuffer in C programming
language. The XML parser we used is Libxml2. All the experiments were per-



Algorithm 3 TwigPatternMatching(Q)

1: while —end(Q) do
2: Gact := getNext(root(Q))

3: if isR00t(Gact) OR —isEmpty(RLparent(qq.;)) then

4: cleanSel f ResultList(qact)

5: MovetoResult List(qqct)

6: if isLeaf(qact) then

7 showSolutions(qact)

8: remove fromRL(qact)

9: else

10: if length(BSparent(qaer)) > 1 AND  getElement(qact).start >
bottom (B Sparent(gaer))-start then

11: SBuf fering(parent(qact), qact)

12: else

13: Proceed(qact)

14: procedure END(q)

15: return Vg; € subtreeNodes(q) : isLeaf(q:) \ isEmpty(BSn) \ end(Tr)

16: procedure CLEANSELFRESULTLIST(n)

17: if isEmpty(BS,) then

18: while getElement(n).end < tail(RLy).start OR getElement(n).start >

tail(RLy,).end do
19: RemoveT ail(n)

20: procedure MOVETORESULTLIST(n)

21: p:= getPointer(n)

22: e := getElement(n)

23: Insert result node (e,p) to RL,, the ascendant order in start value should be
kept

24: procedure GETPOINTER(n)

25: p points to the end of RLyarent(n)

26: e := getElement(n)

27: while e.start < p.start OR e.end > p.end do

28: p := previous(p)

29: return p

formed on 1.6GHz Intel Centrino Duo processor with 1G RAM. The operating
system is Windows XP. We used the following two data sets for evaluation: Tree-
Bank and DBLP obtained from the University of Washington XML repository.
The metrics of evaluation we selected is running time.

The queries on both data sets are presented in Table 1. It can be seen that
all the queries have different twig structures. This consideration will make the
comparisons more comprehensive.

The experimental results are illustrated in Fig.2. As shown, the performance
of TwigStackList is nearly the same with TwigBuffer on the queries that
do not have /-edges or /-edges happen under non-branching nodes. However,
TwigBuffer performs better than TwigStackList when the queries have /-edges
under branching nodes.



Data set |Query|XPath expression
TreeBank(Q1 |//S[//MD]//ADJ
TreeBank|Q2 |//S[//VP/IN]//NP
TreeBank|Q3 |//S[/JJ]/NP
TreeBank|Q4 |//S/VP/PP[/IN]/NP/VBN
TreeBank|Q5 _|//EMPTY]|//VP/PP//NNP|[/S[//PP//1J]/VBN]//PP/NP
DBLP [Ql |//dblp/inproceedings|//title]/author
DBLP |Q2 |//dblp/article[//author][//title]//year
DBLP |Q3 |//dblp/inproceedings[//cite][//title]/author
DBLP |Q4 |//dblp/article[//author][//title][//url][//ee]//year
DBLP |Q5 |//article[//volume][//cite]//journal
Table 1. Queries over TreeBank and DBLP

OTwigStack MTwigStackList O TwigBuffer O TwigStack M TwigStackList O TwigBuffer

S E

£ 1000 £ 1400
$ 900 ]

A 212
% 0 & 1200
= 00 = 1000
Z 600 E 800
500 B
100 oo
- 300 o 400
5 200 2
S 100 S 20
g 0 g 0

% %

= 1 2 3 4 5 = 1 2 3 4 5

(a) TreeBank (b) DBLP

Fig. 2. Experiment results

5 Conclusion

We presented a novel holistic twig join algorithm that efficiently finds root-
to-path matchings. Our algorithm completely avoids useless intermediate path
matchings for arbitrary twig patterns, and thereby improves the overall perfor-
mance of previous two-phase twig join algorithms. The better overall perfor-
mance of our algorithm has been substantiated in our experiments.

References

1. S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Srivastava.
Structural joins: A primitive for efficient XML query pattern matching. In ICDE,
pages 141-; 2002.

2. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern
matching. In SIGMOD Conference, pages 310-321, 2002.

3. T. Chen, J. Lu, and T. W. Ling. On boosting holism in XML twig pattern matching
using structural indexing techniques. In SIGMOD Conference, pages 455-466, 2005.

4. J. Lu, T. Chen, and T. W. Ling. Efficient processing of XML twig patterns with
parent child edges: a look-ahead approach. In CIKM, pages 533-542, 2004.

5. T. Yu, T. W. Ling, and J. Lu. TwigStackList-: A holistic twig join algorithm for
twig query with not-predicates on XML data. In DASFAA, pages 249-263, 2006.



