
Unertainty relations for the realisation ofmarosopi quantum superpositions and EPRparadoxesE. G. Cavalanti and M. D. ReidARC Centre for Exellene for Atom-Optis,Shool of Physial Sienes, The University of Queensland,Brisbane, AustraliaFebruary 2, 2008AbstratWe present a uni�ed approah, based on the use of quantum uner-tainty relations, for arriving at riteria for the demonstration of the EPRparadox and marosopi superpositions. We suggest to view eah ri-terion as a means to demonstrate an EPR-type paradox, where there isan inonsisteny between the assumptions of a form of realism, eithermarosopi realism (MR) or loal realism (LR), and the ompleteness ofquantum mehanis.1 IntrodutionShrödinger [1℄ raised the question of whether there ould be a superpositionof marosopially distint states. The issue at hand[2℄ is that where we havea quantum superposition of two states, the system annot be thought of asbeing in one state or the other until a measurement is performed that woulddistinguish the states.The onept of the quantum superposition is intrinsially assoiated withthe onept of a fundamental quantum indeterminateness, that we are limitedin the preision to whih we an ever predit outomes of measurements thatare performed on the system. This follows beause if we have a superpositionof two eigenstates |x1〉 and |x2〉 of an observable x̂, where x2 − x1 is large, thenby our interpretation, the system is not predetermined to be in either state, sowe have an indeterminay in the outome x that is at least of order x2 − x1.This indeterminay is of a fundamentally di�erent nature to that of lassialtheory, where lak of knowledge of an outome is understood in terms of a sta-tistial theory in whih there is a probability for the system to be in a ertainstate, whih will have a ertain probability of outome for x. Suh probabilis-ti interpretations are generally referred to as lassial mixtures. In quantum1



Figure 1: Consider three regions of outome ±1, 0 for measurement x̂. Densityoperator ρ1 enompasses outomes x < x2 and ρ2 enompasses outomes x > x1.mehanis, the indeterminay that arises from a quantum superposition is notrepresented this way.The onept of a marosopi superposition is therefore linked with that ofa marosopi quantum indeterminateness, whih manifests as a marosopispread in outomes x that annot be explained using statistial mixtures of�smaller� states, that is, states whose preditions give a smaller spread of out-ome. The issue of marosopi quantum indeterminateness is fundamental toquantum mehanis, in that any pure state an be written in terms of eigenstatesof any observable, and it is always the ase that the unertainty priniple willapply to prevent absolute predetermination of another observable. Put anotherway, an eigenstate of momentum when written in terms of position eigenstateswill be a superposition |ψ〉 =
∑

i ci|xi〉 of a marosopi � in fat in�nite �range of position eigenstates |x〉.In terms of Shrödinger's onern, we are left to question the real existene ofmarosopi quantum indeterminateness, sine this would imply a superpositionof eigenstates with an inherently marosopi range of predition of x. Follow-ing [3℄, this is still a paradox. We onsider two regions of outome (denoted
±1) that are marosopially separated, and denote the region of intermediateoutomes by 0, as shown in Figure 1. The mixture ρ = P1ρ1 + P2ρ2, where ρ1enompasses outomes x < x2 and ρ2 enompasses outomes x > x1 (P1/2 areprobabilities), imposes a �marosopi reality�, in the sense that the system anbe interpreted to be in possibly one (but never both) of two marosopially -separated regimes. The marosopi superpositions defy this assertion.We present a uni�ed approah for onstruting riteria for marosopisuperpositions and EPR entanglement. We �rst review some experimentalsignatures[3℄ for determining the extent of �quantum fuzziness�. These signa-tures are based on the use of quantum unertainty relations. Next, we show2



how one an easily onstrut from single-system unertainty relations new suhsignatures that apply to bipartite entangled systems. These new signaturesresult by simply substituting one of the varianes of the original unertaintyrelation with the variane of an inferred observable. Finally we show that thesimple further amendment of the unertainty relations so that all varianes arereplaed by inferred varianes will result in riteria for the EPR paradox[4℄.2 Marosopi realism, loal realism and the om-pleteness of quantum mehanisThe assumption we seek to test is marosopi realism (MR)[2℄ � that physialsystems an always be desribed at any given time as being in one or other oftwo marosopially distint states. This an (in priniple) oexist with a lakof suh realism at the mirosopi level.EPR[4℄ argued against the ompleteness of quantum mehanis � the notionthat quantum mehanis is a omplete theory in the sense that there are nofurther fats about physial systems whih are not aptured by a quantumdesription. In partiular, quantum observables obey unertainty relations andthe assumption of ompleteness implies that the values of those observablesare not de�ned beyond that preision. EPR showed how this assumption ofompleteness of quantum mehanis lashed with that of loal realism (LR).This assumption of the ompleteness of quantum mehanis does not seema priori to lash with MR � an argument ould be made that the unertaintypriniple imposes only a mirosopi limitation on the predetermination of ob-servables. We show that this ould be a misleading argument, in that quantummehanis predits the existene of eigenstates of an observable (this observableis said to be squeezed) and thus implies in�nite spreads in �quantum fuzziness�,for onjugate observables. This predition we wish to test.3 Criteria for S-sopi superpositionsContinuous variable ase: We onsider a system A for whih an observable x̂displays a marosopi range of values. We denote by p̂ the observable onjugateto x̂, so that (in appropriate units) ∆2x∆2p ≥ 1.Leggett and Garg[2℄ de�ned marosopi realism (MR) as the assumption:"A marosopi system with two or more marosopially distint states avail-able to it will at all times be in one or the other of these states". If we donot want to restrit a priori what states are available to the system, we mustassume that all possible superpositions of eigenstates of x̂ are available. If twostates eah loalized around marosopially distint values of x indiate twomarosopially distint states, then eah (pure) quantum state allowed by MRan only have a mirosopi (or non-marosopi) range of outomes.In applying MR to situations where more than two states are available, wethus postulate that MR asserts the system to be desribable as a statistial3



Figure 2: Squeezed states predit a Gaussian distrbution for x with variane
∆x = er. The measurement of a ∆p would imply superpositions of |x〉 thathave a range (or size) S where S > 2/∆p. For the squeezed state, S > 2∆x.mixture of states ρ(S)

i , eah of whih predits a small (non-marosopi) spreadof outomes x for x̂. We now assume that the �states� are quantum states, andall this premisemarosopi quantum realism. In this ase, denoting the spreadin the predition for x for the state ρ(S)
i by S, we an write the density matrixas

ρ =
∑

i

Piρ
(S)
i (1)Here ∑

i Pi = 1 and for eah ρ(S)
i , |x1 − x2| ≤ S for all values of outomes x1and x2 whih have zero probability. This assumption leads [3℄ to onstraints onthe minimum fuzziness in the onjugate observable p. Spei�ally, it follows,sine eah ρ(S)

i is itself a quantum state and sine the variane predited by amixture annot be less than the average of the varianes of its omponents, that
∆2p ≥ 4

S2 .The experimental observation of squeezing in p suh that ∆p < 2/S thereforeimplies the failure of mixtures of quantum states that an only have a spread intheir predition for x of S or less. Thus neessarily the system exists with someprobability in a pure superposition state of spread, or size, S where
S > 2/∆p (2)The squeezed state[5℄ |ψ〉 = er(a2−a†2) |0〉 (a is the boson operator for a �eldmode at A and |0〉 is the vauum state) is the simplest model for squeezedvarianes, de�ned as ∆p < 1 (Fig. 2). Here measurements are: x̂ = (a† + a),4



p̂ = i(a† − a). The squeezed state predits ∆2x = σ = e2r, so that x haseventually a marosopi quantum indeterminay, while p is squeezed, so that
∆2p = 1/σ = e−2r. Experiments[6, ?, ?℄ using optial �elds have on�rmed theexistene of squeezed states. Values reported are of order ∆p = 0.4, to on�rma quantum superposition of eigenstates |x〉 with S = 4, whih is twie that ofthe oherent state.Disrete ase: We present new riteria for the extent of quantum indeter-minateness for spin states with disrete outomes. We use ∆JX∆JY ≥ |〈JZ〉|/2,where Jx, JY , JZ are angular momentum observables. Suppose ρ to be a mix-ture of superpositions of the eigenstates of JX that have an extent S or less.This leads to the onstraint ∆JY ≥ |〈JZ〉|/S. Thus if we measure a value ∆JYwe an infer existene of superpositions of size S where

S > |〈JZ〉|/∆JY (3)The inequality is interesting in that the bound |〈JZ〉| itself is not intrinsiallyrestrited in size. This means that it is possible to dedue existene of super-positions of spin eigenstates whih have a marosopi extent in the indetermi-nateness, even if this extent is small relative to the quantum limit itself.One example is the observation of squeezing in �spin� observables onstrutedvia the Shwinger formalism. We de�ne JA
X = (a−a

†
+ +a†−a+)/2, JA

Y = (a−a
†
+−

a†−a+)/2i, JA
Z = (a†+a+−a†−a−)/2, where a± are boson operators for �eld modes.The physial measurements are of photon number di�erenes, the JX and JYmeasurements being performed by �rst ombining the �elds with appropriatephase shifts. Thus, we de�ne aX± = (a+±a−)/

√
2 and aY ± = (a+∓ia−)/

√
2 toget JX = (a†X+aX+−a†X−aX−)/2 and JY = (a†Y +aY +−a†Y −aY −)/2 . Squeezingof spin variables for the marosopi regime where outomes beome e�etivelyontinuous has been observed, in experiments[7, 8, 10, 9℄ based on polarisationand atomi-spin squeezing.4 Criteria for S-sopi superpositions in bipartitesystemsContinuous variable ase: We onsider two subsystems A and B, and de�neobservables x, p for A, and xB , pB for B, where ∆xB∆pB ≥ 1 . We derive anunertainty relation that will be useful in deriving signatures for superpositionsof entangled systems.Theorem 1: For any quantum state

∆x∆inf p ≥ 1 (4)We de�ne the average variane in the inferene of p given a measurement ÔBat B as ∆2
infp =

∑

OB P (OB)∆2(p|OB): ∆2(p|OB) is the variane of the on-ditional distribution P (p|OB) and P (OB) is the probability of OB , the resultfor observable ÔB . In general, where we have a quantum unertainty relation5



of type ∆O1∆O2 ≥ |〈[O1, O2]〉|/2, or ∑

I ∆2OI ≥ D, we an onstrut anotherquantum relation that applies to bipartite systems by substituting one of thevarianes, ∆2O say, for the system A, with the variane ∆2
infO of the inferredvalue for the observable Ô.Proof : The variane ∆2x is alulable from the density operator for Awhih is ρA = TrBρ =

∑

OB P (OB)ρB
OB where ρB

OB is the redued state of
A onditional on the result OB for the measurement ÔB at B. We thus get
∆2x ≥ ∑

OB P (OB)∆2
OB (x|OB), sine the variane of a mixture an't be lessthan the average of the varianes of its omponents. Here we denote ∆2

OB (x|OB)as the variane of the onditional P (x|OB). Now using the Cauhy Shwarzinequality
∆2x∆2

inf p ≥
∑

OB

P (OB)∆2(x|OB)
∑

OB

P (OB)∆2(p|OB) (5)
≥

[

∑

OB

P (OB)∆(x|OB)∆(p|OB)

]2

≥ 1 (6)Similar reasoning holds for the more general unertainty relation exept thatone uses ∆(O1|OB)∆(O2|OB) ≥ |〈C|OB〉|/2, where C = [O1, O2] and 〈C|OB〉denotes the average of P (C|OB), and the fat that in general ∑

z P (z)|〈x|z〉| ≥
∑

z P (z)〈x|z〉 =
∑

z P (z)
∑

x xP (x|z) = 〈x〉. The result for the sums of vari-anes an be proved in a similar fashion.The assumption that ρ an be expressed as a mixture of only S-sopi su-perpositions of |x〉 will imply, following the logi outlined in Setion 3, theonstraint ∆infp ≥ 2/S. The observation of a ∆infp allows us to dedue theexistene of a superposition of eigenstates |x〉 with a spread S, where
S > 2/∆infp (7)An arbitrary amount of squeezing ∆infp is predited for the two-mode squeezedstate [11, 12℄ |ψ〉 =

∑∞
n=0 cn|n〉A|n〉B, where cn = tanhnr/coshr. Here ∆x =

σ = cosh2r while ∆infp = 1/ cosh2r. The inferene variane ∆infp has beenmeasured and reorded in experiments[13℄ that are designed to test for the EPRparadox. Values as low as ∆infp ≈ 0.7 have been ahieved.Disrete ase: We now onsider where spin measurements Jθ and JB
φ anbe performed. Appliation of Theorem 1 leads to the following inequality satis-�ed by all suh quantum systems: ∆JX∆infJY ≥ |〈JZ〉|/2. The observation of aertain inferene variane ∆infJY will lead to the onlusion of a superpositionsof eigenstates of JX with spread

S > |〈JZ〉|/∆infJY (8)Measurements of ∆infJY have been reported by Bowen et al[14℄.
6



5 Criteria for the EPR paradoxWe onsider quantum unertainty relations for system A of a bipartite sys-tem. For example we may have ∆O1∆O2 ≥ |〈[O1, O2]〉|/2 where [O1, O2] evalu-ates as another observable whih we denote C. Alternatively, we may have[15℄
∑

i ∆2Oi ≥ D where D is a onstant. Beause we have a seond system B,we an de�ne the inferred varianes ∆2
infOi. The following result allows animmediate writing down of riteria to on�rm EPR's paradox[4℄.Theorem 2: Where we have suh a quantum unertainty relation that holdsfor all quantum states, we an substitute the varianes ∆2O by average inferenevarianes ∆2

infO, and the mean |〈C〉| by |〈C〉|inf , the average inferene of themodulus of the mean as de�ned by |〈C〉|inf =
∑

OB P (OB)|〈C|OB〉|, where
〈C|OB〉 is the mean of the onditional distribution P (C|OB). The resultinginequality is an �EPR inequality� that if violated is a demonstration of the EPRparadox.Proof: We follow the treatment given by EPR[4℄, and the modi�ations[12,16℄, to onlude existene of an �element of reality� µOi that predetermines theresult of measurement for observable Oi. The probability distribution for thepredition of this element of reality is preisely that of the onditional P (Oi|OB)where OB is the result of a measurement performed at B, to infer the value of
Oi. EPR's loal realism (LR) implies a joint probability distribution P (λ) forthe µi, or for further underlying parameters. For the produt of the inferenevarianes we get, assuming LR

∆2
infO1∆

2
infO2 =

∑

OB

1

P (OB
1 )∆2(O1|OB

1 )
∑

OB

2

P (OB
2 )∆2(O2|OB

2 ) (9)
≥ [

∑

λ

P (λ)∆(O1|λ)∆(O2|λ)]2 (10)
≥

∣

∣

∣

∣

∣

∑

λ

P (λ)|〈C|λ〉|/2
∣

∣

∣

∣

∣

2

≥ |〈C〉|2inf/4 (11)and for the sum one obtains
∆2

inf (O1) + ∆2
inf (O2) =

∑

OB

1

P (OB
1 )∆2(O1|OB

1 ) +
∑

OB

2

P (OB
2 )∆2(O2|OB

2 )

=
∑

λ

P (λ)[∆2(O1|λ) + ∆2(O2|λ)] ≥ D (12)We have used[12℄ that if the �elements of reality� an be written as quantumstates, then the varianes predited by the elements of reality λ must satisfy thequantum unertainty relations. This leads to the result (11), one it is realisedthat inreasing the number of variables λ an only derease the average modulusof the mean.The violation of (11) or (12) thus implies inonsisteny of LR withthe ompleteness of quantum mehanis, that the underlying states symbolizedby the elements of reality an be quantum states.7



The �EPR inequalities�
∆2

infx∆
2
infp ≥ 1, ∆infJX∆infJY ≥ |〈JZ〉inf |/2 (13)(the latter implies the further EPR inequality[14℄ ∆infJX∆infJY ≥ |〈JZ〉|/2)have been derived previously[12℄ and in some ases used to demonstrate an EPRparadox[13, 14℄. One an also use Theorem 2 to derive EPR inequalities fromunertainty relations involving sums of varianes, so that for example ∆2JX +

∆2JY +∆2JZ ≥ j/2 as used by Ho�mann et al[15℄ leads to the EPR inequality
∆2

infJX + ∆2
infJY + ∆2

infJZ ≥ j/2.6 ConlusionThe riteria we have derived are based on the assumption that the systems anbe desribed as mixtures of underlying quantum states, whih therefore satisfyunertainty relations. This means that the riteria an be viewed in a uni�edway as onditions for demonstration of general EPR-type paradoxes. In the aseof the riteria for marosopi superpositions, we assume marosopi realism(MR) to infer that the system be desribed as probabilisti mixture of stateswith a mirosopi lak of predetermination only. The assumption that theseunderlying states be quantum states leads to our inequalities. An experimentalviolation of the inequalities on�rms existene of marosopi superpositions,but does not falsify marosopi realism itself, sine one may propose alter-native theories in whih the underlying states are not quantum states. Henewe have extended the EPR paradox to demonstrate an inonsisteny betweenompleteness of quantum mehanis and marosopi realism.Referenes[1℄ E. Shrödinger, Naturwissenshaften 23, 807 (1935).[2℄ A. J. Leggett and A. Garg, Phys. Rev. Lett. 54,857 (1985).[3℄ E. G. Cavalanti and M. D. Reid, Phys. Rev. Lett., 97, 170405 (2006).[4℄ A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935).[5℄ H. P. Yuen, Phys. Rev. A13, 2226 (1976).[6℄ S. Suzuki S , H. Yonezawa, F. Kannari, M. Sasaki, A. Furusawa, App. Phys.Lett. 89, 061116 (2006).[7℄ J. F. Corney, P. D. Drummond, J. Heersink, V. Josse, G. Leuhs, and U.L. Andersen, Phys. Rev. Lett. 97, 023606 (2006) .[8℄ W. P. Bowen, R. Shnabel, H. A. Bahor and P. K. Lam, Phys. Rev. Lett.88, 203601 (2002). 8



[9℄ V. Josse, A. Dantan, L. Verna, A. Bramati, M. Pinard, and E. Giaobino,Phys. Rev. Lett. 91, 103601 (2003).[10℄ B. Julsgaard, A. Kozhekin and E. S. Polzik, Nature 413, 400 (2001).[11℄ C. M. Caves and B. L. Shumaker, Phys. Rev. A 31, 3068 (1985).[12℄ M. D. Reid, Phys. Rev. A 40, 913 (1989); quant-ph/0103142.[13℄ Z. Y. Ou et al, Phys. Rev. Lett. 68, 3663 (1992). Yun Zhang et al, Phys.Rev. A 62, 023813 (2000). C. Silberhorn et al, Phys. Rev. Lett. 86, 4267(2001). W. P. Bowen et al, Phys. Rev. Lett. 90, 043601 (2003). J. C. Howellet al, Phys. Rev. Lett. 92, 210403 (2004).[14℄ W. P. Bowen, N. Treps, R. Shnabel, P . K. Lam, Phys. Rev. Lett. 89,253601 (2002).[15℄ H. F. Hofmann and S. Takeuhi, Phys. Rev. A 68, 032103 (2003).[16℄ Mermin, N. D., Physis Today 43, 9 (1990).

9

http://arXiv.org/abs/quant-ph/0103142

	Introduction
	Macroscopic realism, local realism and the completeness of quantum mechanics
	Criteria for S-scopic superpositions
	Criteria for S-scopic superpositions in bipartite systems
	Criteria for the EPR paradox 
	Conclusion

