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tWe present a uni�ed approa
h, based on the use of quantum un
er-tainty relations, for arriving at 
riteria for the demonstration of the EPRparadox and ma
ros
opi
 superpositions. We suggest to view ea
h 
ri-terion as a means to demonstrate an EPR-type paradox, where there isan in
onsisten
y between the assumptions of a form of realism, eitherma
ros
opi
 realism (MR) or lo
al realism (LR), and the 
ompleteness ofquantum me
hani
s.1 Introdu
tionS
hrödinger [1℄ raised the question of whether there 
ould be a superpositionof ma
ros
opi
ally distin
t states. The issue at hand[2℄ is that where we havea quantum superposition of two states, the system 
annot be thought of asbeing in one state or the other until a measurement is performed that woulddistinguish the states.The 
on
ept of the quantum superposition is intrinsi
ally asso
iated withthe 
on
ept of a fundamental quantum indeterminateness, that we are limitedin the pre
ision to whi
h we 
an ever predi
t out
omes of measurements thatare performed on the system. This follows be
ause if we have a superpositionof two eigenstates |x1〉 and |x2〉 of an observable x̂, where x2 − x1 is large, thenby our interpretation, the system is not predetermined to be in either state, sowe have an indetermina
y in the out
ome x that is at least of order x2 − x1.This indetermina
y is of a fundamentally di�erent nature to that of 
lassi
altheory, where la
k of knowledge of an out
ome is understood in terms of a sta-tisti
al theory in whi
h there is a probability for the system to be in a 
ertainstate, whi
h will have a 
ertain probability of out
ome for x. Su
h probabilis-ti
 interpretations are generally referred to as 
lassi
al mixtures. In quantum1



Figure 1: Consider three regions of out
ome ±1, 0 for measurement x̂. Densityoperator ρ1 en
ompasses out
omes x < x2 and ρ2 en
ompasses out
omes x > x1.me
hani
s, the indetermina
y that arises from a quantum superposition is notrepresented this way.The 
on
ept of a ma
ros
opi
 superposition is therefore linked with that ofa ma
ros
opi
 quantum indeterminateness, whi
h manifests as a ma
ros
opi
spread in out
omes x that 
annot be explained using statisti
al mixtures of�smaller� states, that is, states whose predi
tions give a smaller spread of out-
ome. The issue of ma
ros
opi
 quantum indeterminateness is fundamental toquantum me
hani
s, in that any pure state 
an be written in terms of eigenstatesof any observable, and it is always the 
ase that the un
ertainty prin
iple willapply to prevent absolute predetermination of another observable. Put anotherway, an eigenstate of momentum when written in terms of position eigenstateswill be a superposition |ψ〉 =
∑

i ci|xi〉 of a ma
ros
opi
 � in fa
t in�nite �range of position eigenstates |x〉.In terms of S
hrödinger's 
on
ern, we are left to question the real existen
e ofma
ros
opi
 quantum indeterminateness, sin
e this would imply a superpositionof eigenstates with an inherently ma
ros
opi
 range of predi
tion of x. Follow-ing [3℄, this is still a paradox. We 
onsider two regions of out
ome (denoted
±1) that are ma
ros
opi
ally separated, and denote the region of intermediateout
omes by 0, as shown in Figure 1. The mixture ρ = P1ρ1 + P2ρ2, where ρ1en
ompasses out
omes x < x2 and ρ2 en
ompasses out
omes x > x1 (P1/2 areprobabilities), imposes a �ma
ros
opi
 reality�, in the sense that the system 
anbe interpreted to be in possibly one (but never both) of two ma
ros
opi
ally -separated regimes. The ma
ros
opi
 superpositions defy this assertion.We present a uni�ed approa
h for 
onstru
ting 
riteria for ma
ros
opi
superpositions and EPR entanglement. We �rst review some experimentalsignatures[3℄ for determining the extent of �quantum fuzziness�. These signa-tures are based on the use of quantum un
ertainty relations. Next, we show2



how one 
an easily 
onstru
t from single-system un
ertainty relations new su
hsignatures that apply to bipartite entangled systems. These new signaturesresult by simply substituting one of the varian
es of the original un
ertaintyrelation with the varian
e of an inferred observable. Finally we show that thesimple further amendment of the un
ertainty relations so that all varian
es arerepla
ed by inferred varian
es will result in 
riteria for the EPR paradox[4℄.2 Ma
ros
opi
 realism, lo
al realism and the 
om-pleteness of quantum me
hani
sThe assumption we seek to test is ma
ros
opi
 realism (MR)[2℄ � that physi
alsystems 
an always be des
ribed at any given time as being in one or other oftwo ma
ros
opi
ally distin
t states. This 
an (in prin
iple) 
oexist with a la
kof su
h realism at the mi
ros
opi
 level.EPR[4℄ argued against the 
ompleteness of quantum me
hani
s � the notionthat quantum me
hani
s is a 
omplete theory in the sense that there are nofurther fa
ts about physi
al systems whi
h are not 
aptured by a quantumdes
ription. In parti
ular, quantum observables obey un
ertainty relations andthe assumption of 
ompleteness implies that the values of those observablesare not de�ned beyond that pre
ision. EPR showed how this assumption of
ompleteness of quantum me
hani
s 
lashed with that of lo
al realism (LR).This assumption of the 
ompleteness of quantum me
hani
s does not seema priori to 
lash with MR � an argument 
ould be made that the un
ertaintyprin
iple imposes only a mi
ros
opi
 limitation on the predetermination of ob-servables. We show that this 
ould be a misleading argument, in that quantumme
hani
s predi
ts the existen
e of eigenstates of an observable (this observableis said to be squeezed) and thus implies in�nite spreads in �quantum fuzziness�,for 
onjugate observables. This predi
tion we wish to test.3 Criteria for S-s
opi
 superpositionsContinuous variable 
ase: We 
onsider a system A for whi
h an observable x̂displays a ma
ros
opi
 range of values. We denote by p̂ the observable 
onjugateto x̂, so that (in appropriate units) ∆2x∆2p ≥ 1.Leggett and Garg[2℄ de�ned ma
ros
opi
 realism (MR) as the assumption:"A ma
ros
opi
 system with two or more ma
ros
opi
ally distin
t states avail-able to it will at all times be in one or the other of these states". If we donot want to restri
t a priori what states are available to the system, we mustassume that all possible superpositions of eigenstates of x̂ are available. If twostates ea
h lo
alized around ma
ros
opi
ally distin
t values of x indi
ate twoma
ros
opi
ally distin
t states, then ea
h (pure) quantum state allowed by MR
an only have a mi
ros
opi
 (or non-ma
ros
opi
) range of out
omes.In applying MR to situations where more than two states are available, wethus postulate that MR asserts the system to be des
ribable as a statisti
al3



Figure 2: Squeezed states predi
t a Gaussian distrbution for x with varian
e
∆x = er. The measurement of a ∆p would imply superpositions of |x〉 thathave a range (or size) S where S > 2/∆p. For the squeezed state, S > 2∆x.mixture of states ρ(S)

i , ea
h of whi
h predi
ts a small (non-ma
ros
opi
) spreadof out
omes x for x̂. We now assume that the �states� are quantum states, and
all this premisema
ros
opi
 quantum realism. In this 
ase, denoting the spreadin the predi
tion for x for the state ρ(S)
i by S, we 
an write the density matrixas

ρ =
∑

i

Piρ
(S)
i (1)Here ∑

i Pi = 1 and for ea
h ρ(S)
i , |x1 − x2| ≤ S for all values of out
omes x1and x2 whi
h have zero probability. This assumption leads [3℄ to 
onstraints onthe minimum fuzziness in the 
onjugate observable p. Spe
i�
ally, it follows,sin
e ea
h ρ(S)

i is itself a quantum state and sin
e the varian
e predi
ted by amixture 
annot be less than the average of the varian
es of its 
omponents, that
∆2p ≥ 4

S2 .The experimental observation of squeezing in p su
h that ∆p < 2/S thereforeimplies the failure of mixtures of quantum states that 
an only have a spread intheir predi
tion for x of S or less. Thus ne
essarily the system exists with someprobability in a pure superposition state of spread, or size, S where
S > 2/∆p (2)The squeezed state[5℄ |ψ〉 = er(a2−a†2) |0〉 (a is the boson operator for a �eldmode at A and |0〉 is the va
uum state) is the simplest model for squeezedvarian
es, de�ned as ∆p < 1 (Fig. 2). Here measurements are: x̂ = (a† + a),4



p̂ = i(a† − a). The squeezed state predi
ts ∆2x = σ = e2r, so that x haseventually a ma
ros
opi
 quantum indetermina
y, while p is squeezed, so that
∆2p = 1/σ = e−2r. Experiments[6, ?, ?℄ using opti
al �elds have 
on�rmed theexisten
e of squeezed states. Values reported are of order ∆p = 0.4, to 
on�rma quantum superposition of eigenstates |x〉 with S = 4, whi
h is twi
e that ofthe 
oherent state.Dis
rete 
ase: We present new 
riteria for the extent of quantum indeter-minateness for spin states with dis
rete out
omes. We use ∆JX∆JY ≥ |〈JZ〉|/2,where Jx, JY , JZ are angular momentum observables. Suppose ρ to be a mix-ture of superpositions of the eigenstates of JX that have an extent S or less.This leads to the 
onstraint ∆JY ≥ |〈JZ〉|/S. Thus if we measure a value ∆JYwe 
an infer existen
e of superpositions of size S where

S > |〈JZ〉|/∆JY (3)The inequality is interesting in that the bound |〈JZ〉| itself is not intrinsi
allyrestri
ted in size. This means that it is possible to dedu
e existen
e of super-positions of spin eigenstates whi
h have a ma
ros
opi
 extent in the indetermi-nateness, even if this extent is small relative to the quantum limit itself.One example is the observation of squeezing in �spin� observables 
onstru
tedvia the S
hwinger formalism. We de�ne JA
X = (a−a

†
+ +a†−a+)/2, JA

Y = (a−a
†
+−

a†−a+)/2i, JA
Z = (a†+a+−a†−a−)/2, where a± are boson operators for �eld modes.The physi
al measurements are of photon number di�eren
es, the JX and JYmeasurements being performed by �rst 
ombining the �elds with appropriatephase shifts. Thus, we de�ne aX± = (a+±a−)/

√
2 and aY ± = (a+∓ia−)/

√
2 toget JX = (a†X+aX+−a†X−aX−)/2 and JY = (a†Y +aY +−a†Y −aY −)/2 . Squeezingof spin variables for the ma
ros
opi
 regime where out
omes be
ome e�e
tively
ontinuous has been observed, in experiments[7, 8, 10, 9℄ based on polarisationand atomi
-spin squeezing.4 Criteria for S-s
opi
 superpositions in bipartitesystemsContinuous variable 
ase: We 
onsider two subsystems A and B, and de�neobservables x, p for A, and xB , pB for B, where ∆xB∆pB ≥ 1 . We derive anun
ertainty relation that will be useful in deriving signatures for superpositionsof entangled systems.Theorem 1: For any quantum state

∆x∆inf p ≥ 1 (4)We de�ne the average varian
e in the inferen
e of p given a measurement ÔBat B as ∆2
infp =

∑

OB P (OB)∆2(p|OB): ∆2(p|OB) is the varian
e of the 
on-ditional distribution P (p|OB) and P (OB) is the probability of OB , the resultfor observable ÔB . In general, where we have a quantum un
ertainty relation5



of type ∆O1∆O2 ≥ |〈[O1, O2]〉|/2, or ∑

I ∆2OI ≥ D, we 
an 
onstru
t anotherquantum relation that applies to bipartite systems by substituting one of thevarian
es, ∆2O say, for the system A, with the varian
e ∆2
infO of the inferredvalue for the observable Ô.Proof : The varian
e ∆2x is 
al
ulable from the density operator for Awhi
h is ρA = TrBρ =

∑

OB P (OB)ρB
OB where ρB

OB is the redu
ed state of
A 
onditional on the result OB for the measurement ÔB at B. We thus get
∆2x ≥ ∑

OB P (OB)∆2
OB (x|OB), sin
e the varian
e of a mixture 
an't be lessthan the average of the varian
es of its 
omponents. Here we denote ∆2

OB (x|OB)as the varian
e of the 
onditional P (x|OB). Now using the Cau
hy S
hwarzinequality
∆2x∆2

inf p ≥
∑

OB

P (OB)∆2(x|OB)
∑

OB

P (OB)∆2(p|OB) (5)
≥

[

∑

OB

P (OB)∆(x|OB)∆(p|OB)

]2

≥ 1 (6)Similar reasoning holds for the more general un
ertainty relation ex
ept thatone uses ∆(O1|OB)∆(O2|OB) ≥ |〈C|OB〉|/2, where C = [O1, O2] and 〈C|OB〉denotes the average of P (C|OB), and the fa
t that in general ∑

z P (z)|〈x|z〉| ≥
∑

z P (z)〈x|z〉 =
∑

z P (z)
∑

x xP (x|z) = 〈x〉. The result for the sums of vari-an
es 
an be proved in a similar fashion.The assumption that ρ 
an be expressed as a mixture of only S-s
opi
 su-perpositions of |x〉 will imply, following the logi
 outlined in Se
tion 3, the
onstraint ∆infp ≥ 2/S. The observation of a ∆infp allows us to dedu
e theexisten
e of a superposition of eigenstates |x〉 with a spread S, where
S > 2/∆infp (7)An arbitrary amount of squeezing ∆infp is predi
ted for the two-mode squeezedstate [11, 12℄ |ψ〉 =

∑∞
n=0 cn|n〉A|n〉B, where cn = tanhnr/coshr. Here ∆x =

σ = cosh2r while ∆infp = 1/ cosh2r. The inferen
e varian
e ∆infp has beenmeasured and re
orded in experiments[13℄ that are designed to test for the EPRparadox. Values as low as ∆infp ≈ 0.7 have been a
hieved.Dis
rete 
ase: We now 
onsider where spin measurements Jθ and JB
φ 
anbe performed. Appli
ation of Theorem 1 leads to the following inequality satis-�ed by all su
h quantum systems: ∆JX∆infJY ≥ |〈JZ〉|/2. The observation of a
ertain inferen
e varian
e ∆infJY will lead to the 
on
lusion of a superpositionsof eigenstates of JX with spread

S > |〈JZ〉|/∆infJY (8)Measurements of ∆infJY have been reported by Bowen et al[14℄.
6



5 Criteria for the EPR paradoxWe 
onsider quantum un
ertainty relations for system A of a bipartite sys-tem. For example we may have ∆O1∆O2 ≥ |〈[O1, O2]〉|/2 where [O1, O2] evalu-ates as another observable whi
h we denote C. Alternatively, we may have[15℄
∑

i ∆2Oi ≥ D where D is a 
onstant. Be
ause we have a se
ond system B,we 
an de�ne the inferred varian
es ∆2
infOi. The following result allows animmediate writing down of 
riteria to 
on�rm EPR's paradox[4℄.Theorem 2: Where we have su
h a quantum un
ertainty relation that holdsfor all quantum states, we 
an substitute the varian
es ∆2O by average inferen
evarian
es ∆2

infO, and the mean |〈C〉| by |〈C〉|inf , the average inferen
e of themodulus of the mean as de�ned by |〈C〉|inf =
∑

OB P (OB)|〈C|OB〉|, where
〈C|OB〉 is the mean of the 
onditional distribution P (C|OB). The resultinginequality is an �EPR inequality� that if violated is a demonstration of the EPRparadox.Proof: We follow the treatment given by EPR[4℄, and the modi�
ations[12,16℄, to 
on
lude existen
e of an �element of reality� µOi that predetermines theresult of measurement for observable Oi. The probability distribution for thepredi
tion of this element of reality is pre
isely that of the 
onditional P (Oi|OB)where OB is the result of a measurement performed at B, to infer the value of
Oi. EPR's lo
al realism (LR) implies a joint probability distribution P (λ) forthe µi, or for further underlying parameters. For the produ
t of the inferen
evarian
es we get, assuming LR

∆2
infO1∆

2
infO2 =

∑

OB

1

P (OB
1 )∆2(O1|OB

1 )
∑

OB

2

P (OB
2 )∆2(O2|OB

2 ) (9)
≥ [

∑

λ

P (λ)∆(O1|λ)∆(O2|λ)]2 (10)
≥

∣

∣

∣

∣

∣

∑

λ

P (λ)|〈C|λ〉|/2
∣

∣

∣

∣

∣

2

≥ |〈C〉|2inf/4 (11)and for the sum one obtains
∆2

inf (O1) + ∆2
inf (O2) =

∑

OB

1

P (OB
1 )∆2(O1|OB

1 ) +
∑

OB

2

P (OB
2 )∆2(O2|OB

2 )

=
∑

λ

P (λ)[∆2(O1|λ) + ∆2(O2|λ)] ≥ D (12)We have used[12℄ that if the �elements of reality� 
an be written as quantumstates, then the varian
es predi
ted by the elements of reality λ must satisfy thequantum un
ertainty relations. This leads to the result (11), on
e it is realisedthat in
reasing the number of variables λ 
an only de
rease the average modulusof the mean.The violation of (11) or (12) thus implies in
onsisten
y of LR withthe 
ompleteness of quantum me
hani
s, that the underlying states symbolizedby the elements of reality 
an be quantum states.7



The �EPR inequalities�
∆2

infx∆
2
infp ≥ 1, ∆infJX∆infJY ≥ |〈JZ〉inf |/2 (13)(the latter implies the further EPR inequality[14℄ ∆infJX∆infJY ≥ |〈JZ〉|/2)have been derived previously[12℄ and in some 
ases used to demonstrate an EPRparadox[13, 14℄. One 
an also use Theorem 2 to derive EPR inequalities fromun
ertainty relations involving sums of varian
es, so that for example ∆2JX +

∆2JY +∆2JZ ≥ j/2 as used by Ho�mann et al[15℄ leads to the EPR inequality
∆2

infJX + ∆2
infJY + ∆2

infJZ ≥ j/2.6 Con
lusionThe 
riteria we have derived are based on the assumption that the systems 
anbe des
ribed as mixtures of underlying quantum states, whi
h therefore satisfyun
ertainty relations. This means that the 
riteria 
an be viewed in a uni�edway as 
onditions for demonstration of general EPR-type paradoxes. In the 
aseof the 
riteria for ma
ros
opi
 superpositions, we assume ma
ros
opi
 realism(MR) to infer that the system be des
ribed as probabilisti
 mixture of stateswith a mi
ros
opi
 la
k of predetermination only. The assumption that theseunderlying states be quantum states leads to our inequalities. An experimentalviolation of the inequalities 
on�rms existen
e of ma
ros
opi
 superpositions,but does not falsify ma
ros
opi
 realism itself, sin
e one may propose alter-native theories in whi
h the underlying states are not quantum states. Hen
ewe have extended the EPR paradox to demonstrate an in
onsisten
y between
ompleteness of quantum me
hani
s and ma
ros
opi
 realism.Referen
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