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ABSTRACT 
This paper proposes a fractal sinusoidal model that is 
able to reduce the bit-rate of sinusoidal model coders 
while achieving perceptually lossless quality. This is 
achieved by removing the redundancy between 
sinusoidal tracks through encoding similar tracks with 
the transformation between a template track and the 
original track. This paper proposes a transform that is 
able to capture the perceptual nature of sinusoidal 
tracks, and can be encoded efficiently. The results 
from our experiments show that the proposed fractal 
sinusoidal model coder is able to reduce the bit-rate of 
the sinusoidal model by roughly 30% while remaining 
perceptually lossless, while more aggressive 
modelling results in a reduction of around 60%, with 
minor quality degradation. 

1 INTRODUCTION 
Sinusoidal model audio coders [1] have been shown to 
be able to produce high-quality audio at low bit-rates 
[2,3,4]. These efforts were driven by the inability of 
other coding techniques, e.g. transform coders, to 
achieve good quality audio at these low bit-rates. In 
this paper we further reduce the bit-rate of sinusoidal 
model coders by applying fractal modelling to remove 
the self-similarities between sinusoidal tracks.  
 
Fractal coding operates on objects; these objects are 
referred to as fractals and have self-similarity. The 
goal of fractal coding is to recreate objects by utilising 
the self-similarity to encode the data. With fractal 
image coding, a pattern is found that can be used to 
iteratively reconstruct the original object. This is 
called an Iterated Function System (IFS), consisting of 
an attractor (pattern) and a collage (a specification of 
the required iterations). The collage consists of 
iterations of affine transformations that are used to 
scale, rotate or stretch the [5]. 
 
Once a suitable attractor can be found fractal image 
codes enable flexible coding schemes that can produce 

low bit-rates. These characteristics are also 
beneficially for audio coding, however fractal audio 
coding has not been studied, except for the work of 
Wannamaker and Vrscay [6] that investigated the use 
of fractal coding to efficiently encode the wavelet 
coefficients for a wavelet audio coder. 
 
This paper examines how fractal modelling can be 
applied to the encoding of mid-level audio 
representations to improve the performance of model 
coders. In this work we use sinusoidal tracks as our 
mid-level audio representation due to their high 
perceptual importance in model audio coding. It 
should be noted, however, that the same approach 
could be used with other mid-level representations, 
such as those used to represent transient and noise 
components of an audio signal.  
 
Sinusoidal modelling generates sinusoidal tracks. 
Perceptually, tracks are objects that follow the 
evolution of a single partial or harmonic. Tracks are 
used with sinusoidal model as they improve the 
reconstruction quality while reducing the bit-rate [7]. 
Sinusoidal tracks are highly similar, and this similarity 
represents redundancy that can be removed to further 
reduce the bit-rate of sinusoidal model coders. 
 
The approach taken in this paper is to perform fractal 
modelling on sinusoidal tracks to reduce the bitrate of 
audio coding. Fractal modelling encodes sinusoidal 
tracks as the transform from a template track. This 
approach has a high coding efficiency when the 
transform can be encoded with significantly fewer bits 
than the original track. This paper proposes such a 
transform. 
 
The paper will begin with a description of the 
proposed fractal sinusoidal modelling technique, with 
particular emphasis on the transform that facilitates 
high coding efficiency. Then the results obtained by 
encoding audio samples using the fractal sinusoidal 
model coder will be presented, with the final section 
providing the conclusions of the paper. 



   
  

2 FRACTAL SINUSOIDAL 
MODELLING 

Fractal sinusoidal modelling reduces the bit-rate of 
audio coding by removing the redundancy that is 
present due to the similarity between sinusoidal tracks. 
This is achieved by encoding the transform from a 
template track to the original track.  
 
We modelled the transform off sensible modifications 
of sinusoidal tracks, based on their perceptual nature. 
The transform provides mapping operators for 
frequency shift, amplitude gain, phase offset, time 
translation and time dilation of sinusoidal tracks. 
Figure 2.1 demonstrates how this can be achieved for 
two similar tracks in the frequency-time plane, with 

btrack  being a replica of atrack  that is delayed by 
tΔ  samples and is frequency shifted by fΦ . Similar 

mappings exist in the amplitude-time and phase-time 
planes, as well as for track duration. 
 

 
Figure 2.1. Fractal modelling of two similar 
sinusoidal tracks in the time-frequency plane. 

These transform operators can be encoded cheaply, 
but do not provide perfect track reconstruction. As 
will be shown in section 3 this is not detrimental as 
sinusoidal tracks are not ideal representations 
themselves. They are based off a sequence of 
sinusoidal estimates, and a small amount of error will 
not be audible. It was also found that the error 
between the reconstructed track and the original could 
be determined by the similarity between the template 
and original tracks, providing a means for managing 
the modelling error. 
 
The remainder of this section will examine the 
components of the fractal sinusoidal model in more 
detail. This includes the operators that define the 
transform and a similarity metric. 
 

2.1 Transform 
 
The five transform operators take scalar arguments 
which are calculated from the difference between the 
estimates from the template track, atrack , and the 
original track, btrack . The first operator is frequency 

shift, which maps the difference between tracks in the 
frequency plane. The argument is calculated using the 
average frequency estimate from each track as is 
shown in (1) where xN is the number of estimates in 

track x, and xif ,
ˆ is the ith frequency estimate in track x. 
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The time translation operator allows tracks to occur at 
different times. The argument is calculated from the 
difference of the track onset times. This is 
demonstrated in (2) where xt ,0  is the time of the first 
estimate in track x. 
 
 ababba onsetonsetttt −=−=Δ → ,0,0   (2) 
 
The duration of tracks can also vary; the time dilation 
operator maps this variation. The argument is 
determined by the ratio of track durations, as is shown 
in (3). 
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Work conducted for the MPEG-4 high quality 
parametric coder has shown that the phase trajectory is 
characterised from the initial phase estimate and the 
sequence of frequency estimates [8]. Therefore the 
variation in phase trajectory between tracks can be 
determined from the initial phase offset. The phase 
offset operator does this precisely, with the argument 
being calculated using (4) where x,0θ̂  is the first phase 
estimate of track x . 
 
 abba ,0,0

ˆˆ θθθ −=Δ →  (4) 
 
The final operator accounts for the variation in 
amplitude between tracks. The argument for the 
amplitude gain operator uses the average amplitude 
estimate from each track to determine the argument; 
this is shown in (5). 
 

 
amean

bmean
N

i
ai

a

N

i
bi

b
ba

A

A

A
N

A
N

A
a

b

,

,
1

0
,

1

0
,

ˆ

ˆ

ˆ1

ˆ1

==Φ

∑

∑
−

=

−

=
→  (5) 

 
Using these operators a track can be recreated from a 
template track (6). 
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Tracks are recreated from the template track by 
copying each estimate and adjusting the parameters 
using the operator arguments. The amplitude estimates 
are scaled by AΦ , and the frequency estimates are 
scaled by fΦ . The initial phase estimate is 
determined by adding the phase offset, θΔ , to the 
initial phase estimate of the template track, then the 
sequence of phase estimates is predicted using the 
frequency estimates. The time of the estimates is 
shifted by tΔ  samples. This process continues until 
the track grows to the desired duration, as defined by 

tΦ . This assumes that the template track is longer 
than the original track, so the time dilation must be in 
the range of 10 ≤Φ< t . 
 
The recreated track will be equivalent to the original if 
the two tracks are highly similar; otherwise the 
recreated track will not be equivalent to the original 
track. The next subsection presents a technique for 
determining the similarity between tracks that enables 
the track recreation error to be managed. 
 

2.2 Similarity Metric 
 
We measure the similarity between two tracks by 
using the perceptual measure proposed by Virtanen 
and Klapuri [9]. It measures the distance between 
normalised frequency and amplitude trajectories. This 
is beneficial as it automatically accounts for frequency 
shift and amplitude gain. The distance metric (7) 
measures the difference between frequency or 
amplitude estimates over the duration of the shortest 
track. 
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A similarity coefficient, σ , is then calculated from 
the distance of the frequency and amplitude 
trajectories, as is shown in (8). The similarity 
coefficient lies within the range of 10 ≤≤ σ , with 
high coefficients indicating a high similarity between 
the tracks. The α , β  and ρ  coefficients are used to 
adjust the similarity measurement performance and 
bias. From experimentation it was found that an 
unbiased similarity coefficient, with 5.0=α , 
performed best as information from the frequency and 
amplitude tracks are equally as important. It was also 
found that a setting 10== ρβ  gave the best 
separation between similar and non-similar sinusoidal 
tracks. 
 
 ( ) ( ) ( ) ( )badbad af eeba ,, 1, ρβ αασ −− −+=  (8) 
 

Using this similarity metric the similarity between 
track combinations can be measured. Figure 2.2 
provides the similarity coefficient measured for every 
track generated from a piano chord against the 5th 
track. It shows that tracks 5, 7 and 16 are similar, and 
thus can be modeled off each other. A similarity 
threshold, Tσ , can be used to determine when a track 
combination has adequate similarity, and will result in 
low-error track recreation. 
 
For this paper a global search for similarities is 
employed, as our audio samples are relatively short at 
around 30 seconds each. Obviously a global search is 
not practical for longer audio samples; in this case a 
local search would be beneficial. From our 
experimentation, it appears that this would not be 
detrimental to performance as similar tracks are 
localised in time. 
 

 
Figure 2.2. Similarity plot for track 5 of an 
audio sample of a piano chord. This 
demonstrates that tracks 5, 7 and 16 are similar. 

3 RESULTS 
To determine the performance of the fractal sinusoidal 
model coder a number of audio samples were encoded 
using the proposed coder. The coder uses 
multiresolution sinusoidal analysis [10] to generate the 
sinusoidal tracks. This includes the use of a CFB filter 
bank, sinusoidal estimation using quadratic 
interpolation, multiresolution sinusoidal tracking [11] 
and interpolating oscillators for synthesis.  
 
The similarity metric is used to globally search all 
tracks for similarity. When the similarity is above a 
similarity threshold, Tσ , the track is encoded using 
the fractal model at a cost of 10 bytes (16 bits per 
operator argument). Otherwise the track is encoded 
using DPCM techniques as presented in [2,3,12]. 
 
The similarity threshold is the parameter that defines 
the rate-distortion performance of the fractal 
sinusoidal model coder, with high threshold values 
improving quality but providing little reduction in bit-
rate, and low threshold values decreasing the quality 



   
  

while significantly reducing the bit-rate. Our 
experiments investigated the performance of the coder 
against this parameter. 
 
Figure 3.1 shows the number of tracks that are 
encoded using fractal modelling as the similarity 
threshold is adjusted. When more tracks are encoded 
using fractal modelling the reduction in bit-rate 
increases, as is illustrated in the right plot of Figure 
3.1. Further reduction would be seen by entropy 
encoding the operator arguments, and remains as 
further work. The original bit-rate for the sinusoidal 
model coding is specified in Table 1 for each sample 
used. 
 
 

 
Figure 3.1. Percentage of tracks modelled 
(left) and bit-rate reduction (right) measured 
against the similarity threshold. Four stereo 
audio samples were used, and the error bars 
indicate the 95% confidence interval of the 
measurements. 

 
The samples were reconstructed after fractal 
sinusoidal modelling to determine their perceptual 
quality. Perceptual quality experiments were 
conducted for each of the four samples listed in Table 
1 using the ITU-R BS.1116-1 [13] test method. The 
reference signal was the reconstructed signal after 
sinusoidal modelling. The results for ten subjects are 
presented in Figure 3.2. The results indicate that the 
fractal sinusoidal model is able to provide lossless 
quality at 9.0=Tσ , with the subjects unable to 
differentiate between the original sinusoidal modelled 
and fractal modelled samples. The average reduction 
at this threshold was 28.19% across the four samples. 
More aggressive modelling, 8.0≤Tσ , provides a 
slight reduction is quality, with the subjects being able 
to perceive the difference between the original and 
modelled samples. At these thresholds the bit-rate 
reduction reaches up to 60% on average. 
 

Sample Original  30% 60% 
Jack Johnson 32.49 22.74 13.00 
Jamiroquai  32.31 22.62 12.92 
Led Zeppelin 77.68 54.38 31.07 
Mozart 24.91 17.44 9.96 

Table 1. The bitrate (Kbps per channel) for the 
original sinusoidal modelled samples, and the 
corresponding bit-rates for 30% and 60% bit-

rate reduction. The high values for the Led 
Zeppelin sample are due to the large amount of 
transient signal energy present in this sample. 

 
While it could be argued that a similar reduction in 
bit-rate could be achieved by limiting the number of 
encoded tracks, from our experiments this approach 
should be avoided as it creates audio which begins to 
sound synthetic due to the lost signal components. The 
benefit of the fractal sinusoidal model is that it 
provides a cheap method for encoding tracks, instead 
of removing tracks completely. The fractal sinusoidal 
model is able to provide a signal reconstruction that 
has perceptually lossless quality at low bit-rates. 
 

 
Figure 3.2. Mean perceptual quality of the 
reconstructed audio samples from the fractal 
sinusoidal model coder. The error bars 
represent the 95% confidence interval. 

4 CONCLUSION 
This paper presented a fractal sinusoidal model coder 
that is able to efficiently encode sinusoidal tracks by 
encoding the transformation from template tracks. A 
transform was presented that could be efficiently 
encoded, but is also capable of capturing the 
perceptual characteristics of the sinusoidal tracks. This 
resulted in roughly a 30% reduction in bit-rate while 
providing perceptually lossless quality for 
conservative modelling. While more aggressive 
modelling results in around 60% bit-rate reduction 
with minor quality degradation. 
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