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Abstract

One of the key remaining problems in face

recognition is that of handling the variability in

appearance due to changes in pose. One strategy is to

synthesize virtual face views from real views. In this

paper, a novel 3D face shape-modeling algorithm,

Multilevel Quadratic Variation Minimization (MQVM),

is proposed. Our method makes sole use of two

orthogonal real views of a face, i.e., the frontal and 

profile views. By applying quadratic variation 

minimization iteratively in a coarse-to-fine hierarchy

of control lattices, the MQVM algorithm can generate

-smooth 3D face surfaces. Then realistic virtual

face views can be synthesized by rotating the 3D 

models. The algorithm works properly on sparse

constraint points and large images. It is much more

efficient than single-level quadratic variation 

minimization. The modeling results suggest the validity

of the MQVM algorithm for 3D face modeling and 2D 

face view synthesis under different poses.
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1. Introduction 

Existing work in face recognition has demonstrated

good recognition performance on frontal, expression-

less views of faces with controlled lighting [6,7].

However, it is still a challenge to develop a pose-

lighting-expression invariant face recognition system.

In this research, we concentrate on the pose-invariant 

recognition of a novel face, which is viewed from an 

arbitrary viewpoint with controlled lighting condition

and neutral facial expression.

Prior work shows that it is realistic yet challenging

to perform pose-invariant face recognition using 

virtual views. The main difficulty is the task of

generating the virtual views of a face from a limited

number of real views. A number of models have been 

proposed for the purpose of virtual view generation.

A.S. Georghiades et al. [1] generated a 3D 

illumination cone model from seven frontal face 

images under slightly different lighting conditions. 

Using the information of surface and reflectance of the 

model, the novel face views from different poses and

lighting conditions can be synthesized. The limitation

of this model lies in the restriction to the lighting

sources in the training set. 3D deformable models have

been applied to pose-invariant face recognition, too. A 

wire frame generic model [3,5] is developed, using

prior knowledge of human head geometries. The 3D 

model contains one or more coefficients, which can be 

adjusted for different individual faces. Both the shape 

and the texture information of a specific face from a 

novel viewpoint can be synthesized based on the

generic model. However, 3D deformable models suffer

from the prototype difference, which happens when the

gallery face shapes are far different from the generic 

models. Under such circumstances, individualized face 

models can hardly converge to the realistic face shapes.

Another approach to generate virtual views of given

poses is to warp real views of the known pose. D.

Beymer and T. Poggio [2] introduced prototypical

information into the generation of virtual views from a

single real view. They mapped 2D facial transfor-

mations observed on a prototype face onto a novel,

non-prototype face to generate virtual views. The 

offset view of a face was selected as the real view, 

since it contains more information than the frontal 

view. However, in real applications, frontal views

rather than offset views are usually available. And the

rotation angles are usually limited up to 30 degrees in

depth. Neural network is another choice in pose-

invariant face recognition. F. Wallhoff et al. [4]
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developed a neural net to synthesize profile views

using frontal face information. The weakness of neural 

networks is that the network architecture has to be 

extensively tuned, and a large number of face samples

are needed for the training of a neural network.

In this paper, we present a novel 3D face shape-

modeling algorithm, the Multilevel Quadratic

Variation Minimization (MQVM), in order to build

individualized face shapes and face views from only 

frontal and profile views for the pose-invariant face 

recognition. Simply based on facial features specified

on the face views, MQVM algorithm can generate C
continuous 3D face surfaces efficiently. Since MQVM 

algorithm doesn’t require any generic model, it is

entirely individualized and free from prototype

difference. It requires only two face views of each 

person and it is promising in the face recognition

applications where few face views are available.

2

The rest of the paper is organized as follows.

Section 2 introduces quadratic variation minimization

for 3D surface approximations. An improved multi-

level quadratic variation minimization is described in

Section 3. In Section 4, a framework of 3D face 

modeling is described and the multilevel quadratic

variation minimization is applied. The 3D modeling

results and a conclusion are given in Section 5 and 6,

respectively.

2. Quadratic Variation Minimization

The quadratic variation

2
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is introduced to approximate the 3D surfaces from a 

set of feature points. It generates C continuous

surfaces [12]. Clearly any function, which minimizes

the functional also minimizes the functional

, and vice versa, provided that the functional

is always positive in value. And we use s  to denote

the surface which we are fitting the feature points.

Hence, without loss of generality, one can consider the 

minimization of
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In order to determine the structure of the algorithm,

one must address the issue of the form of the output

representation, since that will have a major effect on

the actual algorithm. The continuous functional must

now be converted to a form applicable to a discrete

grid. Without loss of generality, assume that the grid is 

of size m . At each point ( on the grid, a 

surface depth may be represented by s . Each such 

surface depth may be considered as an independent 

variable, subject to the constraint of the surface. To

discretize functional (2), the following approximations

are chosen. 
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The second partial derivative in the x  direction is

approximated by
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where is the grid spacing, and O  indicates 

that the approximation is valid to terms of order h .

Similarly, the second partial derivative in the y

direction may be approximated by
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The cross second partial derivative can be

approximated by
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Having converted the surface function and the 

differential operators, one must convert the double

integral to a discrete equivalent. This can easily be

done, by using a double summation over the finite

difference operators applied to the discrete grid. Hence,

the discrete form of the quadratic variation functional

is
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Finally, the characterization of the constraints must

be considered. The case of interpolation will be

considered first, where the interpolated surface is 

required to pass through the known points. Let

),({ ji

)},( ji

there is a known depth value at the grid

point be the set of grid points for which a 

depth value is known. Then the constraints on the

optimization problem have the form 0),( jics

for all points ( in the set ), ji , and where the 
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m

i

’s are a set of constants reflecting the stereo data. 

Therefore, the surface approximation problem is 
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To solve the problem (7), gradient projection

method can be considered [10]. One step of the

gradient project algorithm is as follows: Given a 

feasible point ks

1. Find the subspace of active constraints M , and 

form .qA

2. Calculate P  and q

T

qq

T

q AAAAI 1)(

T

ks )(P .

3. Find 1  and 2  achieving, respectively, 

max{ : dsk  is feasible},

min{ 10:)( dsk }.

4. Update s  by dss kk 21  and return to 1. 

Since all the constraints are equality constraints,

they are all active at every iteration. Thus, the matrix

 is a  matrix, where is the number of 

constraints, and is made up of rows corresponding

to the active constraints. It has rows consisting of a 1
in the position corresponding to the grid point (

for

mnq
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where  is an matrix consisting of 0 ’s

except for those rows corresponding to a point in

B mnmn

,

such rows containing a 1 for the diagonal element.

Thus, the projection matrix consists of all 

’s except for diagonal elements in those rows 

corresponding to a constraint point in

BIP

, such 

elements being 0 ’s. The effect of multiplying the

projection matrix P to a vector s  ( s  is a differential

image) is to ignore any components corresponding to

given constraint points, while preserving all other

components unaltered. By expanding the double

summation and performing the differentiation, the

direction vector d  can be determined.
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After determining the form of the direction vector,

which specifies the direction in which to move in order 

to reduce the objective function and refine the

surface approximation, it is necessary to determine the 

amount to move in this direction, that is, to determine

the value of 2  such that sk  is minimized.

Since the projection matrix P removes all the

components in the positions of constraint points in the 

direction vector d , dsk 21  is always

feasible while 0 . Therefore, the value for 2  is 

given by

2dsk                       (10) 

Thus, the surface s is refined and the iteration

continues until the magnitudes of all components of 

the direction vector are smaller than some constant .

Let
),(0 ji

s  if ),( ji , and 0
),(0 ji

s

otherwise. Fig. 1 shows a cylinder surface approxi-

mation produced by a single level quadratic variation

minimization. Fig. 1(a) shows the constraint points

located on the initial surface. The resolution of the 

cylinder surface is 256 256 . Fig. 1(b) to Fig. 1(e)

are the surfaces generated produced by QVM

approximation at 10 (b), 10 (c), 10 (d), and 10 (e)

iterations.

4 5 7

3. Multilevel Quadratic Variation Minimi-

zation

As shown in Fig. 1, QVM algorithm converges to a 

smooth 3D surface. However, it takes usually 

more than 1,000,000 iterations to produce an accurate

surface. The reason why QVM is slow is that the

constraint points are sparse and face images are usually 

of high resolutions. And the objective function

2C

)(s

is a neighboring functional taking effect only on local

areas of points.
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Fig 1. Surface approximation produced by QVM. 

In this section, we present a multilevel quadratic

variation minimization (MQVM) technique that

overcomes the drawback of QVM. In MQVM, a 

coarse-to-fine hierarchy of control lattices, 0 ,

, …, , is used to derive a sequence of surface 

refinements with QVM approximations. Let h  be the

spacing between control points on the lattice

1 w

k

k . We

assume that h  and pixel are given and0 1wh

kh
2

1
kh 1 . When the surface s  is approximated

with a coarse control lattice, the constraints points

merge with each other and result in a smooth

approximation, although they are not exactly satisfied

individually. And the result surface is used to provide 

the initial surface 0s  in the next level.

In MQVM, a sequence of QVM approximations

starts with the coarsest control lattice , and ends

with the finest control lattice , which is the actual

resolution of the surface 

0

w

s . With a control lattice k ,

all the constraint points in the same grid merge into

one constraint point and its depth is the average. The 

QVM approximation iterates until the magnitudes of

all components of the direction vector are smaller than

some constant . Then the next finer control lattice

is used for successive QVM approximations, as

long as 

1k

k is not the finest control lattice. The

following pseudocode outlines the MQVM algorithm.

In this algorithm, QVM approximations are

successively applied with a ierarchy of control lattices

to make the 3D points in s
h

gradually approach their

positions in 3D space from their initial positions. The

approximation procedure of MQVM algorithm is the

composition of several approximations derived by

QVM. Therefore, MQVM generates a C  continuous

surface.

2

,() ij
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Algorithm MQVM 

Input: constraint point set }){ ,( jc iC

Output: 3D surface s

let  be the coarsest control lattice (e.g., 2 2 )

let  be the spacing in the control lattice h

let '  be the constraint points in

let ),(),( jiC ji be the constraint point

set under 

initialize the surface 
'),(,'

'),(,0

),(

( jic

ji
s

ji

i

while  is not the finest control lattice do

 let  be the next finer control lattice

let  be the spacing in 

update '  with new control lattice 

update '  under C  and '

 refine s  from by QVM approximation

under

C

end

Fig. 2 gives an example in which the MQVM

algorithm is applied to generate a cylinder surface

given the constraint point set. Fig. 2(a) is the initial

stage of the surface s with only constraint points

located. Fig. 2(b) through Fig. 2(f) shows a sequence 

of surface approximations from successive QVM 

algorithms. The resolution of the surface is 

256 , and the control lattices of the surface 

approximations are 4 4 (b), (c), 1688 16 (d),

3232 (e), and 256 (f) respectively. It takes 

10,000 iterations for each resolution level and totally

70,000 iterations to produce the 3D face surface. 

Compared with the single-level QVM approximation

described in section 2, MQVM is much more efficient,

especially when the surface resolution is high and the 

constraint points are sparse. 
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M

where is the scaling factor, (  is the

displacement of the translation, and 

1k ), 11 yx

1 is the rotation

angle. Based on the original and predefined locations

of the two eyes, a unique frontal normalization

transformation is determined by

).,()','( ,1,11,1,1 rlrl eeMee               (12) 

Every point on the frontal view (  can be

transformed to the new position (  in the

normalized frontal view under a linear 2D transfor-

mation by

)', 11 yx

)'',' 11 yx

               (13) .)1,,()1,','( 1111

TT yxMyx
Fig 2. A sequence of approximations produced by
MQVM algorithm. 

Similar to the frontal view normalization, we locate

the positions of the eye (only one of the two eyes is

visible in the profile view), the nose top and the center

of the mouth. The transformation matrix of the profile

normalization is of the same form with M . The 

only difference is that profile view is normalized

according to the normalized frontal view provided the

positional information of the facial features. The y-

coordinates of the facial features are the same in the

normalized frontal view and profile view.  For 

example, let e

2M

l,2

1

T

ll yx )1,,( ,2,2 denote the original

eye position in the profile view and 
T)1ly ,',2ll xe ,'(' ,2,2 denote the position in the

normalized profile view. The constraint ',,1 lly ' 2y  is 

applied and the transformation equation is

4. 3D face surface generation 

An entire 3D face surface generation consists of

face view normalization, facial feature specifications, 

and the multilevel quadratic variation minimization

approximation.

Given a frontal view and profile view of a face, to 

bring the facial organs (i.e., eyes, nose and mouth) to

lie on the same levels, both the frontal view and profile

view need to be normalized. For the frontal face view, 

the locations of left and right eyes are used as control

points. It is because eyes are the most stable features of 

human face among all the facial features. Before 

frontal view normalization, the locations of eyes are 

determined. Since there are a number of automatic eye 

detection algorithms [11], we don’t intend to tackle

this task again and the eyes are manually located. We

assume that the frontal face view is free from rotation 

in depth. In the process of frontal view normalization,

the two eyes are tuned to the same height by a 2D

rotation in the image plane. Then the frontal view is 

scaled and translated to let the two eyes locate at two 

predefined positions.

.' ,22,2 ll eMe                                (14) 

Based on the three positional information of the eye,

the nose top and the mouth, M is determined and

used for the profile normalization. This procedure 

guarantees corresponding points in the two views to

have the same heights.

2

In order to provide the depth information of the

constraint points for the MQVM algorithm, a set of

facial features are located manually in the normalized

frontal view and profile view. Though a lot of efforts

are put into the research of automatic facial feature

detection [8,9], the robustness and accuracy are still 

not satisfactory. The inaccuracy of the feature locating 

affects feature-based face recognition systems greatly 

and it’s still an open question how to automatically

locate the features efficiently and accurately. The 

Let  and 

denote the left and right eyes’ positions in the original

frontal face view in homogenous space. The

predefined positions are e  and 

. The 2D transformation matrix

 is

T

lll yxe )1,,( ,1,1,1

T

rr yx )1,','( ,1,1

T

rrr yxe )1,,( ,1,1,1

T

ll yx )1,','( ,1,1l ',1

re ',1

1M

Proceedings of the 11th International Multimedia Modelling Conference (MMM’05) 

1550-5502/05 $20.00 © 2005 IEEE 



positions of features in the frontal view provide the

constraint point set in section 2, while the depths of 

the points are provided by the x-coordinates in the

profile view. Let (  and  denote the

position of a feature in frontal view and profile view

respectively. The corresponding constraint point is

expressed as 

), fyfx ),( pp yx

.),( pyx xc
ff

                                (15) 

Fig. 3 shows the features located on the normalized

face views. The white dots are the feature points and 

the gray lines connect the adjacent features to show 

their relative positions and correspondence. Since a 

half of the face is visible in the profile view, it is only 

possible to locate features on a half face. However, 

based on the assumption that human face is bilateral

symmetric [2], the feature locations can be mirrored to

the other half. The MQVM algorithm described in

section 3 is then applied on the constraint point set C

to approximate a C continuous face 3D surface. Fig. 

4 indicates a sequence of MQVM approximations on 

the face of Fig. 3. The face shapes are under 30  and 

 rotations in depth. The control lattices of the three

rows are 16 , 64 , and 512  which is

the finest. It takes 10,000 iterations for each resolution 

level and totally 80,000 iterations to produce the 3D 

face surface.

2

90

16 64 512

Fig 3. Normalized frontal and profile views with
marked features.

5. Virtual view synthesis 

We define a plane in 3D space by three adjacent 

points on the face surface. Then a mesh framework is 

established for the face model. Since the 3D 

information of the face is obtained, it is then possible 

to manipulate the face by 3D rotation, scaling and 

translation. For post-invariant face recognition, the 

model is rotated and scaled to generate novel views

under different viewing directions. Fig. 5 shows the

virtual face views generated by rotating the 3D face 

surface and texture mapping the frontal face view onto 

the surface. The 3D face surface is rotated under both

tilt and yaw to produce virtual face views under 

different viewing directions. These face views are 

stored in a face database and view-based face 

recognizer can match an input face view under an

arbitrary viewpoint against the virtual views and find

the best match. In Fig. 6, a comparison between the

real profile view of the face and a virtual profile view

is made and shown. The profile curve is accurate and 

the virtual view is realistic.

Fig 4. Face surface approximations produced by
MQVM algorithm. (a) Face shapes under a 16x16 
control lattice, (b) face shapes under a 64x64
control lattice, (c) face shapes under a 512x512
control lattice. 
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Fig 5. The generated virtual views using the 
proposed method. 

Fig 6. The real profile view (a) and the virtual 
profile view (b). 

6. Conclusion 

This paper describes a new algorithm using

Multilevel Quadratic Variation Minimization algorithm

for constructing 3D individualized face models for the

purpose of pose-invariant face recognition. Face views 

are first normalized, and the facial features are

specified on the face views. Then the proposed

Multilevel Quadratic Variation Minimization is applied

to generate C -smooth face surfaces. The algorithm

doesn’t require generic 3D models or other reference 

faces and therefore free from the effect of the generic

models. It is also more efficient than the single 

quadratic variation minimization, especially on face 

surface modeling, where the face images are of high

resolution and the facial features are sparse. After the

3D model generation, 2D face views under different 

viewpoints are synthesized by rotating the 3D model.

These virtual views can form a virtual face database 

for pose-invariant face recognition. 

2

Future work is to design an appropriate texture-

mapping algorithm to make the model more realistic.
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