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Abstract
In spite of the irreversible nature of macroscopic processes, our understanding of the fundamental
physical phenomena remains limited to reversible models (the Loschmidt’s paradox). We propose a
direct irreversible model for the probability per unit time that an electron will be emitted from an
isolated trap. This resolves a number of problems, including (1) the dubious link between emission
measurements and the parameters of the independent capture process and (2) the elusive meaning

of the degeneracy factor in the equilibrium Fermi-Dirac distribution.
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I. INTRODUCTION

Thermal emission of electrons from isolated traps in a depleted semiconductor is an
illustrative example of microscopic irreversible events. The existing model for the emission
probability per unit time is derived from the condition of thermal equilibrium with the
opposite process, which is electron capture by the isolated traps [1-3]. Although generally
accepted, the use of the equilibrium condition introduces serious problems that can be related
to the Loschmidt’s paradox. Following a brief introduction to the equilibrium approach,
these problems are discussed to highlight the need for exploration beyond the limits of the
equilibrium approach. To resolve the highlighted problems, we propose a direct irreversible
model for the probability per unit time that an electron will be emitted from an isolated

trap.

II. PROBLEMS WITH THE EQUILIBRIUM APPROACH

The free electrons in semiconductors (the electrons in the conduction band) can be mod-
eled as gas particles that move without any obstruction through a perfect crystal but interact
with crystal imperfections. An important type of crystal imperfections are isolated crystal
defects (including impurity atoms) that have energy levels in the energy gap, referred to as
the isolated traps. The probability that a moving electron will hit a trap per unit length,
with a chance of being captured, is proportional to the trap concentration (IV;) and the
capture cross section of the trap (0,). Given that the length traveled per unit time is the
thermal velocity (vy,), the probability that the electron will hit a trap per unit time is
V0 Ny Multiplying this probability by the probability that the trap is empty (1 — f;) gives
the probability that a single electron is captured per unit time and multiplying it further
by the concentration of electrons (n) gives the capture rate (the concentration of electrons

captured per unit time) [1]:

Te = UthUnNt(l - ft)n (1)

There is no such physical model for the opposite process, which is the electron emission.
To obtain the rate of electron emission, the concentration of trapped electrons (N, f;) is

multiplied by unknown emission probability per unit time (1/7,):



r, = Nifi 2)

Te

Because 1/7, is not known for the emission process itself, it is modeled by an equation
that is derived from the condition of emission and capture equilibrium, r, = r.. This
condition leads to the following equation for the emission probability per unit time: 1/7, =
vinonn(1 — f;)/fi- The probability that a trap is occupied in equilibrium is given by the

Fermi-Dirac distribution,

1
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where F; is the energy level of the occupying electron, Er is the Fermi level, and ¢ is a
degeneracy factor. With the Fermi-Dirac distribution, the equation for the emission proba-
bility per unit time becomes: 1/7, = (vy,0,n/g) exp[(Ey — Er)/kT]. Using the equation for
concentration of electrons in non-degenerate semiconductors, n = Ng exp[—(F¢ — Er)/kT],

the following equation for 1/7, is obtained [1, 3]:

Te g

In Eq. (4), N¢ is the effective density of states in the conduction band and Eo — E, is

1 _ vwonlNe o~ (Bo—Eq) /KT (4)

the energy needed to emit a trapped electron into the conduction band. The value of the
degeneracy factor is not known, so it is ignored by setting g = 1 in Eq. (4) [3]. Sah et al [4]
use the concept of “effective” trap level, which incorporates the impact of the degeneracy
factor, but still have to use an incorrect assumption of a “unity statistical weight factor”
because there is neither theoretical nor experimental estimate of its value.

Two additional parameters of the pre-exponential term in Eq. (4) — vy, and o,, — are
problematic. Both vy, and o, are parameters of the capturing process that are involved into
Eq. (4) through the equilibrium condition. A problem with this is that it is not logical the
emission of a trapped electron to depend on the parameters of an independent capturing
process. For example, the capture cross section for electrons is larger for positively-charged
traps than for neutral traps because of the Coulomb attraction. The fact that a positively-
charged trap can capture an electron easier does not mean that the electron can be released
easier from that trap, as implied by Eq. (4). Likewise, the fact that it is harder to emit an

electron from a deeper trap does not mean that it is harder for an electron to fall into a



deeper trap. In general, it is easier to fall into a wider trap and it is harder to get out of a
deeper trap; however, it is not easier to get out of a wider trap and it is not harder to fall
into a deeper trap.

This logical problem is not properly recognized and the existence of a direct link between
the emission probability per unit time and the cross section is generally accepted. This
leads to serious problems in explaining why the experimental data do not confirm the direct
link between the emission probability per unit time and the capture cross section. Lang et
al [5] presented a very illustrative set of experimental data. To their surprise, they found
that measured emission probabilities, shown by the symbols in Fig. 1, did not differ for
different types of defects with mid-gap levels (Co, Rh, Ag, and Au acceptors and process-
induced donors). Importantly, the measured capture cross sections of these defects were
significantly different, even by a factor as large as 30. This type of experimental data,
obtained by different authors using different techniques, clearly shows that the link between
the emission probability per unit time and the capture cross section, set by Eq. (4) with
g = 1, is incorrect. An effort to correct this link employed thermodynamic analysis and
introduced a degeneracy factor [3, 4, 10-12]. The involvement of thermodynamic concepts
did not go beyond thermal equilibrium, so it did not remove the need to model the emission
rate directly, which means without the link between the emission probability per unit time
and the capture parameters.

Perhaps because of the obscure meaning and the unknown value of the degeneracy fac-
tor, the thermodynamic correction is largely ignored. Moreover, a significant number of
researchers continue to use the relationship between the emission probability per unit time
and the capture cross section as given by Eq. (4). In particular, it is very popular to measure
the emission probability per unit time by different techniques of deep-level transient spec-
troscopy (DLTS) and to calculate the capture cross section using Eq. (4) with g = 1. The
calculated values for the capture cross section are then used to make conclusions about the
nature of the defects and to derive theories about the apparent temperature dependencies
of the capture cross section. Frequently, unreasonably small (much smaller than the atom
size) or unreasonably large capture cross sections are obtained. This is clearly causing a

significant degree of confusion.
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FIG. 1: Experimental data (the symbols), collected by Lang et al [5], for electron emission from
approximately midgap traps with different optical and capture properties. The best fit by Eq. (9)
(the line) is achieved with Ec — E; = 0.593 eV and n = 0.07.

III. EVENT-BASED MODEL

Irreversible processes can be modeled directly and independently of equilibrium conditions
if we assume that the irreversible processes consist of irreversible events. This defines discrete
intervals of time, 7; (i = 1,..., M), corresponding to each of the M events that form a
process. A process that results in an irreversible outcome becomes an event, which will be
referred to as a composite event to distinguish it from the constituting events. If a process

consists of consecutive events, then the time needed for the composite event is simply

M
T=> T (5)

i=1
If a process consists of simultaneous and independent events, then the probabilities per

unit time for each of these events are added to obtain the probability per unit time for the

composite event:

1 ¥
—=> - (6)
T =T

This approach is applicable to both macroscopic and microscopic events and processes.
Furthermore, if the time intervals for the constituting events are not known, this approach

can be applied hierarchically to simpler levels until events with known times are identified.



Consider the example of light-induced emission of electrons from isolated traps. In this
case, photons provide the energy to a trapped electron so that it can be emitted into the
conduction band. The energy of a photon (E,) cannot be transferred to an electron within a
shorter time interval than the wave period (h/E,). This means that h/E, is the time interval
of an elementary event that involves energy change of E,. This quantum effect is the reason
for considering photons as elementary particles, at least in terms of their interactions with
other particles (including electrons). The use of the term “elementary event” instead of
“elementary particle” does not change the underlying quantum effect, it just links it to time
as the variable of interest.

In the case of thermal emission of electrons from isolated traps, phonons provide the
thermal energy to a trapped electron to emit it into the conduction band. Analogously to
the case of photons, the energy of a phonon cannot be transferred to an electron within a
shorter time interval than the wave period (h/E,). Differently from the case of photons,
however, the thermal emission can occur even when the energy of a single phonon is smaller
than the energy needed for the trapped electron to be emitted into the conduction band.
The relationship between the energy taken by the electron during the emission process (F)
and the energy supplied by a single particle (E,) can be expressed as E, = n E, where 1,
is a parameter satisfying the following condition: 7; < 1. The condition 7, = 1 corresponds
to the case when the energy E is supplied by a single particle (E = E},), such as the case
of photon-induced emission. As distinct from this, the condition 7; < 1 corresponds to the
case when the energy FE is supplied by 1/n; particles, the energy transferred by each particle
being E,: E = (1/m)E,. Therefore, the time interval of an elementary event involving
energy change of E can be expressed by h/E, = h/(mE).

The reciprocal value of the time limit for an emission event, 7, E/h, corresponds to the
probability per unit time that a trapped electron will be emitted under the condition that
the energy FE' is transferred to the electron. The condition that the energy F is transferred to
the electron can be modeled by two parts: (1) the probability that the trap is in the energy
state E, labeled by p(F)dFE, and (2) the probability that the trap will transfer the energy to
the electron, labeled by 75. Accordingly, the probability per unit time for an emission event
involving energy E is Enp(E)dE/h, where n = 115.

The probability p(E)dE that a system will be in a state with energy E is established by
the methods of statistical physics:



o—B/kT

P(E)E = ——dE (7)

where the constant Z is determined from the normalization condition. In this case, the

energy quantization can be neglected so that the integral form of the normalization con-
dition can be used: [;°p(E)dE = 1. This condition is satisfied by Z = kT in Eq. (7).
Consequently, the probability that a considered trap will be in a state with energy FE is
p(E)dE = (1/kT) exp(—E/kT)dE.

With these considerations, the probability per unit time that an electron will be excited
from E, to an energy level E + E; in the conduction band is (n/h)(E/kT) exp(—E/kT)dE.
An emission event occurs when the electron is excited to any of the energy levels in the
conduction band. This means that the minimum-energy emission corresponds to E = F¢ —
E; and that higher-energy emissions also occur. With the assumption of continuous energy
in the conduction band, the sum in Eq. (6) is replaced by the following integral:

[ e ®)

The solution of this integral leads to the following equation for the emission probability per
unit time:

l _ n(Ec — hEt + kT) o~ (Bc—FEy)[kT 9)
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Equation (9) fits the experimental data shown in Fig. 1 (the solid line) with the following
set of parameters: Eo — E; = 0.593 eV and n = 0.07. In silicon, the maximum energy of
phonons is E, 4, = 0.066 eV (this energy corresponds to the minimum phonon wavelength
set by the crystal-lattice constant). This means that E,_,,.,/(Ec — E;) = 0.11 sets the
maximum value of 7; to 0.11 and the minimum value of 17, = n/n; to 0.64. However, if we
assume that 7, = 1, the average energy of phonons contributing to the thermal emission is
estimated as E, = n(Ec — E;) = 0.041 eV. These numbers indicate that it is quite possible
that the value of the parameter 7 is set by the average energy of the phonons responsible

for the thermal emission process.



IV. IMPLICATIONS FOR FERMI-DIRAC DISTRIBUTION

The establishment of the equilibrium-independent equation for the emission probability
per unit time — Eq. (9) — opens the question of its implication on the equilibrium condition
r. = r.. Based on Egs. (1), (2), and (9), the equilibrium condition r. = r, becomes

(Bc — Ev+kT) _(ne—mywr

UthUnNt(l - ft)” = Ntf:f7 h € (10)

With n = Ngexp|—(E¢ — Er)/kT], Eq. (10) is transformed into

Ec— E, + kT _
'UthO'nNC(l _ft) :ftT]( C ht )e(E't Er)/kT (11)

The dependent variable in this equation is the trap-occupancy probability f;. From

Eq. (11), the following equation is obtained for the trap-occupancy probability:

1
fe=17 N(Ec — By + kT)/(hvio, No)|eBe—Er) /KT
A comparison with Eq. (3) shows that this is the Fermi-Dirac distribution with the

(12)

degeneracy factor ¢ = hvy,0, No/n(Ec—E+kT). According to Eq. (12), the trap-occupancy
probability depends on both capture and emission parameters and, for example, is higher for
larger capture cross sections. This result is logical because a larger capture cross section and
an increased capture rate should shift the equilibrium balance toward a higher population
of the traps. Therefore, the mystery associated with the degeneracy factor is resolved by

the new equation for the emission probability per unit time.

V. MODELING GENERATION AS A NONEQUILIBRIUM PROCESS

The direct modeling of nonequilibrium emission events by Eq. (9) enables direct modeling
of nonequilibrium processes. Modeling the generation rate in a fully depleted semiconductor,
such as a reverse-biased P-N junction, is a good example. A generation event can be
considered as a composite event that consists of two consecutive emission events: an electron
emission and a hole emission in either order [14]. In full analogy with macroscopic events, the
times taken by each consecutive event are added to obtain the time for the composite event
[Eq. (5)]. Labeling the times for the electron and hole emissions by 7, and 7, respectively,

the time for the composite generation event is



Ty =Te+ T (13)

Given that 1/7, and 1/7, are probabilities per unit time that electron and hole emission
events will occur, the times 7, and 73, are the expected times for electron and hole emissions,
as distinct from precisely determined time intervals. Because consecutive events of electron
and hole emissions by a single trap can be continuously repeated, the time 7, can be con-
sidered as the average time that it takes a single trap to generate an electron-hole pair [14].
Note that this concept has a clear physical meaning as distinct from the commonly used
generation lifetime [3], which can be orders of magnitude shorter from the time needed to
generate a single electron-hole pair [14].

To model M simultaneous and independent events, the probabilities per unit time for
each of these events are added to obtain the probability per unit time for the composite event
[Eq. (6)]. Therefore, if M identical traps are generating electron-hole pairs, the probability

that an electron-hole pair is generated per unit time is

Loyl ¥ (1)
Tgm =1 Tg Ty

To convert the number of traps (M) into trap concentration (N;), the number of traps is
divided by the volume they occupy: N; = M/V. Dividing Eq. (14) by the volume V| the
number of generation events per unit time and unit volume, which is the generation rate, is

obtained

Ty, Te+Th N AgelFo=E)/KT 4 Ay e(Fe=Ev)/KT

In Eq. (15), A, = h/n(Ec — Ey), Ay, = h/nn(Ey — Ey), Ey is top of the valence band, and 1,

N, N, N,
= t t

(15)

is analogous parameter to the parameter 1 . The only difference between Eq. (15) and the
widely used Shockley-Read-Hall equation [1, 2], derived from the equilibrium model, is in
the parameters A, and A,. This difference does not have experimental implications because
both equations contain unknown parameters: 1 and 7, in this case and the capture cross
sections in the case of Shockley-Read-Hall equation. In other words, the widely established
experimental evidence for the Shockley-Read-Hall equation is just as valid for Eq. (15).



VI. CONCLUSIONS AND WIDER IMPLICATIONS

We have demonstrated that the thermal emission of electrons from isolated traps in a
depleted semiconductor can be modeled by a direct irreversible equation. The proposed
direct-modeling approach utilizes a condition for the minimum time of an emission event,
which is set by the period of the phonons supplying the energy needed for the emission.
This enables to remove the parameters of the independent capturing events from the pre-
exponential term of the Arrhenius-type equation for the emission probability per unit time.

The proposed direct modeling of irreversible events and processes is fundamentally dif-
ferent from the existing practice of modeling fundamental processes by continuous-time
equations. Events are inherently irreversible but consecutive irreversible events can estab-
lish the state of macroscopic equilibrium. This is demonstrated by the example of balanced
emission and capture rates, which shows the need for the degeneracy factor in the Fermi-
Dirac distribution. As opposed to this, macroscopic irreversibility could not be explained
by the concept of reversible continuous-time processes (the Loschmidt’s paradox). To model
composite events and processes, the irreversible models of the constituting events are com-
bined in a way that is common sense for macroscopic events: Eq. (5) is the generic model for
a composite event consisting of two consecutive events, whereas Eq. (6) is the generic model
for a composite event consisting of M simultaneous events. This demonstrates that the
concept of events and the associated models, including the hierarchical relationship between
the constituting and composite events, have the same meaning and analogous applicability

from the fundamental microscopic level to complex macroscopic levels.
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