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Abstract 12 
The steady response of the interface between two fluids of different density in a 13 

bounded aquifer is considered during extraction through a line sink. Both critical and 14 

supercritical withdrawals are investigated. An analytical solution is developed to 15 

determine the interface location and withdrawal strength for critical withdrawals when 16 

only one fluid is pulled into the sink. Supercritical flows are considered in which both 17 

fluids are drawn directly into the sink. A boundary integral method is used to 18 

calculate the interface location that depends on the supercritical withdrawal rate and 19 

the aquifer configuration.  It is shown that for each withdrawal rate greater than the 20 

critical value, the entry angle of the interface decreases as the withdrawal rate 21 

increases. The minimum entry angle depends on the aquifer configuration, i.e the ratio 22 

between the sink height and the impermeable boundary height. The steepest entry 23 

angle approaches 
2
π

, where the interface shape approaches that given by the 24 

analytical solution for the critical rate, and the flow rate approaches the critical value. 25 

The viscosity ratio of the two fluids affects the effective withdrawal rate G. If the 26 

upper fluid is much more viscous than the lower fluid, coning is much less likely. 27 

 28 
Keywords: critical withdrawal, supercritical withdrawal, hodograph method, boundary 29 
integral method, line sink 30 

1. Introduction 31 
 32 

There are a number of applications in which fluid is withdrawn from porous media.  33 

The most significant of these are undoubtedly oil/gas recovery and fresh water 34 

extraction from a salt stratified aquifer. 35 
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It is well known that withdrawal from several fluid layers of different density is 1 

marked by critical transitions from single to multi-layer flow as the outflow rate is 2 

increased. At low suction, buoyancy forces ensure that the total outflow comes from 3 

within the fluid layer adjacent to the outlet.  If the flow is increased sufficiently, 4 

however, there is a “catastrophic” drawdown of the interface into the outlet resulting 5 

in the next fluid layer being pulled in.  This critical transition, often termed “critical 6 

withdrawal”, is of great practical importance since it affects the quality of the 7 

withdrawn fluid. The critical flow rate is defined as the maximum rate at which only 8 

the layer adjacent to the sink is withdrawn. At a higher “supercritical rate”, fluid from 9 

both layers will be removed, which is often called coning. 10 

This critical flow phenomenon was first studied by Muskat and Wyckoff [1935]. Other 11 

authors who have studied critical withdrawal using analytical methods for various 12 

aquifer configurations include Bear and Dagan [1964], Giger [1989], McCarthy 13 

[1993], Zhang and Hocking [1997], Zhang et al. [1997] and recently, Hocking and 14 

Zhang [2008]. In this work the two fluids are assumed to be immiscible and the 15 

interface to be sharp.   16 

However, limited research has been done for supercritical flow in porous media. Yu 17 

[1999] and Henderson et al. [2005] used a finite difference method to simulate an 18 

isothermal, monophasic, highly compressible flow in supercritical conditions, while 19 

Hocking and Zhang [2009] found various branches of solutions for supercritical 20 

withdrawal in an unbounded aquifer. The analogous problem of supercritical 21 

withdrawal in two-layer surface water bodies was considered by Hocking [1995], 22 

Forbes and Hocking [1998], and Hocking and Forbes [2001] using an integral 23 

equation approach to compute accurate numerical solutions.   24 

In the present study, two homogeneous fluids separated by an infinitesimally thin 25 

interface near the withdrawal sink, and impermeable boundaries away from the sink, 26 

are considered. A line sink (a point in two dimensions) is located in the upper layer 27 

and withdraws fluid at some constant rate. An impermeable barrier exists separating 28 

the two layers at some distance from the sink. The physical plane is shown in Figure 29 

1(a). The artificial device of using this impermeable barrier is equivalent to the 30 

“lateral edge drive” model of McCarthy [1993], and serves the purpose of maintaining 31 

horizontal flow within the two fluids at large distances from the sink. If this barrier 32 

were absent, the interface condition dictates that the elevation of the interface must be 33 
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unbounded.  Unbounded flows can be considered by taking the limit as this barrier is 1 

moved away. 2 

An analytical solution is developed for critical withdrawal, in which a cusp shaped 3 

interface is found to occur. At higher withdrawal rates, fluid from both layers will 4 

enter the sink after drawdown. Integral equations to be satisfied in both layers and 5 

equations matching the pressures across the interface are derived and solved 6 

numerically. A study of the effect of variations in several parameters is conducted, 7 

including viscosity and impermeable boundary location. In each case it is found that 8 

as the withdrawal rate increases, the interface near to the sink becomes flatter, 9 

eventually reaching a point where it can no longer maintain a concave shape, a point 10 

beyond which solutions can no longer be obtained.  As the withdrawal rate 11 

decreases, the solutions approach the critical flow solutions. 12 

2. Theoretical Formulation 13 
2.1  Problem Set-up 14 
Consider a homogeneous, isotropic, porous medium with intrinsic permeability κ, 15 

where the fluids are separated by an interface of infinitesimal thickness into two 16 

homogeneous regions of different density with impermeable boundaries as seen in 17 

Figure 1(a). The fluids located below and above the impermeable boundary (IL) are 18 

defined as fluid 1 and fluid 2, with densities ρ1 and ρ2 respectively. A line sink (S) is 19 

located at a distance H above the impermeable boundary. The horizontal distance 20 

between the sink and each impermeable boundary (L) is xL.  The point at infinity 21 

along the impermeable boundary is I. The sink extracts a total flux Q per unit time, 22 

per unit width.  23 

Using complex variables, let the physical plane correspond to the Z-plane shown in 24 

Figure 1(a), where z = x+iy. The origin is located directly below the sink at the level 25 

of the solid boundaries, with y=η(x) as the equation of the interface. The velocity 26 

potentials in each region in two-dimensional steady flow satisfy Darcy’s Law [Strack, 27 

1989]: 28 










++=Φ

++=Φ

22
2

2

11
1

1

)(

)(

Cgyp

Cgyp

ρ
µ
κ

ρ
µ
κ

, (1) 29 
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where κ is the intrinsic permeability; µ� and µ2 are the dynamic viscosities of the fluids; 1 

p is the pressure at the location of y; C1 and C2 are constants. Matching the pressure 2 

across the interface between the two regions gives the condition on the interface, 3 

( )y xη= , that 4 

,21

ds
dy

K
ds

d
ds

d =Φ−Φ γ  (2) 5 

( )
1

21

1

2   ,  where
µ

ρρκ
µ
µγ −

==
g

K  and s is the arc length along the interface. When the 6 

withdrawal rate is less than critical, the lower fluid is stationary and the entire 7 

stationary fluid region is assumed to be at a constant potential. It is noted that since 8 

the potential due to the sink is logarithmic, then if only one fluid is flowing the 9 

condition on the interface leads to an interface of unbounded elevation as x 10 

approaches infinity. However, in the fully two-layer flow, we require that µ1Φ1 11 

approaches µ2Φ2 on the interface as x approaches infinity.  12 

 13 
2.2 Analytical solution for critical withdrawal 14 

Critical withdrawal is the situation in which a small increase in discharge above the 15 

current withdrawal rate will cause the denser fluid to enter the outlet directly. When 16 

the withdrawal rate is lower than the critical value the denser fluid is stationary and 17 

can be assumed to be at a constant potential. As the location of the interface is 18 

unknown it is difficult to obtain an exact solution for the supercritical flow case. 19 

However, in the critical case, a hodograph method, similar to that of Bear and Dagan 20 

[1964] can be employed.  21 

For critical withdrawal, there exists a cusp point, C, as shown in Figure 1(a). The 22 

vertical distance between C and the horizontal impermeable boundary is hc. Let 23 

),(),( yxiyx Ψ+Φ=ω  be the complex potential, and ),(),( yxivyxuW −=  be the 24 

complex velocity, then 
dz
d

W
ω−= . The flow region can be mapped on the hodograph 25 

ω-plane and W-plane as shown in Figures 1(b) and 1(c). Using an inverse 26 

transformation W
K

V = , the flow region can be transformed to the V-plane as shown 27 
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in Figure 1(d). Then, using a Schwartz-Christoffel mapping,
3
2

1
dV a

A
d

ζζ
ζ ζ

− −=
+ , the 1 

flow region in both the V- and ω- planes are mapped to the upper half of the ζ−plane by  2 

( )1

(ln ),

2 1
tanh ,

(1 )

Q b

i a
V

a

ζω
π ζ

ζ
π ζ

−

−=

 
= +  + 

 (3) 3 

where a and b are mapping parameters as shown in Figure 1. Therefore the entire 4 

boundary can be computed by integrating 5 

( ) 




 −
−










+

+−= −

ζζζ
ζ

πζ
111

1
tanh

2 1

ba
ai

d
dz

 (4) 6 

along the real ζ-axis.  We note that in Figure 1(e), 0)( =bV  and hence the 7 

parameter a, (-1<a<0), in the transformation in (3) can be determined by solving  8 

1

1

tanh
.

tanh 1/
b

a
b b

−

−
= −

+
 Using the non-dimensionalisation 

π
ωω Q

Hzz /,/ ** == ,  9 

*z can be expressed in terms of ζ, and the shape of the interface determined as 10 

* *

1

*

11 2 1
( ) ln ,

( ) (1 )1

( ) ln .
(1 )

L cr

cr

b a
x x G d

b a

b
y G

b

ζ ζζ ζ
ζ ζ π πζ ζ

ζζ
ζ

−

 − += − + − +− − −  
−= −

+

∫
 (5) 11 

for 1−<<∞− ζ  and cr
cr

Q
G

KHπ
= . As −∞→ζ , then *( ) ln(1 )c crh y G b= −∞ → + . 12 

The distance between the cusp point and the sink can be calculated by integrating 13 

Equation (4) for ∞<≤ ζb . Therefore, the critical withdrawal rate can be determined 14 

as 15 

1
1

1
.

2 tanh
ln(1 ) tanh

( )

cr

b

G
b b b

b d
b

ζ ζ
π ζ ζ ζ

−∞ −

=
 

+ + − +  
∫  (6) 16 

It can be seen from Equations (5) and (6) that both the impermeable location *
Lx and 17 

the critical withdrawal rate vary with the parameter b. 18 

A small increase in the withdrawal rate above the critical value, crG , will cause the 19 

fluid from the lower layer to enter the sink, leading to supercritical withdrawal, i.e. 20 

both fluids will enter the sink.  In order to find solutions for this case, we need to use 21 
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a numerical scheme such as the boundary integral method proposed below, as the 1 

hodograph method is no longer applicable. 2 

 3 

2.3 Boundary integral method for supercritical withdrawal 4 

For supercritical rates, we seek solutions in which the interface is drawn up a distance 5 

H to a point where it enters the sink with an angle α to the horizontal, as shown in 6 

Figure 1(a). The analytic solution cannot be found for the supercritical case. Since the 7 

flux from each layer (see below) depends on the angle of entry, α, then in the right 8 

half-plane the flux from the lower fluid is /
2

Q
π α π −  

 and from the upper fluid it 9 

is /
2

Q
π α π +  

.  Fluid is withdrawn from both above and below the interface. The 10 

velocity potentials of the separate flow fields below and above the interface must 11 

satisfy Laplace’s equation, 12 

( )
( )





>=Φ∇

<=Φ∇

).(,0,

),(,0,

2
2

1
2

xyyx

xyyx

η
η

    (7) 13 

As the sink is approached, the velocity potentials must have the correct behaviour,  14 






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




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 (8) 15 

where Q1 and Q2 are the respective total dimensional fluxes per unit width (from the 16 

right half-plane) from within the two regions. There is a relationship between these 17 

two values that must hold if the dynamic condition on the interface is to be satisfied. 18 

Applying Darcy’s Law (Bear [1972]) to the streamline along the interface, and noting 19 

that for steady flow there must be no pressure difference across the interface leads to 20 

Equation (2). 21 

Considering the behaviour of the flow near the sink (8) and the interface condition (2), 22 

if the flow into the line sink is radial, then there is 23 

,sin

2
2

2
2

12 α
απαπ

γ
K

r

Q

r

Q

dd

=





 −

−





 +  (9) 24 
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where rd is the radius of the outlet. As 0→dr , it follows that 1 

.and,

22

21
21 QQQ

QQ +=
+

=
− απγ

απ  (10) 2 

Defining the following dimensionless variables, 3 

απ
γ

απ +
Φ=Φ

−
Φ=Φ==

2

/,

2

/,/,/ 2
2

*
2

1
1

*
1

** QQ
HxxHyy

,  4 

the non-dimensional form of the dynamic interface condition becomes 5 

KH
Q

G
ds

d
ds

d
G

ds
d

πγαγπ
γπη =Φ−Φ

−++
= and),(

)1(2)1(
2 *

2
*

1
*

 (11) 6 

with 7 

[ ]
[ ] ).(  ),1 ,0(),(  as   ,)1(ln

),(  ),1 ,0(),(  as   ,)1(ln

*****2
1

2*2**
2

*****2
1

2*2**
1

xyyxyx

xyyxyx

η

η

<→−+→Φ

<→−+→Φ
 (12) 8 

The asterisks denote dimensionless variables and will be dropped for simplicity.  G 9 

is therefore a measure of the flow strength. Another condition to be satisfied is that 10 

there be no flow across the interface. This condition can be ensured by enforcing the 11 

condition 021 =Ψ=Ψ  on the stream functions along the interface. We define a 12 

complex potential for each region that builds in the correct behaviour both near the 13 

sink and in the far field, and then compute the corrections to these. Options that 14 

satisfy these requirements are 15 










>+++−=Ψ+Φ=
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),(,)
2
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2
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2
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π
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η
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π
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α

 (13) 16 

where α is the angle of the interface at the point of entry into the sink and 17 

jjj iw ψφ += , j=1, 2, are the correction terms for the full velocity potential. In each 18 

layer, they represent the addition of another singular point outside the domain of 19 

interest. These are a line sink at 2
y

π
α

=  for the lower fluid and a line source at 20 

2
y

π
α

= − for the upper fluid. These choices satisfy the requirement that the line given 21 

by 2,1,0 ==Ψ jj  enters the sink at an angle α to the horizontal provided 22 
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The choice of f1 and f2 also ensures that . asor    as 2 1,j  ,0 izzw j →∞→=→  The 2 

functions 3 




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<+=
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111

xyiw

xyiw

ηψφ
ηψφ

  (15) 4 

must be analytic in their respective domains. Following Forbes [1985] and Hocking 5 

[1995], and applying Cauchy’s Theorem to  2 ,1 ,0 =→ jw j , on both regions, we 6 

obtain 7 

2,1,
)(

)(
0

0 =
−

= ∫Γ
jdz

zz

zw
zw

j

j
jπ ,  8 

where 2 ,1 ,0 =→Γ jj are the contours shown in Figure 1(f), and z0 lies on the 9 

boundary in each case. Now, since ∞→=→ z as 2 ,1 ,0 jw j , the contribution of that 10 

part of wj that consists of the circular arc can be shown to be zero. Thus we only need 11 

to integrate along the interface. Using an arc length variable, s, along the interface 12 

starting from the sink, then 13 

,1
22

=




+







ds
d

ds
dx η

  (16) 14 

and using the chain rule we can write 15 

,
)()(
/))((

))((,
)()(
/))((

))(( 2
2

1
1 dt

sztz
dtdztzw

szwidt
sztz

dtdztzw
szwi ∫∫

∞

∞−

∞

∞− −
=−

−
= ππ  (17) 16 

where s and t are both arc lengths, but s defines a particular location and t is the 17 

variable of integration.  Since ψ1, ψ2 are known along the interface from equation (14), 18 

these represent integral equations for φ1 and φ2 respectively. Taking the real parts and 19 

utilizing the symmetry of the situation about the line x=0, i.e. 20 







=−=−=−
−=−=−=−−=−

,2,1),()(),()(

),()(),()(),()(),()( ''''

jssss

sysysxsxsysysxsx

jjjj ψψφφ  (18) 21 

the integral equations become  22 
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j

ψ

φ
π
κ
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 (19) 1 

where 1 2( ) ( ), ( ) ( )  and ( ) ( ),  and 1, 1.x x t x s x x t x s y y t y s κ κ+∆ = − ∆ = + ∆ = − = = −  2 

The problem to be solved is the combination of the two integral equations given by 3 

(19) and the interface condition (11). 4 

This system must be solved numerically. The logarithmic singularity near the sink 5 

must be treated carefully to avoid numerical problems, but the following method was 6 

successful: 7 

1.   For the nonlinear integral equations (19), the domain [ )∞,0 of the 8 

independent variable s was truncated to a finite point, zT = (xT, 0), along the 9 

impermeable boundary, and the interval was discretised into the set of points 10 

, 1, 2, 3, ... ,...j is j N N= . There are Ni points on the interface and (N- Ni) 11 

points on the impermeable boundary. The exact location of these points was 12 

usually uniform, but in some cases a quadratic distribution was used to crowd 13 

many points close to the region of greatest change near to the sink. An initial 14 

guess was made for the unknown values of the correction term of velocity 15 

potential φ1 and φ2, the derivative of the interface location )(' sη and the entry 16 

angle of the interface into the sink, α. A fixed value of G was given.  17 

2.   The other variables, x(s) and y(s) were computed by finding x'(s) from (15) 18 

and then using numerical integration. 19 

3.   Using 
' '

1 2, , ( ), ( ), ,x x s sη η φ φ  along the interface, the error in (17) was 20 

computed and a damped Newton iteration scheme was applied. 21 

4.   Once 21, φφ  had been obtained, a forward difference scheme was used to 22 

calculate their derivatives and the error in the interface condition (12) was 23 

evaluated. If the error is small at all points on the interface, say less than 10-9, 24 

the algorithm was stopped. Otherwise, Newton’s method was used to update 25 

)(' sη , and repeat from step 2. 26 

The accuracy of the numerical integration is crucial to the solution of the full problem. 27 

The singular part of the principal-value integral in (19) was removed by noting that 28 
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




 −+
−
−

=
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0

0
00

0

0

0
0

ln)(
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z
zz

zwdz
zz

zwzw
dz

zz

zw
T

j

z jjz j TT

, 1 

where zT corresponds to the point at which the integral is truncated. It is also essential 2 

to include an approximation to the portion of the integral that is neglected.  Both φ 3 

and ψ can be shown to behave like O(s-1) as s � �, so a simple correction term can be 4 

added to each integral to account for the truncation.  For the same impermeable 5 

boundary location, various grid points were tested for convergence. The iteration 6 

scheme converged in only 4 or 5 iterations and solutions to graphical accuracy were 7 

found with N as small as N=80, but most solutions were computed with N=200. i.e. 8 

with 200 collocation points on the interface.   9 

 10 

3 Results and Discussion 11 

3.1 Critical withdrawal 12 
 13 
The interface locations were calculated for the critical cases as described in Section 14 

2.1. Figure 2 shows examples of the interface computed in this way. In the analytical 15 

solution described in Section 2.1, the parameters a and b determine the location of the 16 

impermeable boundary xL. When , 1, then ,Lb a x→ ∞ → − → ∞  i.e., the impermeable 17 

boundary goes to infinity, and when 0, 0,  then 0,Lb a x→ → →  i.e., the 18 

impermeable boundary moves to directly beneath the sink (see Figure 3).   Figures 4 19 

and 5 further demonstrate the relationship between hc and Gcr with xL.  It can been 20 

seen that as xL goes to infinity, i.e., the layer is unbounded, the cusp point moves 21 

toward the sink but Gcr approaches a finite value close to Gcr = 0.06; while when xL 22 

goes to 0, the cusp point moves towards the impermeable boundary, i.e. two fluids are 23 

separated by the impermeable boundary completely, and Gcr goes to infinity. These 24 

findings are in agreement with the results of Bear and Dagan [1964] for upconing 25 

toward a line sink in an unbounded aquifer, and Zhang et al. [1997] for a vertically 26 

bounded aquifer. 27 

 28 

3.2 Supercritical  withdrawal 29 
 30 
A series of simulations was performed using the boundary integral method discussed 31 

in Section 2.3 to compare with the hodograph solutions. The value of the viscosity 32 

ratio was kept at γ=1 initially. The interface locations at the lowest supercritical 33 
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withdrawal parameter G values were compared with the critical case for two finite 1 

boundary locations xL as shown in Figure 6.  As expected, there is a good agreement 2 

between the two cases. It was found that there was a range of values of G for which 3 

solutions existed for each xL.  If a supercritical G slightly greater than the critical rate 4 

was specified, the entry angle of the interface was very close to 
2
π

. As the value of G 5 

was increased, the magnitude of the entry angle of the interface into the sink 6 

decreased and eventually the method failed when the entry angle was slightly greater 7 

than α= 






Lx
1

arctan .  This value corresponds to that at which the interface can no 8 

longer maintain a concave shape.  Figure 7 shows an example of the interface shapes 9 

for the case xL=20.  At the lowest value of G=0.1059, the entry angle equals 1.55 10 

and the interface solution is close to the critical single-layer flow, while at the highest, 11 

it is close to being a straight line from the sink to the impermeable barrier.  A large 12 

increase in G is required to get solutions at low entry angle, α, for this configuration. 13 

   14 

Figure 8 demonstrates the range of the supercritical withdrawal rate and its 15 

corresponding entry angle for various impermeable boundary locations. As the 16 

impermeable boundary moves further away from the sink, the lowest G decreases 17 

from 0.33 to 0.14 and then to 0.1 for Lx  = 5, 10 and 20, which correspond to their 18 

critical rates (as shown in Figure 4). However, Figure 8 also shows that the entry 19 

angle asymptotes to the horizontal as G increases. With the impermeable boundary 20 

moving further away from the sink, the entry angle is highly correlated to the 21 

ratio
L

c

x
h

.    22 

The influence of the viscosity ratio on the interface was also examined. Figure 9 23 

shows interface profiles with various viscosity ratios for xL=20 and G=1. When 24 

1<<γ , i.e. fluid 1 in the upper layer is much more viscous than fluid 2 in the lower 25 

layer, the effective withdrawal rate is reduced compared to 1≈γ , as can be deduced 26 

from equation (11) by noting that γG could be used as a single parameter. When 27 

1>>γ , i.e. fluid 1 in the upper layer is much less viscous than fluid 2 in the lower 28 

layer, the effective withdrawal rate is increased, but depends less on the viscosity 29 

ratio, as can be seen in Figure 10; the interface entry angle changes little when 30 
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1>>γ .  This suggests that if the upper fluid is much more viscous than the lower 1 

fluid, coning is much less likely. 2 

 3 

4 Conclusions 4 

The critical and supercritical withdrawals through a line sink of two fluids of different 5 

density and viscosity in an isotropic, homogeneous two-dimensional bounded aquifer 6 

are investigated.  An analytical solution is developed to find the interface location 7 

for critical withdrawal using a hodograph method, and a boundary integral method is 8 

used to compute the interface shapes for the supercritical case in which both fluids are 9 

drawn directly into the sink. Based on the analytical and numerical results presented, 10 

the following conclusion can be drawn: 11 

1. For critical withdrawal a cusp-shaped interface can be calculated at a unique 12 

value of the non-dimensional flow rate for a fixed impermeable boundary 13 

location.  As the location of the impermeable boundary is moved outward, 14 

the cusp moves upward toward the sink and the interface tends to negative 15 

infinity.  The critical value of G approaches 0.06 in this limit. 16 

2. For supercritical withdrawal rates, the interface shape for the minimal rate is 17 

essentially the same as that for the critical case solved by the hodograph 18 

method; and the entry angle of the interface approaches
2
π

. In the limit as the 19 

impermeable boundary moves away while being kept at a fixed, finite vertical 20 

elevation, we obtain solutions for a range of withdrawal rates above the critical 21 

value. As the value of G increases, the magnitude of the entry angle decreases. 22 

The minimum entry angle depends on the ratio between the sink height and 23 

the impermeable boundary location. Solutions can not be obtained in which 24 

the interface is not concave, leading to a limiting entry angle and value of G 25 

for each aquifer configuration. Further work is required to understand the 26 

influence of impermeable boundaries at different locations in the flow domain. 27 

3. The viscosity ratio of the two fluids affects the effective withdrawal rate G. 28 

When fluid 1 in the upper layer is much more viscous than fluid 2 in the lower 29 

layer, the effective withdrawal rate is reduced to γG. On the other hand, when 30 

fluid 1 in the upper layer is much less viscous than fluid 2 in the lower layer, 31 
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viscosity differences have a relatively minor effect on the effective withdrawal 1 

rate. 2 

Notation 3 

H vertical distance between the sink and the impermeable boundary, [L] 4 
ρ1, 2 density of fluid, [ML-3] 5 
κ  intrinsic permeability, [L2]  6 
µ dynamic viscosity of the fluid, [MS-1L-1]   7 
p  fluid pressure, [ML-1T-2] 8 
Φ1, 2 velocity potential, [L] 9 
Q1, 2 pumping rate per unit width, [L2T-1] 10 
x horizontal location, [L] 11 
y vertical location, [L] 12 
u horizontal velocity, [LT-1] 13 
v vertical velocity, [LT-1] 14 
Um  maximum velocity along the impermeable boundary, [LT-1] 15 
η interface location, [L] 16 
α angle between interface and horizontal, [Rad] 17 
Κ non-dimensional hydraulic conductivity 18 
G non-dimensional pumping rate 19 
ω complex potential 20 
W complex velocity 21 
* superscript indicating a dimensionless variable 22 
1, 2 subscript indication the fluid in lower and upper layers respectively 23 
 24 
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Figure 2: The interface locations at critical conditions with various xL = 6 (dashed 
line), xL = 20 (dotted line) and xL = 50 (solid line). 
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Figure 3: The relationship between the location of impermeable boundary and the 
parameters a and b in analytic solutions. 
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Figure 4: The relationship between the location of impermeable boundary and the 
critical withdrawal rate. 
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Figure 5: The relationship between the location of impermeable boundary and the 

cusp point location. 
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Figure 6: Interface locations comparison between critical and minimum supercritical 
cases: (a) xL=20. (b) xL=10. 
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Figure 7: Interface locations for various G when  xL=20, where maximum and 
minimum G are 159.4 and 0.1059, respectively. The minimum value is close to 
critical. 
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Figure 8: The range of the supercritical withdrawal rate and its corresponding entry 

angle for various impermeable boundary locations. 
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Figure 9: Interface profiles with various viscosity ratios for xL=20 and G=1. 
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Figure 10: The effect of the viscosity ratio on the entry angle of the interface for 
xL=20 and G=1.  
 
 


