
Reduction Rules Deliver Efficient FPT-Algorithms
for Covering Points with Lines

Vladimir Estivill-Castro

Apichat Heednacram

and

Francis Suraweera

Griffith University, Australia

We present efficient algorithms to solve the Line Cover problem exactly. In this NP-complete
problem, the inputs are n points in the plane and a positive integer k, and we are asked to

answer if we can cover these n points with at most k lines. Our approach is based on fixed-
parameter tractability, and in particular, kernelization. We propose several reduction rules to

transform instances of Line Cover into equivalent smaller instances. Once instances are no

longer susceptible to these reduction rules, we obtain a problem kernel whose size is bounded
by a polynomial function of the parameter k and does not depend on the size n of the input.

Our algorithms provide exact solutions and are easy to implement. We also describe the design of

algorithms to solve the corresponding optimization problem exactly. We experimentally evaluated
ten variants of the algorithms to determine the impact and trade-offs of several reduction rules.

We show that our approach provides tractability for a larger range of values of the parameter

and larger inputs, improving the execution time by several orders of magnitude with respect to
previously known algorithms.

Categories and Subject Descriptors: F.2.2 [Theory of Computation]: Nonnumerical Algorithms

and Problems—Geometrical Problems and Computations

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: Covering points with lines, line cover problem, parameterized

complexity, practical FPT-algorithm

1. INTRODUCTION

The Line Cover problem consists of covering a set S of n points in the plane
with the minimum number of line segments possible. It has been known to be
NP-hard [Megiddo and Tamir 1982] for over 20 years (in fact, APX-hard [Kumar
et al. 2000]) and therefore, considered to be intractable. Nevertheless, this prob-
lem emerges in direct connection to variations of Traveling Salesman Prob-
lem (TSP), one of the most studied problems in algorithms, operations research,
optimization, and computational complexity [Applegate et al. 2006]. The N-
line Traveling Salesman Problem consists of covering points with lines, and

Author’s address: School of Information and Communication Technology, Griffith University,

Brisbane, QLD, 4111, Australia.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20xx ACM 0000-0000/20xx/0000-0001 $5.00

ACM Journal Name, Vol. xx, No. xx, xx 20xx, Pages 1–24.

GU
Text Box
Copyright ACM, 2009. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Journal of Experimental Algorithmics (JEA), Volume 14, December 2009, http://doi.acm.org/10.1145/1498698.1626535

2 · V. Estivill-Castro et al.

Rote [1992] designed an algorithm to solve this version approximately. Dĕıneko et
al. [1996] also investigated how the convex-hull and k lines are used to solve the TSP.
There are also applications where covering with lines is necessary because turns are
considered very costly. For example, robots collecting balls, helicopters dropping
supplies, and highway construction are illustrative since moving objects pick up
speed when traveling in a straight line. The Line Cover problem also appears in
the Minimum Bends Traveling Salesman Problem [Stein and Wagner 2001],
where given a set of points in the plane, the problem is to find a tour through the
points, consisting of the least number of straight lines. Minimizing the number of
turns in the tour is desirable in VLSI and the movement of heavy machinery [Lee
et al. 1994; 1996; Arkin et al. 2000; 2005; Drysdale et al. 2005].

These applications demand practical implementations. Parameterized complex-
ity offers alternatives to those problems regarded as intractable from the perspective
of classical complexity theory [Downey and Fellows 1999; Niedermeier 2006; Flum
and Grohe 2006]. Giannopoulos et al. [2008] survey the recent success of parameter-
ized complexity when applied to geometric problems. The decision version of Line
Cover was shown to be fixed-parameter tractable by Langerman and Morin [2001;
2002; 2005] who also provided two FPT-algorithms.1 They call their first algorithm
BST-Dim-Set-Cover, because it uses a bounded-search-tree. It has O(k2kn) time
complexity. They refer to their second one as Kernelize, since it uses kerneliza-
tion. This second algorithm has O(n3 + k2(k+1)) time complexity, but they suggest
using the algorithm from Guibas et al. [1996] to obtain O(nk + k2(k+1)) time com-
plexity. Later, Grantson and Levcopoulos [2006] used both of these algorithms to
obtain theoretical improvements and solve the optimization version approximately
in time O(n log k + k4 log k) and exactly in O(n log k + (k

2.22)2k) time. However,
there is little evidence that these approaches have delivered practical implementa-
tions. These algorithms use several repetitions of invocations of each other. They
also use significantly laborious machinery from computational geometry. There-
fore, when actually implemented, theoretical algorithms become rather inefficient
(if at all feasible to implement). This would suggest the parameterized complexity
approach has theoretical merit but little practical impact.

We introduce new reduction rules that lead to practical FPT-algorithms for the
Line Cover problem. We discuss their implementation and describe experiments
for direct comparisons with the above-mentioned algorithms. Our experiments
show that, when these new algorithms are carefully implemented, the parameterized
approach (in particular, reduction rules) leads to algorithms that can handle even
large instances. The main contribution is the fast implementation of the known
and two new reduction rules that we apply in the preprocessing phase to shrink
the input instances. We show that simple reduction rules have several advantages.
Their correctness is transparent and thus, they are easy to implement correctly.
They also cascade and deliver smaller kernels than the theoretical guarantee. We
show this for the decision and the optimization versions of the problem.

1An FPT-algorithm has polynomial worst-case complexity on the size of the input, although maybe

exponential time complexity on an integer parameter. Formal definitions appear in [Downey and
Fellows 1999, p.8] or [Niedermeier 2006, p.23]. A problem that has an FPT-algorithm is said to

belong to the class FPT.

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

Reduction Rules Deliver Efficient FPT-Algorithms for Covering Points with Lines · 3

2. SIMPLE REDUCTION RULES

A very powerful aspect of the theory of parameterized complexity is the alternative
characterization of the class FPT; namely, a decision problem is FPT if and only
if it is kernelizable [Downey and Fellows 1999; Niedermeier 2006].

Definition 2.1 Kernelization. [Niedermeier 2006, p. 55] Let P be a parameter-
ized problem with inputs (S, k), where S is the problem instance and k is the
parameter. Kernelization means to replace instance (S, k) by a reduced instance
(S′, k′) such that k′ ≤ f(k), |S′| ≤ g(k) where f and g are arbitrary functions de-
pending only on k and (S, k) ∈ P if and only if (S′, k′) ∈ P. The reduction from
(S, k) to (S′, k′) must be computable in polynomial time.

The reduced instance (S′, k′) defined above is called a kernel [Downey and Fellows
1999, p. 39]. The function g(k) is the size of the kernel. Kernelization can be
achieved through reduction rules. These rules shrink the problem instances into a
kernel. The kernel can then be decided by a kernel lemma or can be solved using
some exhaustive search technique [Hüffner et al. 2008]. We start by illustrating how
the reduction-rules approach provides a simple proof that the decision problem is
fixed-parameter tractable.

Reduction Rule 1. If k ≥ dn/2e, then the answer is yes [Grantson and Lev-
copoulos 2006].

Reduction Rule 2. If k = 1, then the answer is yes if and only if all points
in S are co-linear [Grantson and Levcopoulos 2006].

Reduction Rule 3. Remove duplicated points in S [Langerman and Morin
2005].

While BST-Dim-Set-Cover [Langerman and Morin 2005] can handle duplicated
points in S, Grantson et al. [2006] assume that the input to their algorithms is
always a proper set without repetitions (otherwise their algorithm fails). From now
on we will also consider S a set.

Reduction Rule 4. If there is a set of k+1 or more co-linear points, place the
line through them in the cover and remove them from further consideration [Langer-
man and Morin 2005].

The rule is correct because, if the line through the k + 1 different points was not
in the cover, then we would need more than k lines to cover just these points.
Grantson and Levcopoulos [2006] use this rule to decide NO-instances as follows.

Lemma 2.2. If there is a subset S0 of S so that |S0| ≥ k2 + 1, and the largest
number of co-linear points in S0 is k, then the answer is no.

This result leads to a quadratic size kernel because by repeated application of
Reduction Rule 4 any instance (S, k) of Line Cover can be reduced to a problem
kernel of size at most k2. At the point when the rule cannot be applied, every line
covers at most k points; thus, any cover with k lines would cover at most k2 points.
However, we now present the first of a series of new reduction rules that provide an
alternative reduction and simpler kernel finding. In what follows, we let L3 be the
set of all lines that cover at least 3 or more points in S. If L is a set of lines, we let

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

4 · V. Estivill-Castro et al.

cover(L) be all points in S covered by some line in L. With this notation, we can
describe the next reduction rule which can be taken as a structural lemma as well.

Reduction Rule 5. Let p1 6= p2 be two points in S \ cover(L3). Let S′ =
S \ {p1, p2}. Transform (S, k) into (S′, k − 1).

Proof. Consider an instance where {p1, p2} ⊂ S \ cover(L3). If an optimal
cover C uses p1, p2 (that is, the line through p1 and p2), then C \ {p1, p2} covers
S\cover{p1, p2} optimally. Suppose C does not include the line p1, p2. We will show
that there is a cover using the same number of lines, and this other cover uses p1, p2.
The cover C must use a line li /∈ L3 to cover pi, for i = 1, 2. If li does not cover
another point besides pi, then li can be removed and replaced by p1, p2 resulting
in a cover of size |C|. Otherwise, there is at most another point qi ∈ S covered by
li besides pi, for i = 1, 2. Consider a cover C ′ that does not have li, for i = 1, 2;
but instead has p1, p2 and q1, q2. The cover C ′ has

p1 p2 p1 p2 p1 p2

Case 1 Case 2

C CC ′

Fig. 1. Two cases for the
proof of Reduction Rule 5.

two new lines but two fewer old lines, so C ′ has
the same number of lines as C. Any other point
in S besides {p1, p2, q1, q2} is covered in C ′ by the
same line that covers it in C. The cover C ′ has
the same size as C and includes the line p1, p2 as
required. See Fig. 1 for an illustration.

Clearly, this rule can be applied repeatedly until
the size of S\cover(L3) is no more than one point.
A very similar reasoning gives our next reduction rule.

Reduction Rule 6. Let p1 6= p2 be two points in cover(L3). Suppose that
no other line in L3 besides p1, p2 covers p1 or p2 (i.e. L3 ∩ {l|l covers p1} =
L3 ∩ {l|l covers p2} = {p1, p2}). Let S′ = S \ cover{p1, p2}. Transform (S, k) into
(S′, k − 1).

Proof. Again, this suggests that optimal solutions must use the line p1, p2. If
a cover C did not use p1, p2, it must use two other lines that are not in L3 to cover
p1 and to cover p2. Similar to the previous proof, a line li ∈ C that covers pi can
cover at most another point qi, thus C ∪ {l1, l2} \ {p1, p2, q1, q2} is a cover of the
same cardinality that uses p1, p2.

The two new reduction rules above do not improve the quadratic worst-case size of
the kernel. However, we believe that in practical circumstances the incorporation of
these new rules results in a smaller kernel than k2, leading to faster kernel solving.
Hence, we present variants of algorithms where the decision about which rules are
involved is different, and we test our claim experimentally.

3. ALGORITHMS FOR THE DECISION PROBLEM

We will focus on the decision problem first. Namely, we assume that we have a
set S and an integer k as inputs and we are asked if S can be covered with k lines
or fewer. Later we discuss the issue of actually finding a cover. We will apply the
reduction rules one after another until none of the rules apply. We call this phase
the preprocessing algorithm, and part of our contribution is to suggest the ordering
of application as well as algorithms and data structures for their application. Once
ACM Journal Name, Vol. xx, No. xx, xx 20xx.

Reduction Rules Deliver Efficient FPT-Algorithms for Covering Points with Lines · 5

the instances are no longer susceptible to reduction rules, we will invoke the kernel
lemma (Lemma 2.2). We may need to invoke a bounded-search-tree approach to
solve the kernel, but we will also suggest how to heuristically set the scene for the
exhaustive search. Although the kernel may be difficult to solve, it could have
properties where other heuristics work well.

Reduction rules have different complexities and trim the instance differently.
Some enable a rule that previously could not be applied. For example, after re-
moving lines with more than k points from consideration (Reduction Rule 4), the
reduced instances now may be covered using one line for each pair of points (Reduc-
tion Rule 1 is now applicable). The power of the cascading effects of reduction rules
is crucial to the algorithmic engineering of FPT-algorithms [Niedermeier 2006].

The preprocessing algorithm below resolves the instance (S, k) or returns a ker-
nelized instance (S′, k′) where S′ ⊆ S and k′ ≤ k. In it, all rules except our last
one are attempted (later we explore the effect of the last rule). If a rule determines
the type of an instance (determines it is a YES-instance, like Reduction Rule 1 or
Reduction Rule 2, or determines it is a NO-instance, like Reduction Rule 4 with
Lemma 2.2), then we can halt. Reduction Rule 5 is computationally costly, thus
we execute this rule last when the size of our instance is smaller.
Preprocessing Algorithm(S, k)
1 if |S| ≤ 2k (*Reduction Rule 1 applies*)
2 then answer YES and halt.
3 if all points in S are co-linear (*Reduction Rule 2 applies*)
4 then answer YES and halt.
5 if not ReductionRule kPlus(S, k, S′, k′) (*Reduction Rule 4 applies*)
6 then answer NO and halt.
7 if |S′| ≤ 2k′, (*Reduction Rule 1 applies*)
8 then answer YES and halt.
9 Construct L3, a set of all lines through 3 or more points in S′.

10 while there exist {p1, p2} ∈ S′ \ cover(L3) (*Reduction Rule 5 applies*)
11 do S′ ← S′ \ cover{p1, p2}; k′ ← k′ − 1;
12 Repeat all the above steps until every rule can no longer be applied.

Our ordering of the rules has been the result of experimental evaluation of the
trade-off of cost of application of the rule with respect to overall running time of
the algorithm. For example, we recommend that Reduction Rule 4 operate after
Reduction Rule 2. Note that if Reduction Rule 2 applies, the instance is resolved
and we do not need to check if Reduction Rule 1 applies; however, if Reduction
Rule 4 applies, it is worth checking if Reduction Rule 1 is now applicable, since this
is a constant-time check before the more costly construction of L3.

3.1 Details of ReductionRule kPlus

The Boolean function ReductionRule kPlus checks if Reduction Rule 4 is ap-
plicable. Grantson et al. [2006] present a function (they call Lines) to find lines
covering more than k points in the plane. This Lines function [2006, p. 9] uses
Guibas et al.’s algorithm [1996] and each invocation of Guibas et al.’s algorithm
finds one line through at least k + 1 points. Guibas et al.’s algorithm itself also
calls another three subroutines depending on the values of k + 1. If k ≤ 3, the first

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

6 · V. Estivill-Castro et al.

subroutine transforms k + 1 points into k + 1 lines in the dual space2 and uses the
topological line sweep algorithm to find all vertices incident to k + 1 lines. The
second subroutine is invoked when (k + 1)3 ≤ n2, otherwise the third subroutine is
used. However, the latter two subroutines also call the Matušek [1990] algorithm or
the Agrawal [1990] algorithm to find incidences between sets of points and sets of
lines.3 Therefore, we believe that Guibas et al.’s algorithm is not for use in practical
settings. Nevertheless, we use their idea to create what we call a “simple version of
Guibas” where we directly transform points into lines in the dual space and sweep
the dual-line arrangement4 to find all vertices incident to at least k + 1 lines. The
idea behind this dual-space transformation is that the k + 1 co-linear points on a
line in primal space become the k + 1 lines passing through a single point in dual
space. Thus, finding this intersection point (vertex) in dual space is the same as
finding lines through at least k + 1 points in primal space but has smaller time
complexity. Our direct use of the dual-space makes the implementation of Reduc-
tionRule kPlus relatively easy. Although our function ReductionRule kPlus
resembles the Lines function [2006], there are several distinctive points.

(1) Our function ReductionRule kPlus cascades the same rule on itself. That
is, once we find a line covering more than k points, we also look for a line
covering one point less and iterate this step until no line is found. In the Lines
function, the value of k remains constant.

(2) We cascade rules on themselves, so our function finds settings where Lemma 2.2
applies where the original Lines would not. Also, our preprocessing has more
instances where it produces a smaller kernel than that produced with Lines.

(3) To find lines through more than k points, we use the dual-space transforma-
tion [de Berg et al. 2000, p. 169]. Guibas et al.’s algorithm [1996] performs this
transformation when k ≤ 3. Since k is usually small, our direct use of the dual-
space does not significantly penalize the observable performance in the (now
simpler) implementation of the function ReductionRule kPlus. Moreover,
we perform the transformation and construction of the arrangement only once.

(4) Finally, the Lines function [2006] implicitly requires a test for the k lines found
to cover S (and a test that S is empty). While the test for emptiness of S
is presented in the last two lines of the original pseudo-code [Grantson and
Levcopoulos 2006], it was not explicitly mentioned in the complexity analysis
(although it can be performed within the same complexity, but all this results
in a larger hidden constant in the O-notation). Our function Reduction-
Rule kPlus ensures that S \ cover{l1, . . . , ls} is computed explicitly and the
exit points of the loop are clearer.

2The dual-space mapping sends a line l given by y = mx+ b in a 2-dimensional space to the point
pl = (m,−b), and a point p = (px, py) to a line lp given by y = pxx− py . This has the property

that two lines lp and lq in dual space intersect at a point pl, who in primal space is the line l

through the points p and q that are images of the two lines [de Berg et al. 2000, p. 169].
3Note that in the late 80s till 1990 there were several independent and incremental improvements

to the incidence problem by both Matušek and Agrawal with significant use of machinery from

computational geometry.
4Given a set L = {l1, . . . , ln} of n lines in the plane, the arrangement of lines A(L) is the

subdivision of the plane into vertices, edges, and faces induced by L [de Berg et al. 2000, p. 172]

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

Reduction Rules Deliver Efficient FPT-Algorithms for Covering Points with Lines · 7

In the pseudo-code for our function ReductionRule kPlus the arrangement
of dual-lines is denoted by A. This function scans the original set S and examines
one point at a time. As an invariant of this iteration, it maintains a set of lines
Lk = {l1, l2, . . . , ls} where it knows that each li must be in a cover of S with k
or fewer lines (thus s ≤ k). It also maintains a set S′ ⊂ S of points so that
cover(Lk) ∩ S′ = ∅ (that is, points in S′ are not covered by any of the lines found
to be in a cover). Initially, the invariant is satisfied because Lk = ∅ and S′ = ∅. If
it finds that S′ ≥ (k− s)2 + 1, then the hypothesis of Lemma 2.2 is satisfied and it
exits immediately with the value false. Otherwise, when S is empty the invariant
ensures that S′ is a kernel and k′ = k − s is the new value for a cover because of s
successive (cascading) applications of the reduction rule.

ReductionRule kPlus(S, k, S′, k′)
1 S′ ← ∅; Lk ← ∅; arrangement A ← ∅ (*initialization*)
2 while (S 6= ∅)
3 do choose p ∈ S; S ← S \ {p}
4 if p not in cover(Lk)
5 then S′ ← S′ ∪ {p}
6 Transform p into a line dual(p) in dual space
7 A ← A.insert(dual(p));
8 while there is vertex v in A incidents to more
9 than k − |Lk| lines and |Lk| ≤ k

10 do Lk ← Lk ∪ {dual(v)}; k′ ← k − |Lk|
11 for each p′ ∈ S′ ∩ cover(dual(v))
12 do A ← A.delete(dual(p′));
13 S′ ← S′ \ cover(dual(v))
14 if (|S′| > ((k − |Lk|)2) (*Lemma 2.2*)
15 then return false
16 return true (*return S′ and k′ by reference*)

When the next point p ∈ S is examined, it is removed from S. If p ∈ cover(Lk =
{l1, l2, . . . , ls}), then nothing needs to be done to maintain the invariants. However,
when p /∈ cover(Lk), then S′ ← S′ ∪ {p}. This addition of p to S′ may now trigger
the reduction rule in S′. So we enter another inner-loop. In this inner-loop we
investigate if there is a line with k + 1 − s or more points in S′. If such a line is
found, it must belong to any cover that uses k or fewer lines because s = |Lk| lines
have already been found to belong to the cover. So, in this inner-loop, we enlarge
Lk and set S′ ← S′ \ cover(Lk) until no line with k + 1 − s points is found in S′.
At this point, the invariant of the outer-loop is satisfied. We make the observation
that if a line through (k− s) + 1 points is found in S′ and all points covered by this
line are removed, then S′ will not satisfy the conditions of Lemma 2.2 (that is our
function will never return false at this stage). However, if S′ becomes empty and
there are still points in S, the outer-loop will continue. Moreover, if we reach the
case when s = k and there are still points in S, eventually it may be that a single
point in S′ triggers Lemma 2.2 for the function to return false.

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

8 · V. Estivill-Castro et al.

3.2 Cascade-And-Sort

When preprocessing cannot decide an instance, it returns a kernel that is a YES-
instance if and only if the original instance was also a YES-instance. The structure
of our first algorithm now follows.

Algorithm Cascade-And-Sort(S, k)
1 (S′,k′) ← The Preprocessing Algorithm(S, k)
2 for p ∈ S′

3 do Weight(p) ← maxli∈L3∧p∈li{|{q ∈ S′|q ∈ li}|+ i
|L3|}

4 Sort S′ in descending Weight order
5 return BST-Dim-Set-Cover(S′, k′) [Langerman and Morin 2005]

With an input set S of n points and an integer k, BST-Dim-Set-Cover outputs
whether or not S can be covered with k lines. Before calling BST-Dim-Set-Cover
our algorithm sorts the points in S′ according to their weights. The points that
are covered by the same line in L3 receive the same weight. The weight is higher if
the line covers more points in S′. Experimentally, we have found BST-Dim-Set-
Cover benefits from this sorting of the weights. This is because points from the
same candidate lines are now adjacent in the search tree. Moreover, the candidate
lines with more points are tested before the lines with fewer points (in practice we
often find that lines covering many points are likely to be in the optimal solution).

3.2.1 Running Time Analysis. Reduction Rule 1 and Reduction Rule 2 can be
performed in linear time. The dominant work in the preprocessing algorithm is the
work performed by ReductionRule kPlus. For each point chosen from S, we
check whether it lies on an already found line or not. For the purpose of this point-
location query, we construct an arrangement by incrementally inserting a line into
the arrangement (at most k times). The time required to insert a line li is linear
in the complexity of its zone. According to the Zone Theorem [Edelsbrunner et al.
1993], we can construct the k-lines arrangement in O(k2) time. A query whether a
chosen point lies on any of the lines can be answered in O(log k) time using Mul-
muley’s point-location algorithm (CGAL’s library) [CGAL Editorial Board 2007].
We perform such a query at most n times, therefore it takes O(n log k + k2) to
perform all point-location queries and construct the k-lines arrangement. The next
part of ReductionRule kPlus transforms points into lines in the dual space and
incrementally inserts the dual lines one by one into the arrangement A. Due to
Lemma 2.2, there are at most k2 +1 points in S′ being examined in each inner-loop
whether or not there is a line with more than k− |Lk| points and |Lk| ≤ k. There-
fore, there are at most k2 +1 dual lines in A each time we sweep A for a vertex that
is incident to more than k−|Lk| lines. We can construct the dual-lines arrangement
in O(k4) time. Sweeping for all vertices incident to more than k− |Lk| lines can be
done in O(k4) time. Thus, k executions of the inner-loop require O(k5) time. The
total running time of the ReductionRule kPlus function is O(n log k + k5).

Our next rule, Reduction Rule 5 requires the construction of L3. Since the size
of S′ is at most k2, we build L3 by transforming at most k2 points into k2 lines in
the dual space and sweeping the dual-line arrangement to find all vertices incident
to more than 2 lines. We construct the arrangement in O(k4) time and build L3

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

Reduction Rules Deliver Efficient FPT-Algorithms for Covering Points with Lines · 9

in O(k5) time (there are at most O(k4) lines in L3 and each line covers at most k
points). Hence, Reduction Rule 5 can be carried out in O(k5) time.

We repeatedly apply all the above rules at most k − 1 times since application of
a rule resolves the instance or reduces the value of k. Thus, this iteration totals
another O(k6) time. Thus, combining the running time of each reduction rule and
the time of iterative calls, the Preprocessing Algorithm can be performed in
O(n log k + k6) time.

The Cascade-And-Sort algorithm involves weighting the points in S′, sorting
them and calling BST-Dim-Set-Cover. We assign a weight to each point in the
kernel (this step can be done together while we construct the set L3 for Reduction
Rule 5) and sorting the points in the kernel requires O(k2 log k) time. BST-Dim-
Set-Cover requires O(k2kn′) time where n′ = |S′|. Thus, this part of the main
algorithm can be carried out in O(k2 log k + k2k+2) = O(k2k+2) time.

Therefore, the total running time for Cascade-And-Sort is O(n log k +k2k+2).

3.3 Cascade Further

We now present Cascade Further, whose objective is to evaluate the impact of
the last reduction rule. Therefore, this algorithm offers the following new feature.

We incorporate the last of our reduction rules (Reduction Rule 6) after the pre-
vious kernelization process, and naturally before solving the problem kernel. The
preprocessing phase remains the same as Cascade-And-Sort. The structure of
the main algorithm now follows.

Algorithm Cascade Further(S, k)
1 (S′,k′) ← The Preprocessing Algorithm(S, k)
2 Construct L3, a set of all lines through 3 or more points in S′.
3 while there exist {p1, p2} ∈ cover(L3) such that no other line in L3

besides p1, p2 covers p1 or p2 (*Reduction Rule 6 applies*)
4 do S′ ← S′ \ cover{p1, p2}; k′ ← k′ − 1;
5 for p ∈ S′

6 do Weight(p) ← maxli∈L3∩p∈li{|{q ∈ S′|q ∈ li}|+ i
|L3|}

7 Sort S′ in descending Weight order
8 return BST-Dim-Set-Cover(S′, k′) [Langerman and Morin 2005]

3.3.1 Running Time Analysis. The additional work here is to apply Reduction
Rule 6. The set L3 can be built in O(k5) time while also storing the information of
how many lines pass through each particular point. Checking if the rule applies on
each line li ∈ L3 and each point on li takes O(k5) time. Hence, Reduction Rule 6
can be carried out in O(k5) time. Thus, the entire preprocessing phase and the
application of Reduction Rule 6 can be performed in O(n log k + k6) time. The
running time for weighting the points in S′, sorting them and calling BST-Dim-
Set-Cover is the same as in Cascade-And-Sort, that is O(k2k+2).

Therefore, the total running time for Cascade Further is O(n log k + k2k+2).

3.4 Prioritize Points in Heavy Lines

The variant we introduce now solves the kernel differently. There would be no need
to sort the points, but to prioritize over lines around points. We solve the problem

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

10 · V. Estivill-Castro et al.

Lines of partial answer

all lines with at least dn
k e points

all lines (with at least dn
k e points) through the chosen point

li

p1 p2 pi sort the points by their degreep3

l1
l2 l3

...

Fig. 3. A search tree in each recursive call.

kernel using the idea that if we have a YES-instance, one of the lines must cover as
many points as the average coverage provided by the covering lines. That is, if S can
be covered with k lines and |S| = n for n > k, then there is one of the k lines in the
cover of S covering at least dn/ke points. Let Ldn/ke be the set of all lines covering
at least dn/ke points in S and cover(Ldn/ke) be all points in S covered by a line in
Ldn/ke. Grantson et al. [2006] used this idea to control the number of calls when
solving the kernel with Langerman and Morin’s algorithm. While this idea ensures
that we can find one of the covering lines, the problem remains in that there could
be a large number of candidate lines in Ldn/ke. To illustrate this consider Fig. 2.
In this example, l1, l2, . . . , l8 are all candidate lines since they

p1 p2 p3

p4 p5 p6

p7 p8 p9

l1

l2

l3

l4 l5 l6

l7
l8

Fig. 2. Instance
(S, k) where |S| = 9
and k = 3.

are in Ldn/ke. Thus, testing all the candidate lines will give
us at least one of the k lines that belong to the solution set.
Grantson et al. showed that there are at most 3k2/2 lines
covering the average number of points. Thus, the idea of
finding lines with average number of points results in poten-
tially a quadratic number of recursive calls.

Our strategy is to revert the focus of attention to the points
that are in the candidate lines li ∈ Ldn/ke. Consider such a
point p in cover(Ldn/ke). Since p must be covered somehow
in any cover, we can make recursive calls for all lines li ∈
Ldn/ke that cover p. This significantly reduces the branching
factor of recursive calls from the perspective of p. Grantson
et al. showed that there are at most 3k/2 candidate lines passing through a given
point in the plane [Grantson and Levcopoulos 2006]. We use this observation to
create a new bounded-depth search tree, which has a virtual structure as shown
in Fig. 3. The actual approach is to first identify Ldn/ke, and then choose a point
p from S in one of the lines in Ldn/ke. For the correctness of the algorithm, we
explore all candidate lines with at least dn/ke points. However, we expect that in
practice, the branching factor will amortize to linear. The strategy to prioritize the
points p on lines in Ldn/ke is important. Our scheme chooses p with the largest
number of lines in Ldn/ke, i.e., most of the candidate lines meet at p. This is to
increase the chance of having optimal lines passing through p. We also use a hashing
scheme to avoid exploring a candidate line twice (an already tested line because of
another point). The AroundThePoints function solves the problem kernel using
this strategy.
ACM Journal Name, Vol. xx, No. xx, xx 20xx.

Reduction Rules Deliver Efficient FPT-Algorithms for Covering Points with Lines · 11

Algorithm Prioritize Points in Heavy Lines(S, k)
1 (S′,k′) ← The Preprocessing Algorithm(S, k)
2 Construct L3, a set of all lines through 3 or more points in S′.
3 while there exist {p1, p2} ∈ cover(L3) such that no other line in L3

besides p1, p2 covers p1 or p2 (*Reduction Rule 6 applies*)
4 do S′ ← S′ \ cover{p1, p2}; k′ ← k′ − 1;
5 return AroundThePoints (S′, k′)

AroundThePoints(S′, k′)
1 n′ ← |S′|; T ← ∅
2 if n′ ≤ 2k′

3 then return true
4 if k′ > 0
5 then Ldn′/k′e ← the set of all lines covering at least dn′/k′e points
6 C ← cover(Ldn′/k′e)
7 Sort C in descending order of degree where
8 degree (p) def= |{l ∈ Ldn′/k′e|p ∈ l}|
9 for each p ∈ C in descending degree

10 do
11 for each l ∈ Ldn′/k′e, p ∈ l, and l /∈ T
12 do
13 T ← T ∪ {l} (*lines that were tested before*)
14 if AroundThePoints(S′ \ cover(l), k′ − 1)
15 then return true
16 return false

3.4.1 Running Time Analysis. We saw earlier in Cascade Further that the
entire preprocessing phase and the application of Reduction Rule 6 can be per-
formed in O(n log k + k6) time.

We now consider the AroundThePoints function which solves the reduced
instance (S′, k′). The search tree in Fig. 3 has a depth of at most k. For worst-case
analysis, we can use k ≥ k′ and n′ ≤ k2 where n′ = |S′|. The branching factor of
the tree depends on the number of candidate lines covering at least dn′/k′e points
which is at most 3k2/2. In fact, the analysis of the size of (number of nodes in)
the tree emulates the analysis of Grantson et al. [2006] since we apply a hashing
scheme to avoid testing candidate lines that are already tested (the variable T in the
pseudo-code). Thus, we can consider 3k2/2 nodes in the first level of recursion. In
the next recursive call, we will have at most (3/2)2[k(k−1)]2. After k recursive calls,
we will have at most (3/2)k(k!)2 nodes which is simplified to at most (k/2.22)2k
nodes (using also Stirling’s approximation [Grantson and Levcopoulos 2006]).

The workload at each node consists of the time required to compute Ldn′/k′e, the
time required to sort the points p in lines li ∈ Ldn′/k′e, and the time required to
build a list of candidate lines around each chosen point. We find all lines covering
at least dn′/k′e points in the same way as before; that is, we transform at most
k2 points to k2 lines in the dual space and we sweep the dual-line arrangement
to find all vertices incident to at least dn′/k′e lines. This process can be done in
O(k4) time. Sorting the points in cover(Ldn′/k′e) requires O(k2 log k) time since

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

12 · V. Estivill-Castro et al.

there are at most k2 points in cover(Ldn′/k′e). Finally, building a list of candidate
lines around each point in S′ takes O(k3) time because |S′| ≤ k2 and there are
at most 3k/2 candidate lines for any given point. Thus, the work performed at
each node requires O(k4 + k2 log k + k3) = O(k4) time or O

(
k4(k/2.22)2k

)
time for

all the nodes. Thus, the running time of Prioritize Points in Heavy Lines is
O

(
n log k + k4(k/2.22)2k

)
.

4. ALGORITHMS FOR THE OPTIMIZATION PROBLEM

4.1 Search with increments of one

We now present FPT-algorithms to solve exactly the optimization version of the
problem. The value of k in this case is not given as an input, but k is the minimum
number of lines used to cover n points. Our first algorithm calls Prioritize Points
in Heavy Lines with k0 where k0 ≤ k; if this fails, we increment the value of k0

until we succeed. Initially, k0 is set to one.

Algorithm One increments(S)
1 k0 ← 1; success ← false
2 while (not success)
3 do
4 success ← call Prioritize Points in Heavy Lines(S, k0)
5 if (not success) then k0 ← k0 + 1
6 return (k ← k0)

4.1.1 Running Time Analysis. The sum over the time complexities for calling
Prioritize Points in Heavy Lines with the values of k0 = 1 until k0 = k, is
in O(nk log k + k5(k/2.22)2k). But, this is the worst case analysis. In practice we
expect only a constant number of calls where a kernel is resolved since many of the
calls that fail are determined by a reduction rule, and not by analyzing the kernel.

4.2 Guessing a lower bound

We explore an alternative way to search for a value k0 (closer to the optimal value
k), where k0 ≤ k. The algorithm calls Prioritize Points in Heavy Lines to
decide if we can cover n points with k0 equal one. If this fails, we increment the
value of k0. If k0 is no longer small (k0 > 5), we find a new value for k0 that will
potentially bring us closer to the optimal value of k. We will call such a value, k∗,
and it can be set as the number of lines that Reduction Rule 6 can be applied upon.

4.2.1 Running Time Analysis. The additional work with respect to One in-
crements is counting the number of lines where Reduction Rule 6 applies. Similar
to the earlier computation, Reduction Rule 6 can be carried out in O(n3) time.

Although in practice Reduction Rule 6 works very well, we assume the worst
case when it fails to improve the value of k∗. Here, we improve the value of k0 by
incrementing it (i.e. k0 ← k0 + 1 in the pseudo-code). We saw earlier that the sum
over the time complexities for calling Prioritize Points in Heavy Lines with
the values of k0 = 1 until k0 = k, is O(nk log k + k5(k/2.22)2k) time.

Therefore, the overall time complexity of Take a guess is O(n3 +k5(k/2.22)2k).
ACM Journal Name, Vol. xx, No. xx, xx 20xx.

Reduction Rules Deliver Efficient FPT-Algorithms for Covering Points with Lines · 13

Algorithm Take a guess(S)
1 k0 ← 1; k∗ ← −1; success ← false
2 while (not success)
3 do
4 if k0 > 5 and k∗ = −1 (*value of k∗ is computed once*)
5 then k∗ ← 0
6 construct L3, a set of all lines with 3 points or more
7 while there exist {p1, p2} ∈ cover(L3) such that no other

line in L3 besides p1, p2 covers p1 or p2

8 do k∗ ← k∗ + 1 (*Reduction Rule 6 applies*)
9 if k∗ > k0 then k0 ← k∗

10 success ← call Prioritize Points in Heavy Lines(S, k0)
11 if (not success) then k0 ← k0 + 1
12 return (k ← k0)

4.3 Binary search

An alternative way to search for the value of k is to use binary search. We can
double the value of k0 (initially k0 = 1) until we find 2k0 that can cover all the
points in S. Then we search in the range with k0 + 1 as the lower bound and 2k0

as the upper bound.

4.3.1 Running Time Analysis. The running time consists of the time for finding
the upper bound (2k0) and the time for binary search.

The first loop stops when 2k0 results in a successful call to Prioritize Points in
Heavy Lines. The number of calls to this subroutine, is 1 + log 2k0 (note that k ≤
2k0 < 2k). The running time is thus (1+log 2k0)(n log 2k0 +(2k0)4(2k0/2.22)4k0) =
O(n log2 k + k4 log k(k/1.11)4k). The binary search is executed log k0 times. The
running time here is O(n log2 k + k4 log k(k/1.11)4k). Therefore, the overall time
complexity of Binary Search is O(n log2 k + k4 log k(k/1.11)4k).

5. EVALUATION

We now evaluate the algorithms presented here, comparing them with the alterna-
tives in the literature. We consider six algorithms for solving the decision version of
the problem, and another four algorithms for solving the optimized version. Table I
summarizes the time complexities of the ten algorithms. Algorithm Cascade-And-
Kernelize is the same as Algorithm Kernelize except that the reduction rule,
removing a line having more than k points, is used in a cascading effect. That is,
once we find a line covering more than k points, we also look for a line covering one
point shorter and repeat this step until no line is found. Note that in the original
Kernelize [Langerman and Morin 2005], the value of k remains constant. We
believe that this strategy might slightly improve the performance of Kernelize.
ExactLineCover is described in Grantson and Levcopoulos’s paper [2006]. How-
ever, in the actual implementation of this algorithm, we replace the calls to Guibas
et al.’s algorithm [1996] with the calls to the simple version of Guibas described ear-
lier. Since these are the worst-case complexities they include some constant factors
that are non-trivial in any implementation and also they may exhibit very different
performances in a variety of instances. Therefore, we conducted an experimental

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

14 · V. Estivill-Castro et al.

Table I. Summary of the time complexities of ten algorithms.

Algorithms Time Complexity Problem

Cascade-And-Sort (Sec. 3.2) O(n log k + k2k+2) Decision
Cascade Further (Sec. 3.3) O(n log k + k2k+2) Decision

Prioritize Points in Heavy Lines (Sec. 3.4) O(n log k + k4(k/2.22)2k) Decision

BST-Dim-Set-Cover∗ O(k2kn) Decision
Kernelize∗ O(n3 + k2k+2) Decision

Cascade-And-Kernelize∗ O(n3 + k2k+2) Decision

One increments (Sec. 4.1) O(nk log k + k5(k/2.22)2k) Optimization
Take a guess (Sec. 4.2) O(n3 + k5(k/2.22)2k) Optimization

Binary Search (Sec. 4.3) O(n log2 k + k4 log k(k/1.11)4k) Optimization

ExactLineCover† O(n log k + k2k+2) Optimization

∗ [Langerman and Morin 2005]

† [Grantson and Levcopoulos 2006]

evaluation. We implemented the ten algorithms5 using the GNU C++ Compiler
version 4.1.2 and the CGAL’s library [CGAL Editorial Board 2007]. All experi-
ments are performed on a computer with an Intel Pentium(R) 4 processor, at 2.40
GHz with 512 MB of RAM. We consider this machine as a standard PC. We read
the input points from a file and we shuffle once (with all permutations being equally
likely) the input points before we execute the algorithms. We do not include the
time for reading the input points; that is, we specifically measure the running
time when the computation of the covering actually starts. Note that the running
time is measured using a timer class in CGAL that measures user process time
(CPU) [CGAL Editorial Board 2007] and not real time.

5.1 Performance on Random Instances

5.1.1 Algorithms for the decision problem. We focus first on the performance for
instances where the set of points can be covered with k lines. Thus, we define the
following procedure to generate instances with this property. We create k random
lines by firstly generating k random points {s1, . . . , sk} and transforming them to
dual space. These k points then become k lines that will be used as the cover. If
we want to generate a set S of n points, we repeat n times the random selection of
one of the k lines (with equal probability) and place a point pj on this line. The
point pj is chosen by selecting the x-coordinate uniformly in a bounded range and
the y-coordinate is determined by the fact that pj belong to li. Once the file is
generated, the points are shuffled once with all permutations equally likely. Since,
each of the n points lies at least on one of the k lines, the instance generated this
way is always a YES-instance. For a NO-instance, we simply reduce the value of
k in the YES-instance by one. We generate 10 files in this manner and we present
average running times after executions of these files. We tested four combinations
for the values of k and n and the results are given in Table II and Table III. The
data from Table II is also presented graphically in Fig. 4 as an illustration. Note
that all results regarding observed averages in this paper are reported with 95%
confidence intervals.6

5The source code and the data of the problem instances are available upon request.
6A confidence interval is defined by the following formula: 95%C.I. = M ± (1.96∗SD/

√
N) where

M is the sample mean, SD is the standard deviation, and N is the number of samples. In this case,

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

Reduction Rules Deliver Efficient FPT-Algorithms for Covering Points with Lines · 15

Table II. Average running times for the decision problem with 95% confidence

intervals (10 random YES-instances for each value of k and n).
Running Time

k 6
Algorithm n 30 50 5000

Cascade-And-Sort 0.38 ± 0.03s 0.41 ± 0.05s 1.36 ± 0.07s
Cascade Further 0.40 ± 0.04s 0.41 ± 0.04s 1.33 ± 0.08s
Prioritize Points in Heavy Lines 0.41 ± 0.04s 0.44 ± 0.05s 1.34 ± 0.07s
BST-Dim-Set-Cover 223 ± 90s 525 ± 126s ≈ 15hr
Kernelize 2.71 ± 1.58s 0.17 ± 0.09s 6.81 ± 0.76s
Cascade-And-Kernelize 0.12 ± 0.06s 0.07 ± 0.03s 6.59 ± 0.61s

Running Time
k 7

Algorithm n 30 50 5000

Cascade-And-Sort 0.98 ± 0.14s 0.70 ± 0.05s 1.71 ± 0.12s
Cascade Further 1.17 ± 0.19s 0.72 ± 0.05s 1.64 ± 0.10s
Prioritize Points in Heavy Lines 1.18 ± 0.20s 0.74 ± 0.07s 1.72 ± 0.13s
BST-Dim-Set-Cover ≈ 3hr ≈ 11hr � 24hr
Kernelize ≈ 3hr 2.19 ± 1.99s 7.72 ± 0.51s
Cascade-And-Kernelize ≈ 3hr 0.21 ± 0.11s 8.69 ± 1.05s

(a) k = 6 (b) k = 7

Fig. 4. Running time versus the instance size for random YES-instances.

5.1.2 Discussion. One rapidly discovers the pattern. Simply, the implementa-
tion of our algorithms requires CPU time of the order of seconds, while theoretical
algorithms without our simple reduction rules require CPU time of the order of
hours! Consider first the YES-instances where n > k2. Here the kernelization
phase reduces the size of the instance effectively because points are assigned to
lines by the generation process with equal probability, so the expected number of

it indicates that the expected running time of the algorithm on an instance drawn as described
has 95% probability of falling inside the interval. If the confidence intervals are disjoint, we have

statistical significance that one algorithm’s CPU time is smaller than the other.

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

16 · V. Estivill-Castro et al.

Table III. Average running times for the decision problem with 95% confidence

intervals (10 random NO-instances for each value of k and n).
Running Time

k 5
Algorithm n 30 50 5000

Cascade-And-Sort 0.25 ± 0.03s 0.24 ± 0.03s 0.27 ± 0.04s
Cascade Further 0.24 ± 0.03s 0.24 ± 0.03s 0.26 ± 0.04s
Prioritize Points in Heavy Lines 0.23 ± 0.02s 0.24 ± 0.03s 0.26 ± 0.03s
BST-Dim-Set-Cover 239 ± 5.23s 454 ± 7.23s ≈ 15hr
Kernelize 0.23 ± 0.05s 0.11 ± 0.08s 7.67 ± 0.60s
Cascade-And-Kernelize 0.05 ± 0.02s 0.04 ± 0.02s 6.57 ± 0.31s

Running Time
k 6

Algorithm n 30 50 5000

Cascade-And-Sort ≈ 1hr 0.48 ± 0.05s 0.54 ± 0.07s
Cascade Further 0.83 ± 0.24s 0.46 ± 0.05s 0.58 ± 0.07s
Prioritize Points in Heavy Lines 0.82 ± 0.23s 0.49 ± 0.06s 0.53 ± 0.08s
BST-Dim-Set-Cover ≈ 4hr ≈ 8hr � 24hr
Kernelize ≈ 2hr 0.33 ± 0.11s 8.48 ± 1.12s
Cascade-And-Kernelize ≈ 2hr 0.13 ± 0.06s 8.14 ± 1.07s

Table IV. Average kernel’s sizes and average running times for practical

limits of k and n with 95% confidence intervals (10 random instances for

each value of k and n).
Kernel’s Size Running Time (min)

k 30 5 30 5
Algorithm n 900 100,000 900 100,000

Cascade-And-Sort 0 0 5 ± 0.12 0.4 ± 0.01
Cascade Further 0 0 5 ± 0.21 0.4 ± 0.01
Prioritize Points in Heavy Lines 0 0 5 ± 1.13 0.4 ± 0.01

points on any given line is greater than k. The cascading is also effective and lines
that have more than k′ points are detected and removed several times (reducing k′

further and making it more likely to find another line in the solution). Naturally,
our three algorithms perform slightly poorer than Kernelize and Cascade-And-
Kernelize for very small values of k and n (for example, k = 6, n = 50). This is
because our algorithms carry overhead in order to ensure the exhaustive application
of the reduction rules in the kernelization phase.

When n < k2 and k is sufficiently large, our three algorithms solve random
YES-instances relatively fast. Since n < k2, the expected number of points on a
given line is less than k. While the kernelization part of Kernelize and Cascade-
And-Kernelize do not apply at all, Reduction Rule 5 and Reduction Rule 6 of our
algorithms work really well. This is why the introduction of more reduction rules
proposed here results in large improvements with respect to earlier algorithms.
With instances k = 6, n = 30 and k = 7, n = 30 the three known algorithms
perform very differently, depending on the values of (n/k). If the average number
of points on any given line is a lot less than k, then the probability that their
kernelization process can reduce the size of these random instances is very low. For
n > k2, Cascade-And-Kernelize performs better than Kernelize. Again this
is because several lines that have more than k′ points are detected and removed
(reducing k′ further). This illustrates again the power of more reduction rules, even
if they seem simple and not producing a theoretically smaller kernel. Similar results
are obtained in the case of NO-instances except that Cascade-And-Sort does not
perform as well as the other two algorithms of ours. This is not surprising because
ACM Journal Name, Vol. xx, No. xx, xx 20xx.

Reduction Rules Deliver Efficient FPT-Algorithms for Covering Points with Lines · 17

Table V. Average running times for the optimization problem with 95%

confidence intervals (10 random instances for each value of k and n).
Running Time

k 6 7
Algorithm n 30 50 30 50

One increments 0.9 ± 0.07s 0.8 ± 0.04s 2.5 ± 0.39s 1.7 ± 0.10s
Take a guess 1.3 ± 0.06s 2.0 ± 0.04s 2.7 ± 0.40s 2.4 ± 0.09s
Binary Search 2.1 ± 0.24s 1.6 ± 0.10s 3.6 ± 0.46s 2.3 ± 0.18s
ExactLineCover 2.4 ± 0.42s 5.1 ± 0.18s ≈ 7hr 6.4 ± 0.29s

Table VI. Average running times for practical limits of k

and n with 95% confidence intervals (10 random instances

for each value of k and n).
Running Time (min)

k 30 10 5
Algorithm n 900 1,600 100,000

One increments 38 ± 1.54 0.15 ± 0.01 0.43 ± 0.02
Take a guess 11 ± 0.27 19 ± 0.05 0.46 ± 0.03
Binary Search 22 ± 1.32 0.33 ± 0.02 1.2 ± 0.03

Cascade-And-Sort invokes BST-Dim-Set-Cover after the kernelization phase
failed to detect the NO-instances.

The above results show that implementation of previous algorithms is hardly
practical, even for a small value of k (k = 7). Thus, we also explore the practical
limits for the value of k in our algorithms (see Table IV). The random instances
are generated with the same procedure as before. The value of k used for instance
generation is the same as the parameter k of the inputs. The result shows that
our algorithms solve the instances in 5 minutes, even when k is as large as 30.
Experimentally, we also found that reduction rules perform essentially all the work
and the average size of the kernels is zero in all cases. In particular, Reduction
Rule 4 and Reduction Rule 5 in the preprocessing algorithm work extremely well
in these random instances. In the next subsection we generate structured instances
and create the situations that disallow some of these reduction rules to work in
order to see how our algorithms perform (we discuss this later).

5.1.3 Algorithms for the optimization problem. Naturally, we use the instances
generated in this random model above to also evaluate algorithms for the optimiza-
tion version of the problem. We organized the experiments as before. Recall that
k in this case is not given as an input, but k is the minimum number of lines used
to cover n points.

Results for the optimization problem are shown in Table V. Again, our imple-
mentations are several orders of magnitude more CPU-time efficient than previous
algorithms, which are not practical for values like k = 7 and n = 30. Exploring the
limits of how far we can take our implementations, we also considered larger values
of k and n. Table VI shows the corresponding running times.

5.1.4 Discussion. The result is obvious: our three algorithms outperform Ex-
actLineCover. All algorithms perform significantly better when n > k2 than
when n ≤ k2 because the algorithms detected a number of lines that have more
than k points and removed these lines early.

The performance of our three algorithms is rather similar when the value of k
is still small. The binary search technique of Algorithm Binary Search actually

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

18 · V. Estivill-Castro et al.

pays off when k is big (see Table VI). It reduces the running time of Algorithm One
increments by 42% when k = 30, n = 900. Nevertheless, Algorithm One incre-
ments still runs reasonably fast for k up to 30, and n up to 100,000 or higher.
When k > 5, Take a guess performs twice as well as Binary Search and 3.5
times better than One increments (see k = 30, n = 900). However, Take a
guess requires O(n3) time to provide an initial guess for the value of k, hence it
performs very poorly when n is big, while One increments and Binary Search
can take a very large value of n (up to one million points). In summary, One
increments is ideal for applications with small k value (less than 20). Binary
Search is suitable when k is large.

These results show that our algorithms work extremely well in the above type
of instances since the reduction rules perform essentially all the work. Rarely, the
algorithm is required to solve a kernel. Therefore, we decided to construct instances
where the reduction rules would have little opportunity or instances where the rules
do not apply, along with instances where the rules do apply efficiently. We call these
structured instances because they are generated under a certain prototype.

5.2 Performance on Structured Instances

5.2.1 Algorithms for the decision problem. We generate the instances along
eight profiles. Fig. 5 illustrates the profiles of the instances. In this experiment
the input points are not randomly distributed in the Euclidean space; instead they
are somewhat structured. In fact, each input file is manually generated by deliber-
ately placing each point such that the cover of these points looks exactly like the
profiles drawn in Fig. 5. As a representative of each profile, we typically generate
one input file since any linear transformation of its shape (the profile) preserves the
answer, that is, these points can still be covered by the same number of lines even
if the profile shape is slanted or deviated from the horizontal or vertical plane. We
now describe the eight profiles and how they are motivated.

(1) The Small-k profile has data points which lie on k horizontal lines (Fig. 5(a)).
The lines were chosen manually but the points on the lines are generated au-
tomatically. In this profile the value of n can be increased without increasing
the value of k, therefore we make sure that each line covers as many points as
possible such that n >> k2. Typically we will test our algorithms in at least 3
files of this profile (for a different value of k). Here, we expect kernelization to
perform all the work, so we essentially compare the overhead of all algorithms
using this profile.

(2) The Elongated-Grid (Fig. 5(b)) profile is similar to the Small-k instance-profile
and also has n >> k2. However, the profile has data points in each vertex of
an elongated-grid with k horizontal lines and n/k vertical lines. This profile
tests the case where a single point can be covered by several lines in L3.

(3) The Large-k profile represents a test when the input size is small (n < k2),
and here kernelization stops because the input size is already smaller than the
square of the parameter. (Fig. 5(c)).

(4) The Grid profile has data points in each vertex of a square grid with k horizontal
and k vertical lines; thus n = k2 (Fig. 5(d)). We test this profile when k is 5,
6 and 7 (n is 25, 36 and 49 respectively). This is usually what we obtain as a

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

Reduction Rules Deliver Efficient FPT-Algorithms for Covering Points with Lines · 19

(a) Small-k (b) Elongated-Grid (c) Large-k (d) Grid

(e) Grid & Sparse (f) Sparse (g) Star (h) Wave

Fig. 5. Profiles for structured instances.

quadratic kernel, and each point could lie on several lines all of which could be
in a solution. Hence, this profile tests the situation where the kernel is k2 and
there are a large number of candidate lines to be tested.

(5) The Grid and Sparse profile (Fig. 5(e)) is a case where besides the points in
the grid we add points outside the grid in p of the diagonal lines making sure
they do not share any x or y coordinates. This makes kernels that are less than
quadratic because p lines are removed by Reduction Rule 6 and the grid part
becomes incomplete (in the diagonal) so we expect our algorithms to perform
slightly better here than in the grid.

(6) The Sparse profile is a case where most of the lines cover just a few points
(Fig. 5(f)). The input size n is chosen such that 2k < n < 3k.

(7) The Star profile (Fig. 5(g)) is similar to the grid, that is, we test the situation
where n = k2. However, here the points do not share any x or y coordinates so
no point can be covered by several candidate lines as it can in the grid.

(8) The Wave profile (Fig. 5(h)) tests the case where one line which covers most of
the points in the plane is not actually in the optimal cover.

We look at values of k no greater than 7. For YES-instances, we make sure
that all generated instances above are covered by a minimum number of lines that
is equal to the value k used as input for the algorithm. For NO-instances, we
reduce the value of k in the corresponding YES-instances by one. Results appear
in Table VII and Table VIII. Note that all results regarding observed averages in
this section are computed with 95% confidence intervals in the same way as we did
in the previous section. However, for the sake of readability we omit them from the
tables.

While we evaluate our algorithms with respect to those with theoretical merits,
we also look at the difference in performance among our three algorithms (see
Table IX). We did tests on the grid-type instances, but, the results are not obvious

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

20 · V. Estivill-Castro et al.

Table VII. Average running times for the decision problem (10 shuffles on the same input file

for a YES-instance).
Input Profile

Small-k Large-k Elongated-Grid
k 4 4 4 7 4 4 4

Algorithm n 100 1,000 10,000 21 100 1,000 10,000

Cascade-And-Sort 0.1s 0.2s 1.5s 0.4s 0.1s 0.2s 1.5s
Cascade Further 0.1s 0.2s 1.6s 0.7s 0.1s 0.2s 1.6s
Prioritize Points in Heavy Lines 0.1s 0.3s 1.6s 0.7s 0.1s 0.2s 1.6s
BST-Dim-Set-Cover 1.0s 9s 96s ≈ 3hr 1.1s 10s 58s
Kernelize 0.03s 0.4s 25s ≈ 3hr 0.02s 0.35s 23s
Cascade-And-Kernelize 0.02s 0.4s 23s ≈ 3hr 0.03s 0.42s 23s

Input Profile (cont.)
Grid Grid & Sparse Star Wave

Sparse
k 5 6 7 6 7 6 6

Algorithm n 25 36 49 22 15 36 23

Cascade-And-Sort 0.5s 1.1s 2s 0.4s 0.2s 1.2s 168s
Cascade Further 1s 1.6s 3s 0.6s 0.2s 2s 0.8s
Prioritize Points in Heavy Lines 1.4s 2.5s 4.5s 0.7s 0.2s 2s 0.9s
BST-Dim-Set-Cover 3.5s 293s ≈ 5hr 107s 939s 336s 125s
Kernelize 3.5s 180s ≈ 5hr 90s 1,260s 416s 124s
Cascade-And-Kernelize 2.7s 185s ≈ 5hr 83s 1,214s 366s 126s

Table VIII. Average running times for the decision problem (10 shuffles on the same input file
for a NO-instance).

Input Profile
Small-k Large-k Elongated-Grid

k 3 3 3 6 3 3 3
Algorithm n 100 1,000 10,000 21 100 1,000 10,000

Cascade-And-Sort 0.05s 0.05s 0.05s ≈ 2hr 0.05s 0.05s 0.05s
Cascade Further 0.05s 0.05s 0.05s 0.65s 0.05s 0.05s 0.05s
Prioritize Points in Heavy Lines 0.05s 0.05s 0.05s 0.67s 0.05s 0.05s 0.05s
BST-Dim-Set-Cover 0.76s 7.8s 78s ≈ 2hr 0.75s 7.6s 76s
Kernelize 0.02s 0.42s 24s ≈ 2hr 0.02s 0.37s 23s
Cascade-And-Kernelize 0.03s 0.35s 24s ≈ 2hr 0.02s 0.24s 22s

Input Profile (cont.)
Grid Grid & Sparse Star Wave

Sparse
k 4 5 6 5 6 5 5

Algorithm n 25 36 49 22 15 36 23

Cascade-And-Sort 0.12s 0.28s 0.52s 0.2s 0.22s 0.31s 0.27s
Cascade Further 0.14s 0.28s 0.57s 0.2s 0.23s 0.27s 0.27s
Prioritize Points in Heavy Lines 0.14s 0.25s 0.53s 0.2s 0.23s 0.27s 0.27s
BST-Dim-Set-Cover 4s 274s ≈ 7hr 138s ≈ 1hr 311s 157s
Kernelize 0.02s 0.07s 0.16s 2.4s ≈ 1hr 0.02s 3s
Cascade-And-Kernelize 0.01s 0.01s 0.02s 0.04s ≈ 1hr 0.01s 0.13s

Table IX. Comparison of our three algorithms for the decision prob-

lem (10 shuffles on the Incomplete-Grid instance).
Running Time

YES-instance NO-instance
Algorithm (k = 6, n = 30) (k = 5, n = 30)

Cascade-And-Sort 50.87 ± 46s 0.25 ± 0.03s
Cascade Further 107.64 ± 67s 0.25 ± 0.03s
Prioritize Points in Heavy Lines 2.16 ± 0.3s 0.25 ± 0.02s

for us to comment on the three algorithms. Therefore, we select a new structured
instance called Incomplete-Grid (see Fig. 6(a)) to test our algorithms. In this type of
instance we expect that none of the reduction rules will apply leaving a large kernel
that may be solved well with the heuristic approach of each algorithm. We also
justify the earlier claim that Prioritize Points in Heavy Lines performs better
ACM Journal Name, Vol. xx, No. xx, xx 20xx.

Reduction Rules Deliver Efficient FPT-Algorithms for Covering Points with Lines · 21

(a) Incomplete-Grid (b) Bad-Heavy-Lines

Fig. 6. Two special structured-instances for testing the features of our algorithms.

Table X. Average running times of Algorithm Prioritize Points in
Heavy Lines with and without sorting feature (10 shuffles on the Bad-

Heavy-Lines instance).
Running Time

Algorithm YES-instance NO-instance
Prioritize Points in Heavy Lines (k = 10, n = 63) (k = 9, n = 63)

with sorting 22.5 ± 3s 145.8 ± 0.6s
without sorting 77.4 ± 22s 145.2 ± 0.6s

Table XI. Practical limits for k with Algorithm Prior-

itize Points in Heavy Lines.

Grid k by k Kernel Size Approx. Running Time

k = 29 841 27min
k = 30 900 31min

when sorting points p (on lines with at least dn/ke points) according to their degree
(number of lines through p). We test this claim with an instance of Fig. 6(b) where
in this instance we set the scene such that many lines that cover most of the points
in the plane are not actually in the optimal solution, hence the algorithm is likely
to make a bad choice of p (without sorting the point). The experiment will show
that by this heuristic sorting, we have the better chance of cutting out branches
of the search tree, hence Prioritize Points in Heavy Lines runs even faster.
This result appears in Table X. Experimentally, we also found that when we have
the grid profiles, the preprocessing phase of Prioritize Points in Heavy Lines
fails to reduce the input instance. Therefore, we consider grid-type instances to be
a difficult instance for Prioritize Points in Heavy Lines and we investigated
how far we could stretch k in this case. We aim for the value of k that can solve the
YES-instance in around half an hour on a standard PC. Table XI shows that the
size of the kernel is quadratic, and in that case, the kernel has a workload where
the practical limit for k is about 30.

5.2.2 Discussion. First let us discuss the case of YES-instances. Our three al-
gorithms can handle larger values of k and n than the known algorithms. Our
algorithms achieve the best result in the grid-type instances. Note that the re-
duction rules do not apply in these kinds of structures; this means that the cost
of solving the problem kernel of our three algorithms is also less than than those
of known algorithms. In the Grid instance-type, Cascade-And-Sort runs faster
than Prioritize Points in Heavy Lines. However, Cascade-And-Sort per-
forms quite poorly on the Wave instance-type (because lines with many points do
not necessarily belong to the solution set). Algorithm Cascade Further that has
one more reduction rule than Cascade-And-Sort solves the Wave instance-type

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

22 · V. Estivill-Castro et al.

Table XII. Average running times for the optimization problem (10 shuffles

on the same input file).
Input Profile

Small-k Large-k Elongated-Grid
k 4 4 4 7 4 4 4

Algorithm n 100 1,000 10,000 21 100 1,000 10,000

One increments 0.2s 0.3s 1.7s 2.2s 0.2s 0.3s 1.7s
Take a guess 0.2s 0.3s 1.7s 1.8s 0.2s 0.3s 1.7s
Binary Search 0.2s 0.3s 1.7s 2.1s 0.2s 0.3s 1.7s
ExactLineCover 0.9s 1.2s 12s ≈ 6hr 0.9s 1.3s 12s

Input Profile (cont.)
Grid Grid & Sparse Star Wave

Sparse
k 5 6 7 6 7 6 6

Algorithm n 25 36 49 22 15 36 23

One increments 1.4s 3s 6s 1s 1s 2.4s 1.3s
Take a guess 1.5s 3.6s 7s 1.2s 1.1s 3s 1.6s
Binary Search 3.8s 5.3s 10s 1.7s 0.7s 4s 2s
ExactLineCover 4.2s 290s ≈ 4hr 161s ≈ 2hr 283s 188s

200 times faster than Cascade-And-Sort. This reveals the power of our Reduc-
tion Rule 6. Algorithm Prioritize Points in Heavy Lines requires less than a
second to decide the NO-instances.

Let us look at the difference in performance among our three algorithms. The
Incomplete-Grid instance-type in Fig. 6(a) represents the situation when the sort-
ing strategy does not work really well, because here several lines that cover most
of the points are not part of the cover. The result shows that Prioritize Points
in Heavy Lines outperforms the other two algorithms (see Table IX). Moreover,
there is a large variance in the performance of Cascade-And-Sort and Cascade
Further while the variance is very small in Algorithm Prioritize Points in
Heavy Lines. In Prioritize Points in Heavy Lines, our strategy of attacking
the kernel is also better than those of Cascade-And-Sort and Cascade Fur-
ther which are based solely on sorting the kernel prior to calling BST-Dim-Set-
Cover. Algorithm Prioritize Points in Heavy Lines also incorporates another
strategy, that is sorting the point p on lines with at least dn/ke points according
to their degree (number of lines through p). The result in Table X confirms that
this strategy indeed improves the performance of this algorithm for YES-instance.
Finally, Prioritize Points in Heavy Lines has the practical limit for k of about
30 whereas other known algorithms perform well up to k = 6.

5.2.3 Algorithms for the optimization problem. We have tested the decision ver-
sion of our algorithms with profiles such as those of Fig. 5. When we look at the
optimization version with the same profiles, we get the results as shown in Table XII.

5.2.4 Discussion. Our three algorithms outperform ExactLineCover in all
cases. Algorithm ExactLineCover is no longer practical when k is 7 as it solves
the instances Sparse, Grid and Large-k in 2 hours, 4 hours and 6 hours respectively;
our three algorithms solve them in less than 10 seconds.

5.3 Implementation Issues

In our experiments, when we read the input points, we also removed the duplicated
points. This step was performed in all algorithms to ensure that all algorithms
were working under the same assumptions. This step was not reflected at all in
ACM Journal Name, Vol. xx, No. xx, xx 20xx.

Reduction Rules Deliver Efficient FPT-Algorithms for Covering Points with Lines · 23

the timings; however, if we also were to consider the time taken to clean the input
from duplicates, then all algorithms would have a running time with an additional
O(n log n) term.

Duality mapping is not defined for vertical lines. Therefore, implementation of
our algorithm and Grantson and Levcopoulos’s algorithm (as well as any algorithms
that use Guibas et al. [1996]) need attention to this aspect. The solution is to rotate
the scene so that there are no vertical lines [de Berg et al. 2000]. We did not include
this work in our timings.

6. CONCLUSIONS

This paper presented efficient FPT-algorithms for the problem of covering a set
S of n points in the plane with k lines. We also gave algorithms that solve the
optimization version of the problem. We implemented all of our algorithms and
four other algorithms found in the literature. Note that these algorithms provide
exact solutions. In this paper approximation algorithms or probabilistic algorithms
that give an answer with a high probability of correctness were not considered.
We looked at the performance of our algorithms in comparison with the other
algorithms. We acknowledge that the purpose of Langerman and Morin’s algorithm
was to produce theoretical results. On the other hand, our aim was to show that
the parameterized approach can lead to algorithms that can handle large instances
in practice. We also proved experimentally that the new simple reduction rules
presented here have significant benefit in implementation although theoretically
do not produce a smaller kernel. We solved the kernel using a bounded-search-
tree technique with a new heuristic that looks at each candidate line around a
given point. Although this idea did not improve the theoretical time complexity
(asymptotically, the O-notation is the same), it improved significantly the running
time in practice. Based on our experimental evidence we suggest the following.
Algorithm One increments is ideal for applications with small k value (less than
20). Algorithm Binary Search should be used when k is large.

REFERENCES

Agarwal, P. 1990. Partitioning arrangements of lines II: applications. Discrete and Computa-

tional Geometry 5, 533–573.

Applegate, D., Bixby, R., Chvátal, V., and Cook, W. 2006. The Traveling Salesman Problem.
Princeton University Press, Princeton, NJ, USA.

Arkin, E., Bender, M., Demaine, E., Fekete, S., Mitchell, J., and Sethia, S. 2005. Optimal
covering tours with turn costs. SIAM J. Comput. 35(3), 531–566.

Arkin, E., Fekete, S., and Mitchell, J. 2000. Approximation algorithms for lawn mowing and

milling. Comput. Geom. 17(1-2), 25–50.

CGAL Editorial Board. 2007. CGAL User and Reference Manual, 3.3 edition.
http://www.cgal.org/Manual/3.3/doc html/cgal manual/packages.html.

de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. 2000. Computational

Geometry: Algorithms and Applications, 2nd ed. Springer, Berlin.

Dĕineko, V. and Woeginger, G. 1996. The convex-hull-and-k-line traveling salesman problem.
Inf. Process. Lett. 59(6), 295–301.

Downey, R. and Fellows, M. 1999. Parameterized Complexity. Monographs in Computer
Science. Springer, New York.

Drysdale, R., Stein, C., and Wagner, D. 2005. An O(n5/2 log n) algorithm for the rectilinear

minimum link-distance problem. In 17th Canadian Conference on Computational Geometry.

University of Windsor, Ontario, Canada, 97–100.

Edelsbrunner, H., Seidel, R., and Sharir, M. 1993. On the zone theorem for hyperplane

arrangements. SIAM J. Comput. 22(2), 418–429.

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

24 · V. Estivill-Castro et al.

Flum, J. and Grohe, M. 2006. Parameterized Complexity Theory. Texts in Theoretical Computer

Science. Springer, Berlin.

Giannopoulos, P., Knauer, C., and Whitesides, S. 2008. Parameterized complexity of geo-
metric problems. Comput. J. 51, 3, 372–384.

Grantson, M. and Levcopoulos, C. 2006. Covering a set of points with a minimum number of

lines. In Algorithms and Complexity, 6th Italian Conference, CIAC. LNCS, vol. 3998. Springer,
Berlin, 6–17.

Guibas, L., Overmars, M., and Robert, J. 1991. The exact fitting problem for points. In

3rd Canadian Conference on Computational Geometry. Simon Fraser University, Vancouver,

British Columbia, 171–174.

Guibas, L., Overmars, M., and Robert, J. 1996. The exact fitting problem in higher dimensions.

Computational Geometry: Theory and Applications 6, 215–230.

Hüffner, F., Niedermeier, R., and Wernicke, S. 2008. Techniques for practical fixed-parameter

algorithms. Comput. J. 51(1), 7–25.

Kumar, V., Arya, S., and Ramesh, H. 2000. Hardness of set cover with intersection 1. In
27th International Colloquium on Automata, Languages and Programming, ICALP. LNCS,

vol. 1853. Springer, Berlin, 624–635.

Langerman, S. and Morin, P. 2001. Cover points with lines. In 11th Fall Workshop on Com-
putational Geometry. Polytechnic University, Brooklyn, NY, USA.

Langerman, S. and Morin, P. 2002. Cover things with things. In 10th European Symposium

on Algorithms. LNCS, vol. 2641. Springer, Berlin, 662–673.

Langerman, S. and Morin, P. 2005. Cover things with things. Discrete and Computational

Geometry 33(4), 717–729.

Lee, D., Yang, C., and Wong, C. 1994. On bends and distances of paths among obstacles in

two-layer interconnection model. IEEE Trans. Comput. 43(6), 711–724.

Lee, D., Yang, C., and Wong, C. 1996. Rectilinear paths among rectilinear obstacles. Discrete

Applied Mathematics 70(3), 185–215.

Matoušek, J. 1990. Cutting hyperplane arrangements. In 6th Annual Symposium on Computa-
tional Geometry. ACM, New York, NY, USA, 1–9.

Megiddo, N. and Tamir, A. 1982. On the complexity of locating linear facilities in the plane.

Operations Research Letters 1(5), 194–197.

Niedermeier, R. 2006. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in
Mathematics and its Applications 31. Oxford University Press, New York.

Rote, G. 1992. The N-line traveling salesman problem. Networks 22, 91–108.

Stein, C. and Wagner, D. 2001. Approximation algorithms for the minimum bends traveling

salesman problem. In 8th International IPCO Conference. LNCS, vol. 2081. Springer, Berlin,
406–422.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. xx, No. xx, xx 20xx.

