
Generating Historical Condition Ratings for the Reliable Prediction of 

Bridge Deteriorations 
 

Jung Baeg Son 
PhD Candidate,  

Griffith School of Engineering, 

Griffith University, Australia 

s.son@griffith.edu.au 

 Jaeho Lee 
Research fellow, 

Griffith School of 

Engineering, Griffith 

University, Australia 

j.lee@griffith.edu.au  

 Michael Blumenstein 
Associate Professor,  

Head of Griffith School of Information 

and Communication Technology, 

Griffith University, Australia 

m.blumenstein@griffith.edu.au 

 

     
Yew-Chaye Loo 
Professor,  

Director of International and 

Professional Liaison for SEET Group 

and Foundation Professor of Griffith 

School of Engineering, Griffith 

University, Australia 

y.loo@griffith.edu.au 

 

 Hong Guan 
Associate Professor, 

Griffith School of 

Engineering, Griffith 

University, Australia 

h.guan@griffith.edu.au 

 

 Kriengsak Panuwatwanich 
Research fellow, 

Griffith School of Engineering, Griffith 

University, Australia 

 

k.panuwatwanich@griffith.edu.au 

 

Summary 

Bridge Management Systems (BMSs) have been developed since the early 1990s as a decision 
support system (DSS) for effective Maintenance, Repair and Rehabilitation (MR&R) activities in a 
large bridge network. Historical condition ratings obtained from biennial bridge inspections are 
major resources for predicting future bridge deteriorations via BMSs. However, available historical 
condition ratings are very limited in all bridge agencies. This constitutes the major barrier for 
obtaining reliable future structural performances. To alleviate this problem, the Backward 
Prediction Model (BPM) technique for generating the missing historical condition ratings has been 
developed, and its reliability has been verified using existing condition ratings available from the 
Maryland Department of Transportation, USA. The function of the BPM is to establish the 
correlations between the known condition ratings and non-bridge factors including climate, traffic 
volumes and population growth. Such correlations can then be used to obtain the bridge condition 
ratings of the missing years. Based on these generated datasets, the current bridge deterioration 
model can predict future bridge conditions. The existing 4 National Bridge Inventory (NBI) and 9 
BPM-generated historical condition ratings were used as input data to compare the prediction 
accuracy using deterministic bridge deterioration models. The comparison results showed that 
prediction error decreased as more historical data became available. This suggested that the BPM 
can be used to generate additional historical condition ratings, which are essential for bridge 
deterioration models to achieve more accurate prediction results. However, there are still significant 
limitations identified in the current bridge deterioration models. Hence, further research is 
necessary to improve the prediction accuracy of bridge deterioration models. 

Keywords: Maintenance, Repair and Rehabilitation (MR&R); Bridge Management Systems 
(BMSs); Bridge condition ratings; Backward Prediction Model (BPM); Non-bridge factors; Bridge 
deterioration model. 

 

1. Introduction 

This paper presents a research study conducted in an attempt to improve long-term predictions of 
the BMSs. Firstly, a set of missing historical bridge condition ratings was generated using the neural 
network based Backward Prediction Model (BPM). Deterministic deterioration models were then 
employed based on complete historical condition ratings obtained from the results of BPM. The 
future bridge condition ratings predicted by these models were then compared with the existing 
bridge data to determine the level of prediction accuracy. 



2. Backward Prediction Model (BPM) 

The BPM predicts the selected or entire periods of historical bridge condition rating to overcome 
the lack of existing BMS condition ratings. The function of the developed BPM is to establish the 
correlation between the known condition ratings and non-bridge factors including climate, traffic 
volume and population growth. Such correlation can then be used to obtain the bridge condition 
ratings of the missing years. 

 

3. Comparison of BPM results with National Bridge Inventory 

To carry out the backward comparison, 5 sets of existing NBI data were used in this study as BPM 
training inputs and outputs (from 1996 in 2-year increment to 2004) to generate historical condition 
ratings for the periods of 1968 to 1994 in 2-year increments. All the prediction errors derived from 
the BPM using 6 refined non-bridge factors are less than those obtained from using the original 21 
non-bridge factors. This prediction accuracy improvement could be attributable to the elimination 
of irrelevant factors, which cause the noise level that existed in the original set of factors. The BPM 
with refined non-bridge factors was therefore used in the subsequent research stage. 

 

4. Current bridge deterioration models 

The current bridge deterioration models can be categorised as deterministic, stochastic and artificial 
intelligence. This paper focuses on the first two types of the model as they are prevalent in many 
BMSs currently in use worldwide. Among the deterministic models, regression analysis is a method 
widely used in many bridge management systems. As for stochastic technique, Markovian model is 
considered as the most common of this category. However, the Markovian model is not suitable for 
the NBI. Thus, only regression analyses were used in the current study to predict future bridge 
conditions based on generated historical data from the BPM methodology.  

 

5. Comparison of deterioration models 

Comparisons of prediction error were carried out by using 4 existing NBI records and 9 BPM-based 
generated condition ratings, for both linear and non-linear regression techniques. In case of linear 
regression, the average error of 33.3% from the prediction using 4 NBI records decreases to 7.0% 
when using 9 generated condition ratings. Similarly for the case of non-linear regression, the 
prediction error decreases from 25.6% to 9.0% when the number of input datasets increases. This 
finding indicated that, in deterministic models, the historical data generated by the BPM technique 
could contribute to the improvement of prediction accuracy.  

 

6. Discussion and Conclusion 

Using BPM to generate more historical condition data could contribute to improved prediction of 
future bridge conditions because prediction error became smaller as more input data obtained. 
These finding, however, should be interpreted in light of the following main limitations of the 
deterministic deterioration models employed in this paper: (1) their prediction is based only on an 
average condition of a bridge structure with no regard to the variability of condition rating 
distribution in each year; and (2) they disregard the interaction between the different bridge 
structure elements. Further research is required to address such limitations and should aim to 
develop a more robust deterioration model that fully exploits the benefits of BPM-generated 
historical condition records. 
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Summary  

Bridge Management Systems (BMSs) have been developed since the early 1990s as a decision 
support system (DSS) for effective Maintenance, Repair and Rehabilitation (MR&R) activities in a 
large bridge network. Historical condition ratings obtained from biennial bridge inspections are 
major resources for predicting future bridge deteriorations via BMSs. However, available historical 
condition ratings are very limited in all bridge agencies. This constitutes the major barrier for 
predicting reliably future structural performances. To alleviate this problem, the Backward 
Prediction Model (BPM) technique for generating the missing historical condition ratings has been 
developed, and its reliability has been verified using existing condition ratings available from the 
Maryland Department of Transportation, USA. The function of the BPM is to establish the 
correlations between the known condition ratings and non-bridge factors including climate, traffic 
volumes and population growth. Such correlations can then be used to obtain the bridge condition 
ratings of the missing years. Based on these generated datasets, the currently available bridge 
deterioration model can be used to predict future bridge conditions. The existing 4 National Bridge 
Inventory and 9 BPM-generated historical condition ratings are used as input data to compare the 
prediction accuracy using deterministic bridge deterioration models. The comparison results show 
that prediction error decreases as more historical data become available. This suggests that the BPM 
can be used to generate additional historical condition ratings, which is essential for bridge 
deterioration models to achieve more accurate prediction results. However, there are still significant 
limitations identified in the current bridge deterioration models. Hence, further research is 
necessary to improve the prediction accuracy of bridge deterioration models. 

Keywords: Maintenance, Repair and Rehabilitation (MR&R); Bridge Management Systems 
(BMSs); Bridge condition ratings; Backward Prediction Model (BPM); Non-bridge factors; Bridge 
deterioration model. 

 

1. Introduction 

A bridge is usually designed to have long-term service life. In some cases, however, it could fail 
prematurely and, as a result, could cause losses of human life. Thus, to ensure optimum 
serviceability of a bridge, critical decision-making for Maintenance, Repair and Rehabilitation 
(MR&R) activities is required [1]. Many Bridge Management Systems (BMSs), as a Decision 
Support System (DSS), have been developed to manage a large bridge network. A BMS generally 
assists significant future MR&R strategies, which are based on a reliable bridge deterioration model. 



Thus, an effective BMS highly relies on the prediction accuracy of deterioration ratings [2].  

Many bridge condition ratings and deterioration models have been developed to determine the 
bridge life cycle for the major MR&R needs. Nevertheless, the predictions of future structural 
condition ratings from BMSs are still not practical for developing long-term maintenance strategies. 
This is largely due to several drawbacks related to their application in most bridge agencies, viz: (1) 
commercial BMS software has been used for two decades and bridge agencies would have roughly 
8 to 9 biennial inspection records only; (2) bridge condition ratings usually do not change much 
during short-term periods; and (3) approximately 60% of BMS analytical process is affected by 
bridge inspection records. These factors mainly lead to inaccuracy in predicting the future structural 
performance of bridges. Coupled with these drawbacks is the major weakness in current 
deterioration modelling techniques, which is essentially the lack of practical data related to the 
bridge element’s modelling performance. These modelling techniques are invariably developed 
based on a few set of current structural condition ratings, thus unlikely to predict reliable future 
bridge condition ratings [3, 4].  

Two steps of research will be conducted in an attempt to improve long-term predictions of the BMS. 
Firstly, a set of missing historical bridge condition ratings, which indicates the trend of structural 
condition depreciations, will be generated using the neural network based Backward Prediction 
Model (BPM), based on the sample bridge data provided by the Maryland Department of Transport 
(DoT), USA [3, 4]. The BPM has an ability to produce missing historical condition ratings through 
the relationship between the real condition ratings and non-bridge factors. In this respect, well-
selected non-bridge factors are critical for the BPM to be able to obtain reliable correlations. In the 
second step of the research, a deterioration model will be developed based on complete historical 
condition ratings obtained from the results of the first step. The future bridge condition ratings 
predicted by this model will be then compared with the existing bridge data to determine the level 
of prediction accuracy. This paper presents part of a progression in the first step of the 
abovementioned research.  

 

2. Backward Prediction Model (BPM) 

The BPM predicts the selected or entire periods 
of historical bridge condition rating to 
overcome the lack of existing BMS condition 
ratings. The mechanism of the BPM is shown 
in Figure 1. It illustrates the main function of 
the Artificial Neural Network (ANN) technique 
in establishing the correlation between the 
existing condition rating datasets (from year m 
to year m+n) and the corresponding years’ non-
bridge factors. The non-bridge factors directly 
and indirectly affect the variation of the bridge 
conditions thereby the deterioration rate. The 
relationships established using neural networks 
are then applied to the non-bridge factors (for 
year 0 to year m) to generate the missing bridge 
condition ratings (for the same year 0 to year 

m). Thus, the non-bridge factors, in conjunction with the ANN technique, can produce the historical 
trends that produce the current condition ratings [3, 4].  

The structure of the ANN-based BPM consists of an input layer, hidden layer(s) and an output layer, 
where existing neurons in the hidden and output layers are interrelated by weighted relationship. A 
neuron in the hidden layer gains data from the input layer through calculation of weighted sum. 
Afterwards, these data are passed on to another neuron in the output layer by using a weighted 
connection [3, 4].  
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Fig. 1:Mechanism of BPM [3] 



3. Comparison of BPM results with National Bridge Inventory (NBI) 

The results obtained from the BPM can be validated by using either backward-manner comparison 
and/or forward-manner comparison. Through the backward-manner comparison, known historical 
data can be directly compared with the BPM outcomes to measure its prediction accuracy. The 
forward-manner comparison uses the BPM outcomes as input data to predict present year’s bridge 
condition ratings, which can then be compared directly with the known data. This study uses NBI 
because it has longer periods of historical data, which make it possible to measure the BPM’s 
prediction reliability. For the purpose of this study, only backward comparison was employed to 
verify the results generated by the BPM.  

To carry out the backward comparison, only 5 sets of existing NBI data were used in this study as 
BPM training inputs and outputs (from 1996 in a 2-year increment to 2004). Additionally, assumed 
condition rating in 1966, when the bridge was built, was used (i.e. excellent condition state). As a 
result, historical condition ratings were generated from 1968 to 1994 in 2-year increments.  

As mentioned in Sections 1 and 2, non-bridge factors affect the reliability of prediction for 
unknown condition ratings. Thus, it was necessary to refine non-bridge factors to achieve more 
reliable BPM outcome. This paper employed 6 key non-bridge factors, which were refined from the 
original 21 non-bridge factors used in the initial BPM development process [3, 4]. These refined 
factors, including passenger vehicle, truck, total number of vehicle, maximum temperature, local 
city population and state population growth, were deemed significant as they demonstrated high-
quality trends with the existing NBI data in the BPM methodology. As a result, historical data using 
each of the 6 non-bridge factors were generated, as shown in Figure 2. In the figure note that, a total 
of 396 prediction results are obtained in each year for combined 6 non-bridge factors, which were 
derived from the combined number of learning rates (lr:0.0-0.5) and momentum coefficient 
(mc:0.0-1.0) in the neural network [3, 4]. Also in the figure, only the condition ratings of 
superstructure are presented for each factor, with respect to the NBI data. 
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Fig. 2: Generated historical condition ratings (superstructure) for the combined 6 non-bridge 

factors 
 

Figure 3 shows backward comparisons between the average refined BPM results (i.e. with respect 
to the 6 newly selected non-bridge factors) and the existing NBI data. The prediction error of each 
bridge element was calculated by averaging the differences between the BPM-generated condition 
ratings and the NBI. As shown in Figure 3, all of the prediction errors derived from the refined non-
bridge factors (deck: 3.74%, superstructure: 5.26%, substructure: 5.78%) are less than those 
obtained from the original 21 non-bridge factors (deck: 6.68%, superstructure: 6.61%, substructure: 
7.52%) [3, 4]. This improvement in the prediction accuracy can be attributable to the elimination of 
irrelevant non-bridge factors, which normally increase the noise level that existed in the original set 
of factors. Evidently, by using generated historical condition ratings from the BPM methodology, 
the prediction inaccuracy of the current deterioration modelling techniques could be reduced. 



Notwithstanding this finding, it was still necessary to ascertain the efficiency of such generated 
historical data. To achieve this, the generated historical condition ratings were examined in relation 
to specific prediction techniques commonly used in the current deterioration models. This part of 
the study is presented in the following sections. 
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(b) superstructure 
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Fig. 3 Comparison between BPM outcomes and actual NBI 

 

4. Current bridge deterioration models 

Numerous research on bridge deterioration models has been carried out to improve the 
dependability of BMS outcomes. However, it must be emphasised that the successful achievement 
analysis using such models relies heavily on the quality and sufficiency of data gathered [5]. Based 
on Morcous et al. [6], the currently available bridge deterioration models can be summarised as 
deterministic, stochastic and artificial intelligence. This paper focuses on the first two types of the 
models as they are prevalent in many BMSs currently in use worldwide. In general, a deterministic 
model predicts that a bridge will deteriorate with respect to a particular algorithm, whereas a 
stochastic model takes into account the fact that actual deterioration rate cannot be known and 
contains a probability that the bridge will deteriorate at a particular rate [7]. More details of these 
deterioration models are presented in Table 1. 

Among the deterministic models, regression analysis is a method widely used in many bridge 
management systems [5]. As for the stochastic technique, Markovian model is considered as the 
most common one of this category [8]. However, the Markovian model is not suitable for the NBI 
data. This is due to the fact that NBI only considers condition ratings at the component level, while 
Markovian model requires element-level inspection data containing more detailed condition states. 



Thus, only regression analyses were used in the current study to predict future bridge conditions 
based on generated historical data with the BPM methodology.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Comparison of deterioration models 

As demonstrated in Section 3, the BPM results, applied to appropriate deterministic models to 
identify more historical data, can lead to improved prediction accuracy. In this section, the 
assessment of prediction accuracy obtained from both linear and non-linear regression analyses, 
using BPM results, is presented. In general, the important part of regression modelling is the 
determination of a functional form of the equation that could fit particular datasets (also referred to 
as a performance curve) [7]. In linear regression, this function is represented by a simple linear 
equation. In non-linear regression, this function is expressed as a polynomial form of second or 
more orders. Following Jiang and Sinha [9], this study only considered a third-order polynomial 
model to determine long-term depreciation of condition ratings. Equation 1 represents a 
performance curve of bridge element using a third-order polynomial. 

 

Yi(t) = β0 + β1ti+ β2ti
2
+ β3ti

3
+ αi         (1) 

 

where,  Yi(t) = condition rating of a bridge at age t; ti = bridge age ; αi = error term; β0 = recorded 
condition rating of a new bridge. 

 

The predictions from both linear and non-linear regressions were carried out using 4 available NBI 
datasets (1976, 1978, 1982 and 1984), as shown in Figure 4. The average prediction error of linear 
regression was obtained by averaging the differences between the condition ratings of the existing 
NBI data and the prediction data from 1986 to 2004, with the exception of 1990 due to the NBI data 
being unavailable. Similar method was employed to calculate the average prediction error of non-
linear regression, except that this was carried out only for 1986 and 1988. This is mainly because 
only the prediction data in these two years are valid for comparison (see Figure 4(b)). As a result, 
the average prediction errors of linear regression and non-linear regression are 33.3% and 25.6%, 
respectively. It should, however, be noted that the prediction results generated by non-linear 

Table 1: Categories of Bridge-Deterioration Models 

Categories Methodology Details 

Deterministic  Straight-line  - 

Extrapolation Stepwise regression 

Regression  
 

Linear regression 
Nonlinear regression 

Curve-fitting 
 

B-spline approximation 
Constrained least squares 

Stochastic  Simulation  - 

Markovian Percentage prediction 
Expected-value method 
Poisson distribution 
Negative-binomial model 
Ordered-probit model 
Random-effects model 
Latent Markov-decision process 



regression technique show unusual pattern of deterioration, as illustrated in Figure 4(b). This might 
be resulted from the very limited number of input data used in the prediction. 
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(a) Prediction results: linear regression 

(33.3% average prediction error) 
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(b) Prediction results: non-linear regression 
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Fig. 4: Prediction results using 4 sets of historical condition ratings (1976, 1978, 1982 and 1984) 
 

Figure 5 illustrates the prediction results based on 9 historical data records generated by the BPM 
using 6 non-bridge factors. In Section 3, BPM based historical condition ratings were generated as 
66 combinations of learning rate and momentum coefficient. In order for these results to be used in 
the regression analysis, the 66 combinations in each of the year 1968 to 1984 were averaged to 
represent individual condition rating records. Following this, the existing NBI records and the 
BPM-based prediction results were compared to evaluate the prediction accuracy. Following the 
similar approach mentioned above, the average prediction errors between the generated condition 
ratings and the NBI records were calculated for both linear and non-linear regression models. This 
yielded the average prediction errors of 7.0% and 9.0%, respectively. 
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(b) Prediction results: linear regression 

(7.0% average prediction error) 
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(d) Prediction results: non-linear regression 

(9.0% average prediction error) 

Fig. 5: Prediction results using 9 sets of BPM-generated historical data 
 

Figure 6 compares the errors of the predictions using 4 existing NBI records and 9 BPM-based 
generated condition ratings, for both linear regression and non-linear regression techniques. It is 
evident in the figure 1 that, for both techniques, the prediction errors significantly decrease as more 



input data become available. In the case of linear regression, the average error of 33.3% from the 
prediction using 4 NBI records decreases to 7.0% when using 9 generated condition ratings. 
Similarly for the case of non-linear regression, the prediction error decreases from 25.6% to 9.0% 
when the number of input datasets increases.  
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(a) Prediction error: linear regression 
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(b) Prediction error: non-linear regression 

Fig. 6: Comparison of prediction errors using 4 NBI and 9 generated data in BPM 
 

The above findings indicate that the amount of datasets is essential for numerical prediction 
methods to gain dependable prediction results. They also suggest that, in the deterministic models, 
the historical data generated by the BPM technique can contribute to the improvement of prediction 
accuracy. This reinforces the applicability of the BPM in generating missing historical condition 
ratings that are capable of providing a basis for more reliable predictions of future bridge conditions. 

Notwithstanding the above findings, several limitations of the deterministic models are also worth 
noting. These are: (1) the models disregard the uncertainty due to the stochastic nature of bridge 
deteriorations [9]; (2) they predict the average condition of a bridge structure rather the current and 
historical condition ratings of individual elements; (3) they approximate bridge structure 
deterioration only for the case of “no maintenance” strategy because it is difficult to estimate the 
influence from various maintenance strategies [10]; (4) they ignore the interaction between the 
different bridge structure elements, for example, between the bridge deck and the deck joints [11]; 
and (5) they are difficult to be revised when new condition ratings are gained [6].  

 

6. Discussion and Conclusion 

The performance of BMSs for optimal MR&R strategy relies highly on bridge deterioration models, 
which in turn depends on the quality and sufficiency of data gathered. The lack of historical bridge 
condition ratings is a major problem encountered by the current deterioration modelling to achieve 
reliable prediction of future bridge conditions. To overcome this draw-back, the Backward 
Prediction Model (BPM) is introduced in this paper as a means to assist in generating unavailable 
historical condition data, which was achieved by correlating existing bridge condition dataset with 
non-bridge factors. By refining the 21 non-bridge factors used in the original BPM, this paper was 
able to extract 6 significant non-bridge factors that showed corresponding trends with existing 
bridge condition ratings. These refined factors included passenger vehicle, truck and total number 
of vehicles, highest temperature, local city population and state population growth.  

The results of the BPM utilising these refined factors suggested an improved backward prediction 
accuracy. Prediction errors using the refined 6 non-bridge factors are less than those obtained from 
the original 21 non-bridge factors. As for deck, prediction error decreased from 6.68% to 3.74%, 
similarly, prediction error of superstructure and substructure decreased from 6.61% to 5.26% and 
from 7.52% to 5.78%, respectively. Subsequently, based on such refined factors, 9 historical 



condition records were generated and applied to the bridge deterioration models to predict future 
bridge conditions. To ensure that the quality of such generated data was sufficient, future prediction 
results using the generated data was compared with those obtained by using 4 existing NBI records. 
Under both linear and non-linear regression deterioration modelling scenarios, the average errors of 
the prediction results using 9 BPM-generated historical condition records were less than those using 
4 NBI records. This indicated that the prediction errors became smaller as the amount of input data 
increases. Hence, using BPM to generate more historical condition data could contribute to 
improved prediction of future bridge conditions.  

These findings, however, should be interpreted in light of the following main limitations of the 
deterministic deterioration models employed in this paper: (1) their prediction is based only on an 
average condition of a bridge structure with no regard to the variability of condition rating 
distributions in each year; and (2) they disregard the interaction between the different bridge 
structure elements. Further research is required to address such limitations and should aim to 
develop a more robust deterioration model that fully exploits the benefits of the BPM-generated 
historical condition records. 
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