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Abstract—For modelling and verifying agent systems, many
researchers have proposed different logical systems. Since agent-
based systems are designed to operate in dynamic environments
such as the Internet, it is also important to model the temporal
aspects of such systems in a systematic way. In this paper, we
use a temporalised epistemic logic called TEL for formalising
agent-based systems. We also propose a labelled tableau system
and a model checking method for this logic. With logic TEL and
its associated proof system, we are able to reason about, and
verify agent systems operating in dynamic environments.
Keywords– Multi-agent systems, verification, model checking,

temporal epistemic logic, tableaux.

I. INTRODUCTION
It has been argued that any logical system used for mod-

elling active agents should be a combined system of logics of
knowledge, belief, time and norms [1] since these are among
the essential concepts to be reasoned about. Combining epis-
temic logic with temporal dimension is a particular interesting
issue, since there is a need to study how knowledge changes
over time in many real life applications.
There have been several methods and techniques proposed

for combining logics in a systematic way, such as fusion [2],
fibring [1], products [3], temporalisation [4], and hierarchy
combination [5]. Depending on the choice of the logics to be
combined and the method of combination of logics, different
logics with different expressive capabilities may result. Model
checking is a method for automated verification of finite state
systems. Bordini et al [6] discussed how to verify multi-agent
programs by model checking using the SPIN model checker.
Franceschet et al. [7] discussed how to develop a model
checker for a combined logic. Layouni et al. [8] proposed
a model checking method for conflict detection.
In this paper, we propose a temporal epistemic logic, by

combining an epistemic logic and a linear temporal logic using
the temporalising technique proposed by Finger and Gab-
bay [4]. Temporalisation is a methodology for adding a tem-
poral logic on top of another to generate a new logic system
with temporal features. The resulting temporal epistemic logic
can be used to specify and reason about epistemic properties
that change through time. We also present a labelled tableau
proof system for the logic. With the temporal epistemic logic
and its associated reasoning techniques and model checker,

we are able to show how to reason about certain properties of
agent-based systems operating in dynamic environments.
The rest of this paper is organised as follows: Section II

introduces the temporal epistemic logic. Section III proposes
a labelled tableau system for the logic which can be used
to verify the properties of agent-based systems. Section IV
proposes a model checking algorithm for the logic which can
be used for automated verification. Section V concludes the
paper.

II. TEMPORALISED EPISTEMIC LOGIC
A temporal epistemic logic has two classes of modal opera-

tors: (1) knowledge operators, and (2) temporal operators. The
knowledge operators are those of an epistemic logic, and the
temporal operators are those of a temporal logic. Each agent
has an associated epistemic operator, for instance, the operator,
Ki is used for declaring the knowledge of agent i. We adopt
the temporal logic with clocks proposed by Liu and Orgun
[9]. The temporal logic with clocks contains two temporal
operators: first and next, which refer to the initial moment
and the next moment in time with respect to given clocks
respectively. Since the temporalised epistemic logic is obtained
by using temporalisation [4], which is a hierarchy combination
technique for combining logics, the temporal operators first
and next can never appear within the scope of a knowledge
operator Ki.
A time model for a temporal logic is defined as a tuple

MTL = 〈ck,<,π〉, where ck = 〈t0, t1, t2, . . .〉 is a clock, < is
the usual ordering relation over ck, and π is an assignment
function that gives a value π(t, p) ∈ {true, f alse} for any
time point t in ck and any atomic formula p. The assignment
function π interprets all the terms given in atomic formula p in
a standard way. Below we give the semantics of the temporal
operators of the temporal logic:
• MTL, ti |= first ϕ , iff MTL, t0 |= φ .
• MTL, ti |= next ϕ , iff MTL, ti+1 |= φ .
A knowledge model is defined as a tuple MEL =

〈S,R1, . . . ,Rn,π〉, where S is the set of states or possible
worlds; and each Ri, i = 1, . . . ,n, is the possibility relation
according to agent i. Ri is a non-empty set consisting of
state pairs (si,s j) such that (si,s j) ∈ Ri iff, at state si, agent i
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considers the state s j possible; and π is a assignment function,
which gives a value π(s, p) ∈ {true, f alse} for any s ∈ S and
atomic formula p. Again, the assignment function π interprets
all the terms given in atomic formula p in a standard way.
Formula φ is satisfiable in the model MEL if there exists s∈ S
such that MEL,s |= φ . Below we give the semantics of the
knowledge operators of the epistemic logic:
• MEL,si |=Kiφ , iff for all s j where (si,s j) ∈ Ri, MEL,s j |= φ .
For combining an epistemic logic and a temporal logic using

temporalisation technique, let LEL be the set of formulas of
the epistemic logic, then LEL is defined as follows:
1. If φ is an atomic formula of the epistemic logic, then φ ∈LEL.
2. If φ(X) ∈ LEL where φ(X) is a formula containing a free
variable X , then (∀X)φ(X) ∈ LEL.

3. If φ ∈ LEL, then Ki φ ∈ LEL, (1≤ i≤ n).
Let LTEL be the set of formulas of the temporalised

epistemic logic . Then LTEL is defined as follows:
1. If φ ∈ LEL, then φ ∈ LTEL.
2. If φ ∈ LTEL, then ¬φ ∈ LTEL.
3. If φ ,ψ ∈ LTEL, then φ ∧ψ ∈ LTEL.
4. If φ ∈ LTEL, then first φ ∈ LTEL, and next φ ∈ LTEL.
Let K + be a class of Kripke models of the logic EL of the

formMEL = 〈S,R1, . . . ,Rn,π,〉. Consider a time frame (CK,<

), where CK = 〈t0, t1, t2, . . .〉, and a function v : CK → K +,
mapping moments in time on the clock CK to a model in the
class K +. A temporalised epistemic model is a tuple 〈CK,<

,v〉, denoted by MTEL.
The semantics of TEL formulas are given as follows :
1. For φ ∈ LEL, MTEL, ti |= φ iff MEL |= φ where v(ti) = MEL.
2. MTEL, ti |= ¬φ , iff MTEL, ti 
|= φ .
3. MTEL, ti |= φ ∧ψ , iff MTEL, ti |= φ and MTEL, ti |= ψ .
4. MTEL, ti |= first φ , iff MTEL, t0 |= φ .
5. MTEL, ti |= next φ , iff MTEL, ti+1 |= φ .

III. LABELLED TABLEAUX PROOF SYSTEM FOR TEL
Tableaux are one of the favorite proof methods for modal

logics. Various semantic tableau systems have been proposed
in the literature [10], [11]. We adopt the labelled tableau
system proposed by Governatori [10]. Formulas of the labelled
tableaux system of TEL are in the form φ : l, where φ is a
formula of the logic and l is a label. The interpretation of φ : l
is that φ is true at the world l.

A. Tableaux inference rules
The labelled tableaux system for the logic TEL consists of

the following rules:

φ ∧ψ : s
φ : s
ψ : s

¬(φ ∨ψ) : s
¬φ : s
¬ψ : s

¬(φ → ψ) : s
φ : s
¬ψ : s

φ ↔ ψ : s
φ → ψ : s
ψ → φ : s

(C)

φ → ψ : s
φ : w
ψ : s

φ → ψ : s
¬ψ : w
¬φ : s

(I)

φ ∨ψ : s
φ : s | ψ : s

¬(φ ∧ψ) : s
¬φ : s | ¬ψ : s

φ → ψ : s
¬φ : s | ψ : s

¬(φ ↔ ψ) : s
¬(φ → ψ) : s | ¬(ψ → φ) : s

(D)

∀xφ(x) : s
φ(c) : s

¬∃xφ(x) : s
¬φ(c) : s

∃xφ(x) : s
φ(c) : s

¬∀xφ(x) : s
¬φ(c) : s

(Q)

Here C-rules are conjunctive rules; I-rules are implication
rules; D-rules are disjunctive rules, which generate new
branches; Q-rules are quantifier rules, in both universal and
existential rules, x is a variable and c is a constant or any
variable.
In the following, we present rules for modal operators.

firstφ : s
φ : (t0,s)

¬ firstφ : s
¬φ : (t0,s)

nextφ : s
φ : (ti,s)

¬nextφ : s
¬φ : (ti,s)

nextφ : (ti,s)
φ : (ti+1,s)

¬nextφ : (ti,s)
¬φ : (ti+1,s)

(T )

For temporal rules, we need to introduce the concept of time-
related world. A label may or may not relate to time. If a
label does not relate to time, i.e., it does not contain a time
reference, we say that it is a time-free reference, such as w;
otherwise, it is a time-related reference, such as (ti,s).

Kaφ : si
φ : (sai→ j)

¬Kaφ : si
¬φ : (sai→ j)

K

For knowledge rules, sai→ j represents the world accessible via
Ra from si, where Ra is the accessibility relation associated
with agent a.

Kaφ : (ti,si)
φ : (ti,sai→ j)

¬Kaφ : (ti,si)
¬φ : (ti,sai→ j)

(TE)

For temporal epistemic rules, the labels contain both temporal
reference and world reference.

φ : l | ¬φ : l
(Bi)

The bivalence rule represents the semantic counterpart of the
cut rule of the sequent calculus, that is, a formula φ is either
true or false in any given world. The bivalence rule is a zero-
premise inference rule.
The following unification rule states that two labelled TEL
formulas are complementary when the two formulas are com-
plementary and their labels unify.

φ(x) : ln
¬φ(y) : lm

×
(U)

Here, variables x and y unify as usual. For unifying world
labels for TEL, we may adopt the label unification for a fibred
logic of belief and time proposed by Orgun et al [12].
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B. Logical Consequence and Proof Search
Logical consequence is the relation that holds between a set

of formulas and a formula, we write:

G |=TEL U ⇒ φ ,

which denotes that formula φ is derived from G and U , G
is the set of global assumptions, and U is the set of local
assumptions. φ is a logical consequence that follows from G
and U .
We add the following assumption rules into the tableau

proof system.
φ ∈ G
φ : S

φ ∈U
φ : si

φ : S
φ : si

(A)

where S is variable which represents any state, and si is a
specific state.
As usual with tableaux methods, proving of a formula φ of

TEL is to construct a counter model for φ by assuming that
formula φ is false in some TEL model. The TEL proof search
procedure is as follows:
1. First we choose an open uncompleted branch B, and ap-
ply the one-premise rules till the branch B is completed.
If the resulting branch is not completed, go to 2.

2. We apply the two-premise rule till the resulting branch is
completed. If the resulting branch is not completed, go
to 3.

3. We apply the zero-premise rule till the resulting branch
is completed. If the resulting branch is not completed, go
to 4.

4. If there are two complementary formulas in a branch, we
apply the unification rule, then the branch is closed.

5. The steps (1 - 4) are repeated for each branch generated
by the bivalence rule.

In the following, we use a simple example to show how
to reason about agent knowledge using the labelled tableau
system.

Example - bit transmission protocol
A bit-transmission protocol [13] involves two agents, an

initiator I, and a receiver R. First, I sends a bit to R, and
continues to do so till it receives an acknowledgement from
R. R sends an acknowledgement to I if it receives a bit.
Therefore, if we have the following global assumptions:
(a) next receive(I,Ack) → receive(R,Bit).
(b) receive(R,Bit)∧ (Bit = n) →KR (Bit = n).
and the following local assumptions:
(c) receive(I,Ack).
(d) Bit = n.
Then we can prove the following formula:
(e) KIKR(Bit = n).
The proof is given as follows.
1 ¬KIKR(Bit = n) : s0 [¬e]
2 receive(I,Ack) : s0 [c]
3 Bit = n : s0 [d]

4 next receive(I,Ack) → receive(R,Bit) : S [a]
5 receive(R,Bit)∧ (Bit = n) →KR (Bit = n) : S [b]
6 receive(R,Bit)∧ (Bit = n) →KR (Bit = n) : s0 [5Q&A]
7.1 ¬(receive(R,Bit)∧ (Bit = n)) : s0 [6D]
7.2 KR (Bit = n) : s0 [6D]
8 ¬KR(Bit = n)) : si0→ j [1K]
9 × {8/7.2}
10 ¬receive(R,Bit) : s0 [7.1D]
11 ¬(Bit = n) : s0 [7.1D]
12 × {11/3}
13 next receive(I,Ack) → receive(R,Bit) : s0 [4Q&A]
14.1¬next receive(I,Ack) : s0 [13D]
14.2 receive(R,Bit) : s0 [13D]
15 × {14.2/10}
16 ¬ receive(I,Ack) : (ti,s0) [14.1T]
17 × {16/2}

�

For proving the property, we begin with its negation, which
is labelled by s0 (a specific state). In the proof process, when
we introduce a local assumption, we also label it by s0; when
we introduce a global assumption we label it by S. When a
branch reaches a node with ×, then the branch is closed. We
apply the unification rule without applying expansion rules in
suitable cases. A closure of a node generates a closure for all
branches that the node could have. This technique simplifies
the proof procedure. This proof has all branches closed, so we
have proved the formula (e).

C. Soundness and Completeness

The labelled tableau system presented in this paper is sound
and complete. As usual with tableaux a proof of φ is a closed
tableau for ¬φ . A tableau system is sound and complete for
a particular logic if it is able to generate a closed tableau
for the negation of a valid formula, and open tableaux for all
satisfiable formulas. For more details on the soundness and
completeness of tableaux we refer the reader to the literature
[10], [14].

IV. MODEL CHECKING FOR TEL

Model checking is used for checking whether a given
structure is a model of a given logical formula. We now
provide a model checking algorithm for TEL based on the
technique proposed by Franceschet et al. [7].
Let TL be a temporal logic, EL be an epistemic logic, and

TEL be the temporalised epistemic logic. To check whether a
formula φ of a temporalised logic TEL is satisfied in a TEL
model, we consider the set of the corresponding monolithic
subformulas of φ in the logic EL. If we can determine the
values of all the monolithic formulas in the corresponding EL
model, then we will determine the truth value of φ in the TEL
model.
A TEL model MTEL is a tuple MTEL = 〈ck,<,v〉. Let M

be a finite TEL model, and φ a TEL formula. We need to check
whether there exists a state t ∈ ck such that M , t |=TEL φ . Let
Φ̂ be the set of maximal knowledge monolithic subformulas
of φ , and φ̂ be the TL formula obtained by substituting every
formula α ∈ Φ̂ by a new proposition letter P.
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For an example, given a TEL formula φ = first next(γ ∧
Kai ψ), the formula (γ ∧Kai ψ) has four subformulas:
1) γ ∧ Kai ψ ,
2) γ ,
3) Kai ψ ,
4) ψ .
Here formula 2 is a monolithic formula; formula 4 is

a monolithic formula, but it is not a maximal monolithic
formula, because it is a subformula of formula 3. Therefore
the set of maximal monolithic subformulas of φ is:

Φ̂ = {γ,Kai ψ}

Replacing γ and Kaiψ by new propositional letters P and
Q respectively, we obtain a temporal formula:

φ̂ = first next(P∧Q)

For model matching, time matching is an important issue.
The global clock is the sequence of all natural numbers,
that is, 〈0,1,2, . . .〉. A local clock is a subsequence of the
global clock, it could be empty 〈〉, or finite 〈t0, t1, t2, . . . , tn〉,
or infinite 〈t0, t1, t2, . . .〉. Therefore for a given local clock
cki = 〈t0, t1, t2, . . .〉, The rank of t j on cki is j, we define that,
rank(cki, t j) = j. Let n= rank(t j,cki), if next first φ is true at
the moment t j. Then the following properties should be true.

• first φ is true in cki.
• φ is true at ck0i , ck0i denotes the first time moment t0 of
the clock cki.

• first φ is true at ck ji , 0≤ j ≤ n.
• cki |= first φ , 0≤ i≤ k.

Let MCEL, MCTL, and MCTEL be model checkers for the
knowledge, temporal, and temporalised logics, respectively.
Given a model checking instance, these programs will return
a corresponding truth value.
We give the model checking procedure for TEL as follows:
Function MCTEL
Input: a TEL model MTEL, and a TEL formula φ .
compute Φ̂ and φ̂
for every t ∈ ck

π(t) = /0
endfor
for every α ∈ Φ̂

for every t ∈ ck
if MCEL(MEL,α) = true
then π(t) = π(t)∪{p}

endfor
endfor
return MCTL(MTL, φ̂).

Given a TEL model and TEL formula, MCTEL computes
the set Φ̂ and the formula φ̂ first. Then for every moment
t ∈ ck, it initializes a valuation function π to the empty set.
Then for every maximal monolithic formula α ∈ Φ̂ and every
moment t ∈ ck, it invokes the model checker MCEL on the
input consisting of the EL model and the EL formula α . If
the execution of MCEL returns true, then the proposition p is
added to π(t). Finally, it invokes the model checker MCTL on

the input consisting of the temporal model and the formula φ̂ ,
and it returns the output.
With a finite TEL model and a TEL formula φ as input, we

give the following definitions for function MCTEL:
• Termination: MCTEL returns either true or false.
• Soundness: If MCTEL returns true, then for a existing
t ∈ ck, MTEL, t |= φ .

• Completeness: If MCTEL returns false, then for every
t ∈ ck, MTEL, t 
|= φ .

V. CONCLUSION
We have proposed a labelled tableau system and a model

checking method for a temporal epistemic logic called TEL.
TEL is suitable for reasoning about the evolution of agent
knowledge through time. Our approach could be useful in
the designing, implementing and verifying agent systems. The
model checking method is designed for automated theory ver-
ification; it is able to deal with both temporal and knowledge
properties of systems. While there are many other proposed
temporal epistemic logics, very few of them are the result
of systematic combinations of temporal and epistemic logics.
Future research includes investigating combinations of other
modal and temporal logics for specifying agent systems, other
combination techniques, and developing automated reasoning
techniques and model checking methods for such logics.
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