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Abstract—Adaptive techniques make practical many quantum
measurements that would otherwise be beyond current laboratory
capabilities. For example, they allow discrimination of nonorthog-
onal states with a probability of error equal to the Helstrom bound,
measurement of the phase of a quantum oscillator with accuracy
approaching (or in some cases attaining) the Heisenberg limit (HL),
and estimation of phase in interferometry with a variance scaling at
the HL, using only single qubit measurement and control. Each of
these examples has close links with quantum information, in par-
ticular, experimental optical quantum information: the first is a
basic quantum communication protocol; the second has potential
application in linear optical quantum computing; the third uses
an adaptive protocol inspired by the quantum phase estimation
algorithm. We discuss each of these examples and their implemen-
tation in the laboratory, but concentrate upon the last, which was
published most recently [Higgins et al., Nature, vol. 450, p. 393,
2007].

Index Terms—Adaptive, algorithm, computing, estimation,
interferometry, measurement, optical, phase, quantum.

I. INTRODUCTION

M EASUREMENT of a quantum system has convention-
ally been defined in terms of an observable, which is

represented by an Hermitian operator on the system’s Hilbert
space. However, it is now widely recognized that many real-
istic measurements should not be described in such terms [1].
Rather, the formalism of generalized measurements, which is
described by a set of positive maps, is required. Such general-
ized measurements are not only necessary for describing real-
istic detection, but also allow for interesting protocols that con-
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ventional (projective) measurements cannot achieve. A simple
example is unambiguous (but probabilistic) state discrimination
for nonorthogonal states [2], [3].

A powerful way to generate interesting generalized measure-
ments from available detectors in the laboratory is by adaptive
measurement protocols. By this we mean the following: an in-
complete measurement is made on the system, and its result is
used to choose the nature of the second measurement made on
the system, and so on (until the measurement is complete). A
complete measurement is one which leaves the system in a state
independent of its initial state, and hence containing no further
information of use [1]. A measurement may be incomplete by
being a weak (nonprojective) measurement on the system as a
whole, or by being a strong (projective) measurement but only
on a subsystem, or in other ways. All types allow for adaptive
protocols.

Adaptive measurements connect to quantum information, in
particular experimental quantum optical information, in a num-
ber of ways. We will review three examples in Section II: distin-
guishing nonorthogonal states, optical phase measurement, and
interferometric phase estimation. The first is a basic protocol
in quantum communication, the second has potential applica-
tions in linear optics quantum computing (LOQC), and the third
has been inspired by the quantum computing algorithm the-
ory. All three have been realized in the laboratory in recent
years [4]–[6]. The last, most recent, of these is analyzed in de-
tail from a quantum information perspective in the remaining
sections of the paper, which cover quantum limits to phase es-
timation (Section III), the quantum phase estimation algorithm
(QPEA) (Section IV) and its generalization (Section V), and
whether adaptive measurements are necessary in this context
(Section VI).

II. APPLICATIONS FOR ADAPTIVE MEASUREMENTS

A. Distinguishing Nonorthogonal States

The idea of using adaptive measurements for discriminating
between two nonorthorgonal quantum states was introduced as
early as 1973 [7]. “Dolinar’s receiver” is an optical technique,
which is applicable to a traveling mode prepared in one of
two possible coherent states. The object is to discriminate the
preparations with minimum probability of error. The minimum
possible error probability is known as the Helstrom bound [8],
which in this case is (1/4)e−|∆α |2 , where ∆α is the differ-
ence between the coherent amplitudes of the two states. In
this case, the Helstrom measurement could be realized simply
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by measuring a suitable observable on the harmonic oscillator
Hilbert space. However, this observable does not correspond to
any of the observables usually measured in quantum optics,
such as a quadrature, or a displaced photon number opera-
tor. Indeed, the obvious scheme of measuring the quadrature
X̂θ , with θ = arg(∆α), gives a probability of error of scal-
ing as the square root of the Helstrom bound for large |∆α|
[7].

Surprisingly, by using adaptive detection, one can precisely
achieve the Helstrom bound [7]. One must measure the leading
segment of the pulse, obtain a result, use that result to alter the
measurement on the next segment of the pulse, and so on. The
Dolinar receiver requires taking the continuous time limit for
these segments of pulse, but reasonable results can be obtained
as long as the pulse mode has a duration long compared to the
delay in the feedback loop [9]. The Dolinar scheme requires
measuring a displaced photon number operator (using a weak
local oscillator and a photon counter) and altering the displace-
ment whenever a photodetection occurs. Very precise control
over the applied displacements and very fast electrooptics are
required.For these reasons, the “Dolinar receiver” was not real-
ized experimentally until 2007 by Geremia and coworkers [4].
This experiment clearly showed the improvement over the most
obvious nonadaptive technique for mean photon numbers be-
tween 0.1 and 1.

The Dolinar receiver is most naturally and simply described
as an adaptive scheme based on weak measurements, with
the system being one of two coherent states (e.g., |±α〉) of
a single-mode harmonic oscillator, of spatial duration L. How-
ever, because of the unique properties of coherent states, the
system can also be thought of as a series of shorter modes
of length L/M , each of which is prepared in the same coher-
ent state |±α/

√
M〉. In the limit M → ∞, each of these short

modes corresponds to the system that is measured at a particular
time by the detector. Thus, in this guise, the Dolinar receiver
appears as an adaptive scheme based on projective measure-
ments of subsystems from an ensemble of identically prepared
systems.

One can take this analysis further. In the M → ∞ limit, the
subsystems can be treated as qubits. The reason is that the mean
excitation number for the adaptively displaced states scales as
M−1 , and thus, these states have support almost entirely on the
first two number states |0〉 and |1〉, which are the eigenstates of
the measured quantity (photon number).1 If the two undisplaced
global coherent states are |±α〉, then to leading order the corre-
sponding qubit states are |0〉 ± (α/

√
M) |1〉. The displacement

in phase space (by a distance of order M−1/2) is equivalent to
a qubit rotation (by an angle of order M−1/2), which makes a
measurement in the {|0〉 , |1〉} basis the desired adaptive mea-
surement. Moreover, the Dolinar scheme can then be derived as
a special case of the optimal adaptive scheme for discriminating

1There is a technical issue in that, according to Dolinar’s protocol, the dis-
placement diverges at the initial time if the two states are initially equally likely.
However, as demonstrated in [4], a modified protocol with only a moderately
large displacement obtains the great majority of the improvement offered by
Dolinar’s protocol.

between two nonorthogonal qubit states, when one has multiple
copies of them.

This latter problem, with arbitrary pure qubit states, was
solved by Acı̀n et al. [10], who gave a simple interpretation
of the optimal scheme: it corresponds to making the optimal
local Helstrom measurement on each copy, taking into account
the probability one assigns to each of the two possible prepa-
ration procedures, updated according to all the preceding mea-
surements. This conceptually simple procedure is not only the
optimal adaptive scheme, but also reaches the Helstrom bound
for the entire ensemble (as was known already for the special
limit of the Dolinar protocol), i.e., contrary to what one might
have thought, an entangling measurement across all subsystems
is not required. Also note that the restriction to qubits in this
quantum information setting is no real restriction, if (unlike in
the optical case) one assumes one can make arbitrary projective
measurements on a single subsystem, then one needs only two
basis states to describe a system in one of two possible pure
states.

The situation with mixed states is, however, much more com-
plicated [11]. For qubits (which is now a meaningful restriction),
even in the asymptotic limit, there is a clear separation in per-
formance between

1) the Helstrom bound (achieved by the optimal joint mea-
surement);

2) the optimal adaptive scheme (involving dynamic program-
ming);

3) the locally optimal adaptive scheme (i.e., the locally opti-
mal Helstrom measurement);

4) the obvious nonadaptive scheme (a majority vote from
repeated unbiased measurements).

Moreover, surprisingly, the latter two actually reverse
order (i.e., the locally optimal scheme performs worse
than the nonadaptive scheme) for a sufficient degree of
mixture.

Before leaving the topic of adaptive measurements for state
discrimination, we should mention the work of Jacobs [12] on
adaptive continuous measurements on a single qubit prepared
in one of two nonorthogonal states |φ±〉. The continuous mea-
surement limit can be thought of (as in the Dolinar case) as
a sequence of weak measurements of duration ∆t, whose dis-
turbance also scales as ∆t, and taking the limit ∆t → dt. In
this case, if one measures for an infinitely long time, then one
can realize the Helstrom bound for distinguishability simply by
making the same weak measurements at every step of the Pauli
operator proportional to |φ+ 〉 〈φ+ | − |φ−〉 〈φ−|. However, for
some finite times, more information can be obtained by using a
locally optimized adaptive measurement in which the measured
Pauli operator is continually rotated such that its expected value
is zero at all times [12]. At sufficiently long times, this scheme
always becomes worse than the simple nonadaptive scheme. It
is also worth noting that if one considers the probability of error
in one’s guess of which preparation was performed, rather than
the mutual information between one’s record and the prepa-
ration, then the simple nonadaptive scheme always performs
better [13].
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B. Optical Phase Measurement

Although the Dolinar receiver was the first notable adaptive
measurement scheme to be introduced theoretically, it was not
the first to be realized experimentally. This honor goes to the
adaptive phase measurement algorithm introduced by Wiseman
and Killip [14], [15], and realized by Mabuchi and cowork-
ers [5]. This technique is based on homodyne detection rather
than photodetection, as in the Dolinar receiver. Its aim is not
state discrimination (although it can be useful for that [15]), but
rather measuring a physical quantity: the phase of the state. The
optimal measurement to do this, i.e., a canonical phase measure-
ment, would give a measurement result φ with variance equal
to the intrinsic phase variance of the state by definition [16].
However, this cannot be realized by standard optical measure-
ments. For a state with initially completely unknown phase, the
best standard technique is heterodyne detection [16]. This in-
troduces an excess phase variance scaling as 1/4n̄, where n̄ is
the mean number of photons in the state [14]. This scaling is
known as the standard quantum limit (SQL).

If one knew that the phase of the state was approximately
ϕ, one could make a homodyne measurement of the quadrature
X̂θ with θ = ϕ + π/2, and this would be almost as good as a
canonical phase measurement for many types of states.2 The
intuitive idea of an adaptive homodyne measurement is to begin
with homodyne measurement of a random quadrature, and then
to adjust the local oscillator phase θ adaptively over time to
ϕ(t) + π/2. Here, ϕ(t) is an estimate of the system phase based
on the homodyne data so far. Interestingly, one does not want to
choose ϕ(t) to be the best estimate of φ at time t—that actually
gives inferior performance for some states [18]. At the end of
the measurement, one does want to chose the final estimate φ to
be the best estimate. For the “Mark II” scheme of Wiseman and
Killip [14], the excess phase variance scales as 1/8n̄3/2 , which
is far smaller than that of the best nonadaptive measurement.
More complicated adaptive schemes can do even better [18],
near the ultimate (Heisenberg) limit scaling of 1/n̄2 .

The Mark II scheme was experimentally implemented using
small, coherently excited, microwave frequency sidebands of a
large coherent beam [5]. In this case, the phase to be estimated
was actually the phase of the microwave excitation, as carried
by the optical frequency sidebands. An improvement over the
best nonadaptive scheme was seen for mean photon numbers
n̄ between about 10 and 300. Because the experiment was per-
formed with coherent states, it is possible to think of it (like
the Dolinar case) as a series of projective (quadrature) measure-
ments performed on identically prepared weak coherent states.
However, this would not be the case if the experiment was per-
formed with a nonclassical state such as a squeezed state. In this
case, it would be necessary to adopt the more natural description
of a succession of weak measurements on a single mode.

It is impossible for an adaptive homodyne measurement to
attain the accuracy of a canonical phase measurement in general
[15]. However, there is a known exception: when the state has

2The π/2 phase difference between θ and ϕ here follows from a convention
regarding the phase introduced by a beam splitter, which is generally used in
papers on this topic [5], [14], [15], [17], [18].

support on the |0〉 and |1〉 photon number states. This case was
actually solved in the paper that first proposed and analyzed
adaptive phase measurement [17], and is the “Mark I” scheme
of [14] and [15]. It has the interesting consequence that, given
a single photon, it is possible to create deterministically an
arbitrary superposition of the states |0〉 and |1〉. This is done
by first creating the “mode-entangled” [19] single-photon state√

η |0, 1〉 +
√

1 − η |1, 0〉, and then, making a canonical phase
measurement on one mode using the Mark I scheme. This yields
a completely random result φ (which emphasizes that in this
case, there is no approximate initial phase that a nonadaptive
homodyne scheme could use), and collapses the second mode
into the state

√
ηeiφ |0〉 +

√
1 − η |1〉. Since φ is known, the

phase of this superposition can then be adjusted to the desired
phase.

The ability to create arbitrary superpositions of |0〉 and |1〉
photon states is, of course, the ability to create arbitrary pho-
tonic qubit states using “single-rail” logic [20]. It turns out that
adaptive phase measurements can also be applied at other points
in LOQC to make it possible to use single-rail encoding with
resources that are far smaller than was previously thought pos-
sible, and not substantially larger than the resources required for
conventional “dual-rail” encoding [21].

It is worth noting here that even a “conventional” linear optics
quantum computation can be regarded as an enormous adaptive
measurement protocol, since it involves making measurements
on subsystems (single photons) of an entangled state, and ma-
nipulating the remainder of the photons in a way that depends
upon the results of the prior measurements, before a final mea-
surement that reveals the result of the computation. This is true
for both the circuit architecture and the cluster-state architec-
ture for LOQC [20]. Indeed, the 2007 four-photon cluster-state
experiment from the group of Zeilinger [22] is perhaps the first
adaptive measurement in which the subsystems were entangled
prior to the measurement.

C. Interferometric Phase Estimation

While adaptive optical phase measurement is potentially use-
ful for quantum computing, the third and final applications we
consider are linked to quantum computation in the opposite
way, i.e., it uses an algorithm from quantum computing the-
ory to inspire new adaptive protocols. Specifically, based on the
QPEA of Cleve et al. [23], [24], we have devised a new family
of adaptive protocols for interferometric phase estimation [6].
Moreover, we have implemented one of these algorithms, thus
demonstrating Heisenberg-limited scaling for phase estimation
for the first time [6].

The bulk of this paper is dedicated to explaining adaptive
(and nonadaptive) measurements for interferometric phase esti-
mation from a quantum information perspective. In this section,
we will concentrate on placing it in the context of optical in-
terferometry (although the idea could work equally well with
particles—such as neutrons [25]—other than photons). A con-
ceptual experimental diagram is shown in Fig. 1. The key dif-
ferences from a standard Mach–Zehnder interferometer are:
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Fig. 1. Conceptual diagram of the generalized QPEA implemented using a
Mach–Zehnder interferometer, shown with quantum states (expressed in the
photon number basis) at key points. The large phase-shift element is configured
to implement an adjustable number p of φ phase shifts on photons passing
through the upper arm (in this example, p = 8). The small phase-shift element
implements an adjustable pθ phase shift on photons passing through the lower
arm. The output of the single-photon detectors determines, via the processor,
how to adjust θ prior to the next photon input, and also the final phase estimate
φest .

1) the number of passes of one arm through the unknown
phase shift can be greater than one, and is assumed con-
trollable over the course of the experiment;

2) the phase shift in the other arm is assumed controllable
over the course of the experiment.

In standard interferometry, N independent photon detections
allow the unknown phase to be estimated with accuracy ∆φ =
1/
√

N (for large N ), which is known as the SQL. By contrast,
the Heisenberg limit (HL) is quadratically better: ∆φ = π/N .

Those familiar with the QPEA may be surprised to find that
applying a generalization of this algorithm to the Mach–Zehnder
interferometer (as will be explored in later sections) yields only
a quadratic improvement in the accuracy. The QPEA is sup-
posed to give a binary phase readout, implying an uncertainty
exponentially small in the size of the register. Also, it is at the
heart of Shor’s algorithm [26] that gives an exponential speedup
over classical algorithms for factoring. In quantum computing
theory, the QPEA is used to estimate the phase of an eigen-
value eiφ of a (typically multiqubit) unitary operator U that
corresponds to some calculation. If one can do a quantum com-
putation implementing U , then one can do (more or less) with
the same resource cost a quantum computation implementing
Up , for any p. Thus, in a quantum algorithm context, the number
of “passes” p is irrelevant.

If we were to follow an analogous method of resource count-
ing in interferometry—count simply the number of photons irre-
spective of the number of times p each photon passes through the
unknown phase shift—then the algorithm implemented in [6]
would have yielded a ∆φ exponentially small in N . This violates
the long-established HL scaling [8], [27] with ∆φ of order 1/N .
The (correct) Heisenberg scaling is obtained by not counting the
photons, but rather the total number of photon passes through

Fig. 2. Arbitrarily accurate phase estimation may be done with a single pho-
ton if quantum nondemolition measurements are allowed. After detection, the
photon (wherever it is found) is redirected back into the interferometer.

the unknown phase shift [28], i.e., one should count each photon
involving a p-pass interferometer (as shown in Fig. 1) as using
p resources, and not 1.

This method of counting is not justified merely by giving the
expected HL. Rather, it has a number of other justifications.
First, photon number is not a sensible resource. For example,
if one allows for nondemolition photon number measurements,
one could repeat a standard interferometry experiment arbitrar-
ily many times, thus obtaining an arbitrarily small uncertainty,
using just a single photon, as shown in Fig. 2. Other nonlinear
optical processes allow for scenarios where it is not even clear
how to define the number of photons [29]. Second, one practical
reason for caring about photon number is if one has a sample that
is extremely sensitive to light. In this situation, what is relevant
is clearly the number of photon passes through the sample, not
anything else. Third, if one counted photons rather than photon
passes, this would ignore the extra time it takes for a photon to
make p passes, rather than 1 pass, through the sample. In the
asymptotic regime of arbitrarily large N (and hence large p),
this is necessarily the time that will determine the duration of
the experiment.

It might be thought that the technique of using p passes of a
single photon is not really a measurement of φ at all, but rather
a measurement of pφ. From this, one would, of course, expect
a sensitivity in φ that scales as p from a single photon measure-
ment, and so, an overall uncertainty in φ scaling inversely with
the total number of photon passes is just as expected. This works
only if one already knows the phase approximately, and the de-
viations one is trying to detect are much smaller than 2π/p. This
is quite different from the fundamental problem of estimating a
completely unknown phase φ, which is the task to which the HL
pertains [8], [27]. In the latter case, one cannot simply set p to
be as large as it can be, and then measure pφ, because this would
yield information only about φ modulo 2π/p. Rather, even if
one sets p to high values at some stage of the experiment, at
some other stage(s), it must be set to one in order to pin down a
single value for φ within the range [0, 2π). That is to say, for the
task we are interested in, the measured quantity is the variable
φ modulo 2π, not the variable pφ modulo 2π. The optimal way
to vary p over the course of the experiment is then the crucial
issue and the QPEA suggests an answer (or at least a starting
point [6]).
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Fig. 3. Single-pass Mach–Zehnder interferometer with arbitrary inputs and
arbitrary measurements. It is known that this can achieve the HL ∆φ ∼ π/N
for an N -photon input state.

In many practical examples, the strategy of fixing p at a value
as large as possible works because one is trying to detect small
changes to an already known phase. This is the case in gravi-
tational wave interferometry and atomic clocks. In the former
case, the maximum number of passes is set by the geometry of
the experiment and the quality of the mirrors, and this deter-
mines the accuracy [30]. In the latter case, the decoherence time
of the atoms determines the maximum number of “passes” (Rabi
cycles) the atoms can undergo, and the SQL is determined by
this and the number of atoms in the sample [31]. In both of these
cases, one is interested in minimizing the error, and hence, one
would ideally measure pφ with a large ensemble M of identical
systems (photons or atoms). Thus, the overall scaling for the
uncertainty would be like M−1/2p−1 , i.e., one does not get scal-
ing at the HL if one fixes p and sets N = Mp. In practice, one
cannot even increase M without limit in these experiments. For
gravitational wave interferometry, there is an optimal number
of photons for which the noises from photon counting and from
radiation pressure balance [30]. For atomic clocks, increasing
the cloud density similarly leads to collisional energy shifts (i.e.,
phase noise). In summary, in both of these cases, the limits are
set by practical, rather than fundamental, considerations.

It should be noted that the earlier remarks relating to measur-
ing φ modulo 2π/p apply to NOON states with N = p in exactly
the same way as they do to a single photon with p passes. A
NOON state is a state of the form |N, 0〉 + |0, N〉 (expressed
using the number basis for the two arms of the interferometer
shown in Fig. 3 [32]). For large p, an N = p NOON state has
an advantage over a single photon with p passes in that the time
it takes to pass through the interferometer does not scale with
p. It has the obvious disadvantage of being far more difficult
to produce—so thus, N = 4 is the largest NOON state demon-
strated (and that only in a postselected sense) [33]. It is also far
more difficult to detect—it requires photon-number-resolving
detectors with loss smaller than O(1/N). If it were possible to
generate and detect “high NOON” states, then the algorithms
here could be applied directly to that case as well. The equiva-
lence comes from the fact that all of the phase information in a
NOON state after it has passed through the final beam splitter
is contained in the parity of the photon number at one detector
(which is why absurdly high efficiencies are required). Note that

although the multipass technique can tolerate detector losses of
order unity, it is sensitive to absorption within the sample in
precisely the same way as is the NOON state technique.

From the aforementioned comparison between NOON states
and multiple passes of a single photon, one might argue that
there are really two resources: N (the number of photon passes
in both cases) and T (the time taken for the experiment). In
the limit N → ∞, the duration T for the NOON-state protocol
increases only logarithmically with N (as explained in the fol-
lowing sections), and for an optimal multiphoton entangled state
(see Section III-C), T need not scale with N at all. In the mul-
tipass case, by contrast, T necessarily scales as N , as discussed
before. In saying that our technique attains the HL, we mean
only that it reaches the minimum possible phase variance for a
given N , i.e., to obtain a phase estimate with a binary expansion
of log2(N) bits, with an error in only the least significant bit,
we are prepared to accept an experiment of exponentially (in
log2 N ) long duration. This can be avoided only by moving the
exponential cost associated with N from the time to the state
itself—the NOON state (and its relatives) contain exponentially
many photons, and hence contain an exponentially large amount
of energy. In practice, photons are fast and small, so N would
have to become very large for either time or energy to become
important.3 On the other hand, the NOON-state protocol also
requires an exponentially efficient detector. As noted before, one
requires 1 − η to be exponentially (in log2 N ) small, in contrast
to the best current detectors where 1 − η barely qualifies as
“small” at all. Thus, it is hard to see why the resource T should
be regarded as more fundamental than these other resources.

Finally, it might be thought that a multipass interferometer is
somehow changing the rules of the game, while using a NOON
state does not reflect such changes, i.e., one might argue that the
rules allow arbitrary preparation as inputs to the interferometer,
and arbitrary processing of the output, as shown in Fig. 3, but
not changing of the beam paths through the sample. However, it
is simple to bypass this objection. If arbitrary preparations and
measurements are allowed, then one allowed scheme is not to
measure the output modes, but rather simply to redirect them
back as the input modes, as shown in Fig. 4. The input beam split-
ter simply cancels the effect of the output beam splitter, and the
second passage of the photon through the unknown phase shift
is exactly as in a two-pass interferometer. This can be repeated
as many times as desired to give a multipass interferometer.

We implemented a generalized QPEA in [6] using multi-
passed single photons with a common-spatial-mode polariza-
tion interferometer, which is more stable than a Mach–Zehnder
interferometer. The two arms of the interferometer were the
right-circular and left-circular polarization modes, and the un-
known phase φ was implemented as the orientation angle of a
birefringent half-wave plate. The number of passes was varied
from 32 to 1, in powers of 2, using electromechanical devices.
We implemented standard interferometry (verifying the SQL),
the QPEA (surprisingly also scaling as the SQL, as will be dis-
cussed later), and a generalized QPEA in which M = 6 photons

3This, of course, ignores the difficulty of converting N h̄ω of energy into a
NOON state, which is clearly enormous for large N , but hard to quantify.
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Fig. 4. Realizing a multipass Mach–Zehnder interferometer from a single-pass
one (inside the round-cornered box) by recycling the outputs into the inputs.
Note that this is done coherently unlike in Fig. 2.

Fig. 5. Experimental results from [6] of standard deviations of phase estimates
for varying numbers of resources N . We compare theoretical predictions (lines)
and measured values (points, each representing 1000 estimates) for standard
phase estimation, the QPEA (M = 1), and our generalized QPEA (M = 6)
algorithms. Error bars denote 95% confidence intervals. Our algorithm clearly
gives better phase estimates than both the SQL and the QPEA limit.

(rather than M = 1 as in the QPEA) were sent down consec-
utively for each pass configuration. This last technique gave a
∆φ scaling the same as the HL, with a multiplicative overhead
of only 1.56, as predicted by theory (see Fig. 5).

III. QUANTUM LIMITS TO PHASE ESTIMATION

A. Rules and Representations

In this and following sections, we will analyze phase estima-
tion algorithms (adaptive and otherwise) from a purely quantum
information perspective, i.e., we consider general qubits rather
than photons. In this context, the rules of the game are as follows.

1) We have a gate that performs the unitary operation
exp(iφ |1〉 〈1|) on a specific sort of qubit.

2) We have an indefinite supply of these qubits.
3) The parameter φ is initially completely unknown.
4) We are allowed only N applications of the gate.
5) We aim to minimize the variance in our best estimate φest

of φ.
Technically, we use the Holevo variance measure VH =

〈exp[i(φ − φest)]〉−2 − 1 [14], [34], as this respects the cyclic

nature of phase. The variance is the most robust figure of merit,
in that if it scales well, then all other measures will also scale
well, but not vice versa [35].

In quantum information language, a photon entering one port
of the interferometer is represented by preparation of the qubit
in (say) the logical |0〉 state. The initial beam splitter acts as
a Hadamard transform H , yielding H |0〉 = (|0〉 + |1〉) /

√
2 =

|+〉. The unknown phase shift in the upper arm is represented
by the unitary operator exp(iφ |1〉 〈1|), while the known phase
shift in the lower arm is represented by exp(iθ |0〉 〈0|). The final
beam splitter again transforms from the logical (Z) basis to the
|±〉 basis (the X basis). Thus, if the photonic qubit is measured,
then this amounts to a measurement of X prior to the final beam
splitter. Estimating the phase on the basis of passing a single
photon once through the interferometer, and measuring it, is
therefore described by the circuit

For compact notation in later circuit diagrams, and also to
connect more closely to the QPEA of Shor’s algorithm, we
change to a representation where exp(iφ |1〉 〈1|) is represented
by the controlled unitary gate |1〉 〈1| ⊗ U + |0〉 〈0| ⊗ I , where
U acts on a state |φ〉 (which could have any Hilbert space di-
mension) with U |φ〉 = eiφ |φ〉, and I is the identity operator
on this space. We also treat the auxiliary phase θ as a real-
number-valued classical register, which controls (indicated by
a � symbol) the gate R(θ) ≡ exp(iθ |0〉 〈0|). Thus, we rewrite
the aforementioned circuit as

Here, if we take θ to be random (but known), this ensures an
estimate φest with an accuracy which is independent of the true
value φ. Here, φest is shifted (indicated by the gate D) from θ
by an amount δθ depending in some way (indicated by 	) on
the classical result. The advantage of treating θ in this way will
become apparent.

B. Standard Quantum Limit

The SQL pertains when we simply repeat the aforemen-
tioned single-qubit circuit N times, i.e., we have N qubits,
independently prepared, independently measured, and with
exp(iφ |1〉 〈1|) applied once on each (p = 1). To ensure uni-
form sampling, θinit is random, and θ is incremented by π/N
between one qubit and the next. The case N = 4 is shown in
Fig. 6. This yields the SQL for accuracy, which is given by

SQL = V [φest ] ∼
1
N

, for N 
 1. (1)
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Fig. 6. Circuit representation of “standard” interferometry with a controllable auxiliary phase. This defines the SQL. Here, N = 4.

Fig. 7. Circuit representation of “standard” interferometry with an adaptively controlled auxiliary phase. The adaptation does not improve the asymptotic accuracy
beyond the SQL.

We can also allow for θ to be controlled adaptively between one
qubit and the next, as shown in Fig. 7. The obvious procedure,
suggested in [36], is to choose θ so as to minimize the expected
variance after the measurement whose result is influenced by this
new θ, which entails averaging over the two possible results of
the measurement. This local optimization gives a slightly more
accurate measurement for small N , but makes no difference
asymptotically [35]. A global optimization does even better for
small N , but again essentially no difference for large N [35].

C. Heisenberg Limit

With no restrictions on how the qubits are prepared or mea-
sured, an obvious approach is to use N qubits, prepared in a
suitable entangled state, and measured by a suitable entangling
measurement. In this case, the initial and final beam splitters
(Hadamards) can be absorbed into the state preparation and
measurement, and so are irrelevant to the problem. So too is the
auxiliary phase. Each qubit controls the phase gate once. For
example, with N = 3, we have

Although the phase gates are shown as acting sequentially,
they can be imagined to act simultaneously. This circuit is equiv-
alent to Fig. 3, where arbitrary preparation and measurement
allow the interferometer to achieve its ultimate performance,

the HL, which is given by [36]

HL = V [φest ] = tan2
(

π

N + 2

)
. (2)

This is attained by using the canonical phase measurement,
described by projection onto phase states

|Φ〉 ∝
N∑

n=0

eiΦn |n,N − n〉S (3)

and the optimal input state [36], [37]

|ψopt〉 ∝
N∑

n=0

sin
[
(n + 1)π
N + 2

]
|n,N − n〉S . (4)

Here |n,N − n〉S is a symmetrized state in which n qubits are
in state |1〉 and N − n in state |0〉. (For identical and indistin-
guishable bosons such as photons, in two modes, this sym-
metry is enforced by the quantum statistics.) Note that this
entangled state differs from the NOON state, which has the
form |N, 0〉S + |0, N〉S in this notation. The NOON state gives
the maximum Fisher information (equal to N ) from a single
measurement, but has an appalling variance (the Holevo vari-
ance is, in fact, infinite) because it only detects changes in φ
modulo 2π/N . The optimal state |ψopt〉 has only a moderately
smaller Fisher information—about 0.36N [35]—and the mini-
mum variance.

In the asymptotic limit

HL = V [φest ] ∼
( π

N

)2
, for N 
 1 (5)

which is quadratically better than the SQL. The HL scaling
implies that to obtain K + 1 bits of precision for φest , we require
of order N = 2K +1 qubits, i.e., it is exponentially costly in
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Fig. 8. Circuit representation of Heisenberg-limited interferometry using a binary encoding. Here, the resource count is N = 4 + 2 + 1 = 7.

Fig. 9. Circuit representation of Heisenberg-limited interferometry, as in Fig. 8, but using the adaptive measurement scheme of Griffiths and Niu.

“spatial” resources.4 However, this is not necessary. The fact
that the optimal state and measurement can be written using
a symmetrized basis with only N + 1 basis states (out of a
total Hilbert space dimension of 2N for N qubits) allows an
alternate representation. Assuming N = 2K +1 − 1, we can use
just K + 1 qubits, and define a new |n〉 as the logical state of a
register of qubits with n being a binary string of length K + 1.
The price to be paid is that the evolution generated by the phase
gates

N∑
n=0

sin
[
(n + 1)π
N + 2

]
|n〉 →

N∑
n=0

einφ sin
[
(n + 1)π
N + 2

]
|n〉 (6)

now requires an exponential number of phase shifts on the “most
significant qubits” in the binary representation of n, i.e., we
have swapped an exponential cost in spatial resources for an
exponential cost in time resources, if each phase gate is assumed
to take a fixed time.

The canonical phase measurement, described by the phase
states (3), is a measurement in a basis conjugate to the logical
basis. The transformation from one basis to the other is ex-
actly what is achieved by the quantum Fourier transform [26].
Thus, using the binary representation rather than the symmetric
representation, the HL can be achieved by the circuit shown
in Fig. 8. In this instance, there are K + 1 = 3 qubits, but
N = 2K +1 − 1 = 7. The estimate φest is read out from the re-
sults of Z measurements as shown, and we are using the notation
r = [r]0 [r]1 [r]2 . . .. The kth qubit (k = 0, 1, . . . ,K) “passes”
the phase gate 2k times. As stressed before, even though we
represent (for instance) four applications of the phase gate by a
single controlled U 4 gate, this must be regarded as using four
resources.

It is a remarkable fact, first pointed out by Griffiths and
Niu [38], that the QFT−1 can be achieved by local (i.e., single-
qubit) measurement and control. This can be seen by moving
the measurements back through the QFT−1 and the controlled
phase gates, using the gate commutation properties. The con-
trol is often called feedforward, but since each controlled qubit

4In the context of optical interferometry, this corresponds to the exponential
energy cost of NOON-like states discussed in Section II-C.

and measured qubit are entangled prior to the measurement, the
control is arguably feedback based on a partial measurement
of a multiqubit system. Indeed, we will use this terminology
even when the qubits are independently prepared, because they
are still correlated (from the point of view of the experimenter)
due to the action of the phase gate with unknown phase φ. In
any case, this adaptive scheme makes the measurement compo-
nent of this Heisenberg-limited protocol far easier to implement
experimentally (see Fig. 9).

IV. QUANTUM PHASE ESTIMATION ALGORITHM

Although the Griffiths–Niu technique makes the measure-
ment easy to implement, attaining the exact HL still requires
creating a multiqubit entangled state, which is hard. This sug-
gests exploring what happens if we replace the entangled state
by independent qubits as in the standard scheme. This yields the
QPEA [23], [24]. If we mediate the control steps via the auxiliary
phase θ and introduce a random θinit to ensure equal accuracy for
all φ, then the QPEA is represented by the circuit in Fig. 10. This
looks almost identical to the adaptive version of the standard
protocol, as shown in Fig. 7. The difference is in the multiple
gate applications on a single qubit; the QPEA with K + 1 regis-
ter qubits again uses N = 2K + 2K−1 + · · · + 1 = 2K +1 − 1
resources, whereas the standard scheme uses K + 1 resources.

Since the QPEA gives K + 1 bits of φest/π and N ∼ 2K +1 ,
would we not expect

QPEA : V [φest ] ∝
( π

2K +1

)2
∼

( π

N

)2
(the HL) ? (7)

Contrary to this expectation, an exact calculation [6], [39] gives

QPEA : V [φest ] ∼
2
N

∝ 1
N

(the SQL). (8)

So what went wrong? Why does the algorithm not only fail to
attain the HL, but actually do worse than the SQL? The short
answer is outliers. The distribution P (φest) is sharply peaked
around φ. The half-width at half-maximum height is given by

QPEA : (HWHM)2 �
(

2.81
N

)2

. (9)

 



WISEMAN et al.: ADAPTIVE MEASUREMENTS IN THE OPTICAL QUANTUM INFORMATION LABORATORY 1669

Fig. 10. QPEA for K = 3, so that N = 7.

Fig. 11. Our generalized QPEA for the case M = 2 and K = 1 (so that N = 6).

But the distribution has high wings, giving SQL scaling for the
variance. Specifically [39],

PQPEA(δφ) =
sin2[(N + 1)(δφ/2)]
2π(N + 1) sin2[δφ/2]

(10)

where δφ = φest − φ. In the wings, PQPEA(δφ) has an envelope
that falls only like (δφ)−2 . This is a consequence of the fact that
we are using not the optimal state (4) with a wide but smooth
number distribution, but rather a state with a “flat” number
distribution

|ψflat〉 = (N + 1)−1/2
N∑

n=0

|n〉 . (11)

It is the sharp cutoff of the number coefficients that leads to the
poor localization of phase, the conjugate variable to number.

Although outliers in φest are important for phase estima-
tion (where our figure of merit is the variance), they are not
important for quantum computing applications. There, all one
cares about is getting the right answer (to the number of bits
of precision one has) from the algorithm with some reason-
ably high probability, and the QPEA works fine for this pur-
pose [23], [24]. Indeed, if φ/π had an exact binary expansion
in K + 1 bits, then we could remove the random θinit , and
the QPEA with K + 1 qubits would be guaranteed to find φ
exactly; the variance would be zero. While this assumption
may be relevant in some quantum computing applications, it
is contrary to the rules of the game (Section III-A) for phase
estimation.

V. GENERALIZED QPEA

One way to understand the high wings of the QPEA distribu-
tion is that if an error in an insignificant bit occurs, it propagates
upwards into the more significant bits through the feedback
protocol. This suggests a way to remove such errors: by repeat-

ing each measurement some number M times, as previously
suggested in various settings [28], [40]–[42]. Recall that in the
QPEA, the kth qubit (k = 0, 1, . . . , K) controls the phase gate
2k times. We generalize this by having M qubits for each 2k -
fold application, so that the total number of passes through the
phase gate is N = M × (2K +1 − 1).

With this generalization, it is no longer clear how to change
the auxiliary phase θ between measurements. Giovannetti et al.
[28], considering the same problem as here, imply (when dis-
cussing a NOON-state realization rather than the equivalent
binary-encoding implementation) that the adaptation of θ is un-
necessary; we will return to this point in Section VI. We prefer
to keep the adaptation of θ because it is an integral part of the
QPEA. We use the adaptive algorithm of [36] to make the lo-
cally optimal measurement, as explained in Section III-B. For
M = 1, this exactly reproduces the QPEA, which is why we
regard this family of algorithms (parametrized by M ) as the
natural generalization of the QPEA.

For M > 1, our generalized algorithm no longer realizes an
optimal phase measurement; the Griffiths and Niu trick of real-
izing an optimal phase measurement by local measurement and
control only works for a single copy of the quantum register
with binary-encoded phase. In fact, for M = 2, as illustrated in
Fig. 11, the measurement is far worse than optimal. As we have
shown analytically [6], [39], the measurement in this case intro-
duces so much noise that the estimate has a variance scaling at
the SQL. (In this, it is similar to the heterodyne measurement of
Section II-B.) This is so despite the fact that the relevant state in
this case |ψflat〉⊗2 would give a nearly Heisenberg-limited phase
estimate if one could implement an optimal measurement. For
M = 3, numerical simulations show that the nonoptimal mea-
surement introduces an excess noise variance with scaling con-
sistent with N−3/2 , intermediate between the SQL and the HL.
(In this, it is similar to the Mark II measurement of Section II-B.)
For M ≥ 4, numerical simulations show that the measurement
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allows, as for the M = 1 case,5 estimation with accuracy scaling
at the HL. All of these numerical simulations were performed
up to N > 106 , far into the asymptotic regime.

If one increased M indefinitely, with K being fixed, one could
not hope to achieve Heisenberg-limited scaling. Intuitively, this
is because the Heisenberg-limited sensitivity comes from having
a maximum number of passes p = 2K , which scales linearly
with N . Alternatively, it can be understood from the fact that
the state |ψflat〉⊗M ceases to have a broad number distribution
(and hence a narrow phase distribution) as M increases. In fact,
it can be shown analytically that for large M , the multiplicative
overhead above the HL increases like M . Thus, there must be
an optimal value of M equal to 4 or higher. Numerically, we
found the best results to be for M = 5 [39]

M = 5 GQPEA : V [φest ] �
(

4.8
N

)2

(12)

compared to (π/N)2 for the HL, i.e., even though the state
|ψflat〉⊗5 is not the optimal state, and the locally optimal adap-
tive measurement is not a canonical phase measurement, the
multiplicative overhead on ∆φ is less than 1.53. Although the-
oretically, M = 5 is the optimal choice for minimizing the vari-
ance, it still yields more outliers than in the case for larger M .
Experimentally, this means not that it is hard to measure with
a precision scaling at the HL, but rather it is hard to prove this
precision because of the difficulty of obtaining reliable statis-
tics. For this reason, in [6], we experimentally implemented
the generalized QPEA for M = 6, for which the multiplicative
overhead on ∆φ is about 1.56.

VI. ARE ADAPTIVE ALGORITHMS NECESSARY?

A. Less Adaptive “Hybrid” Algorithm

Our generalized QPEA (see Fig. 11) involves Bayesian feed-
back, in which every past result contributes to determining the
auxiliary phase increment δθ, according to the Berry–Wiseman
protocol [36]. This is to be contrasted with the original QPEA
(see Fig. 10) in which only the immediately preceding result is
required. As noted before, the QPEA would achieve the HL if
it were not for outliers. This suggests that we could get to the
HL more simply by augmenting the (simple adaptive) QPEA
with the (nonadaptive) SQL algorithm to remove outliers. The
reasoning is that the nonadaptive SQL algorithm, consisting
basically of a large number of independent trials, would be ex-
pected to have a probability distribution for the estimate that is
roughly Gaussian, and so would have exponentially suppressed
wings, and as long as a reasonable fraction of the resources
is still devoted to the QPEA, its narrow peak would hopefully
remain intact.

Investigating this hybrid scheme analytically and numerically
reveals that the optimal division of resources is (2/3)N for the
QPEA and (1/3)N for the standard scheme [29]. However,

5Heisenberg-limited accuracy is not attained in the M = 1 case because the
prepared state does not have a Heisenberg-limited phase variance.

contrary to expectation, we find that

Hybrid : V [φest ] =
w(N)
N 3/2 (13)

where w(N) is a function that increases very slowly with N
(from 4.83 at N = 5 to 6.17 at N = 767) [29], i.e., the hybrid
scheme delivers a scaling intermediate between the SQL and
the HL. Nevertheless, it is interesting that by combining two
measurement schemes, both of which give a variance scaling at
the SQL, one obtains a much better scaling.

B. Nonadaptive Local Algorithm

The aforementioned hybrid algorithm is mostly
nonadaptive—it has only K = O(log N) adaptive mea-
surements out of O(N) measurements in total. As noted, it
surpasses the SQL in accuracy. In it, the number of qubits with
2k passes through the phase gate is M(K, k) = 1 + δk,02K .
This raises the question: can one get to the HL with no feedback
by choosing a smoother function M(K, k) that still (like
the hybrid scheme) assigns more qubits to smaller k values?
Attacking this question analytically suggests considering
functions of the form [29]

M(K, k) = MK + �µ(K − k)� (14)

where µ is a positive constant. For each value of k, the M(K, k)
qubits are measured independently using the auxiliary phase θ
only to ensure an unbiased measurement. For example, it can be
incremented by π/M(K, k). This is illustrated in Fig. 12 with
MK = 1 and µ = 2.

Numerically, we find the best results to be for MK = 2 and
µ = 3 [29]

NALA : V [φest ] �
(6.4

N

)2
(15)

i.e., the overhead on ∆φ is less than 2.03. This is not greatly
bigger than the lowest known overhead for an adaptive scheme
of 1.53 for the M = 5 GQPEA. It is important to note that
numerical simulations for a nonadaptive scheme with M being
fixed do not show scaling at the HL. This is contrary to the claim
(rather casually made) in [28] that the HL for the variance can be
attained from measuring each bit in the binary expansion of φ by
making ν nonadaptive measurements (their ν is our M ) for each
bit, and then taking “the limit of large ν.” It is not clear what
this limit is meant to be; ν certainly cannot be arbitrarily large
as this would lead back to the SQL, as discussed in Section V.6

Our numerics show that nonadaptive measurements with a large
but fixed M seem to give a scaling close to the HL up to a point,
but as N is increased (by increasing K) beyond that point, the
variance ceases to scale as N−2 .

6Giovannetti et al. [28] perhaps miss this point because they appear to ignore
the ν repetitions in their count of the resources, in deriving “the Heisenberg
limit 1/N [as] the ultimate bound to precision in phase measurements.” Indeed,
they call N the “number of probes” (i.e., register qubits), rather than the number
of applications of the phase gate. This is despite the fact that they also say that
“Instead of a parallel strategy on N probes, one can employ a sequential strategy
on a single probe,” while at the same time saying that “one finds the same 1/N
precision scaling . . . for sequential strategies.”



WISEMAN et al.: ADAPTIVE MEASUREMENTS IN THE OPTICAL QUANTUM INFORMATION LABORATORY 1671

Fig. 12. Nonadaptive algorithm with M (K, k) = MK + µ(K − k). Here, K = 1, MK = 1, and µ = 2, so that N = 5.

In additional to this numerical evidence, the aforementioned
algorithm using M(K, k) of the form (14) is the only known
nonadaptive algorithm on single qubits that has been rigorously
proven to attain the HL. The proof [29], [39] involves values of
MK and µ that are known (from numerics) not to be optimal,
but which allow one to rigorously bound all the contributions
to the variance, using Chernoff’s theorem. To apply this theo-
rem, one needs repeated identical measurements, so the proof
assumes using just two values of θ: 0 and π/2. Specifically, for
M(K, k) = 18 + �16 ln(2) × (K − k)�, we prove that

NALA : V [φest ] <∼
(150

N

)2
. (16)

The large overhead in this case shows that one would not want
to use these parameters in practice, but it does prove rigor-
ously that adaptive measurements are not necessary to attain the
HL in interferometry using only single-qubit preparation and
measurement.

VII. CONCLUSION

Recent years have seen the addition of adaptive measurements
to the arsenal of techniques used in quantum optics information
laboratories to probe the quantum world. The notable protocols
that we have discussed here are the Dolinar receiver [7], which is
realized in [4], the Mark II phase measurement of [14] and [15],
which is realized in [5], and the generalized QPEA proposed
and realized in [6]. These protocols are all intimately related to
quantum information through quantum communication, quan-
tum computation, and quantum algorithm theory, respectively.
In this context, the recent quantum computing cluster-state ex-
periment of [22] should also be mentioned, as perhaps the first
adaptive measurement in which the adapted measurement was
performed on a subsystem that was initially entangled with the
first measured subsystem.

The bulk of this paper has concentrated on the work of [6],
which is unique in that the adaptive measurement protocol was
inspired by quantum algorithm theory, but serves a purpose quite
different from quantum computing, namely estimating a com-
pletely unknown phase shift φ in one arm of an interferometer
with a fixed number of photon passes through the interferome-
ter. We analyzed this from a quantum information perspective
(e.g., replacing photons by qubits and phase shifts by controlled
unitaries) to make the connection to quantum algorithm theory
as explicit as possible.

To attain exactly the HL for the variance of the estimate
V [φest ] ∼ (π/N)2 , the most efficient (in terms of minimizing

the number of qubits in the register, and the number of entangling
gates performed on the register) protocol requires all of the
following:

1) preparing an entangled state of O(log N) qubits;
2) multiple applications of the controlled unitary gate by any

given qubit;
3) adaptive measurements (control of individual qubits based

on prior results).
We have shown numerically, and experimentally in [6], that

using a generalized QPEA, one can dispense with the entangled
state preparation, and still achieve Heisenberg-limited scaling,
and indeed come very close to the HL

GQPEA : V [φest ] ∼
(1.53π

N

)2
. (17)

Given that it is impossible, using only single-qubit measurement
and controls, to produce simultaneously the optimal state and
the optimal measurement, our phase estimation algorithm must
be close to the best achievable with this restriction.

Finally, we briefly discussed some very recent results [29],
[39] showing analytically and numerically that one can achieve
Heisenberg-limited scaling, although with an increased over-
head, even without the adaptive measurements. However, this
requires a sophisticated partitioning of resources contrary to
some claims in the literature (e.g., [28]).
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