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Abstract

One of the major challenges encountered by curi@reg recognition techniques lies in the
difficulties of handling varying poses, i.e., readgn of faces in arbitrary in-depth rotations.
The face image differences caused by rotation®fea larger than the inter-person differences
used in distinguishing identities. Face recognitamross pose, on the other hand, has great
potentials in many applications dealing with uncarapive subjects, in which the full power of
face recognition being a passive biometric techmican be implemented and utilised. Extensive
efforts have been put into the research toward-posgiant face recognition in recent years and
many prominent approaches have been proposed. Howssveral issues in face recognition
across pose still remain open, such as lack of tateding about subspaces of pose variant
images, problem intractability in 3D face modellimgmplex face surface reflection mechanism,
etc. This paper provides a critical survey of red@as on image-based face recognition across
pose. The existing techniques are comprehensiesigwed and discussed. They are classified
into different categories according to their methlodies in handling pose variations. Their
strategies, advantages/disadvantages and perfoesane elaborated. By generalising different
tactics in handling pose variations and evaluatthgir performances, several promising
directions for future research have been suggested.
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1 Introduction

As one of the most important biometric techniguasge recognition has clear advantages of
being natural and passive over other biometricrteghes requiring cooperative subjects such as
fingerprint recognition and iris recognition. Toredit from the non-intrusive nature of face
recognition, a system is supposed to be able totifgkecognise an uncooperative face in
uncontrolled environment and an arbitrary situatiithout the notice of the subject. This
generality of environment and situations, howelesught serious challenges to face recognition
techniques, e.g., the appearances of a face duiewing (or photo shooting) condition changes
may vary too much to tolerate or handle. Thoughynfaoce recognition approaches, for example
[4, 7, 27, 35, 43, 53, 75], reported satisfactoeyfgrmances, their successes are limited to the
conditions of controlled environment, which are ealistic in many real applications. In recent
surveys of face recognition techniques [21, 89]sepwariation was identified as one of the
prominent unsolved problems in the research of facegnition and it gains great interest in the
computer vision and pattern recognition researammoanity. Consequently, a few promising
methods have been proposed in tackling the probferacognising faces in arbitrary poses, such
as tied factor analysis [63], 3D morphable moddl][Eigen light-field [33], illumination cone
model [30], etc. However, none of them is free friomitations and is able to fully solve pose
problem in face recognition. Continuing attenti@m&l efforts are still necessary in the research
activities towards ultimately reaching the goalpoke-invariant face recognition and achieving
the full advantage of being passive for face rettamm Although several survey papers [1, 3, 20,
21, 56, 89] and books [52, 78, 90] on face recogmihave been published which gave very good
reviews on face recognition in general, there isewsew specific on this challenging problem of

face recognition across pose. This paper provigesitst survey on face recognition across pose,
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with comprehensive and up-to-date reviews on exgstechniques and critical discussions of
major challenges and possible directions in theeaech area.

In this review, techniques of face recognition asrpose are broadly classified into three
categories, i.e., general algorithms, 2D technigaed 3D approaches. By “general algorithms”,
we mean these algorithms didn’t contain specifatitca on handling pose variations. They were
designed for general purpose of face recognitiomaky handling all image variations (e.g.,
illumination variations, expression variations, ageiations, and pose variations, etc.). In each
category, further classifications were also madetae details of categorisation is summarised in
Table 1. Generally, there are two trends in devetpgace recognition techniques, i.e., 1)
improving the capability and universality of gerdi@ce recognition algorithms so that image
variation can be tolerated, and 2) particularlyigldag mechanisms that can eliminate or at least
compensate the difficulties brought by image varet (e.g., pose variations) according to its
own characteristics, such as through 2D transfoamstor 3D reconstructions. The problem of
face recognition across pose is elaborated in @e&iwith discussions of demands, challenges
and evaluations. Section 3 presents a review orergkriace recognition algorithms with
discussions on their pose sensitivities. In Sestibrand 5, a comprehensive survey is provided
on techniques that actively compensate pose vamgin face recognition, dependent on whether
they are 2D techniques (Section 4) or 3D approadigestion 5). Finally, summarising

discussions are given in Section 6.



Table 1. Categorisation of face recognition techegjacross pose

Category Approach

General algorithms

Principal component analysis [43, 74, 75], Fishecriminant analysis [7]
Holistic approaches Artificial neural network (Convolutional NetworkdT])
Line edge maps [27], directional corner point [28]

Template matching [16], Modular PCA [61]
Elastic bunch graph matching [79], local binarytgats [2]

Local approaches

2D techniquesfor face recognition across pose
Real view-based matching Beymer’s method [12] opamic view [71]

Parallel deformation [10], pose parameter manipaigi32]
Active appearance models [25, 39], linear shapeeaid®]
Eigen light-field [33]

Kernel methods (kernel PCA [54, 80], kernel FDA,[88&])
Expert fusion [42], correlation filters [50]
Local linear regression [19], tied factor analy§i3]

Pose transformation in image
space

Pose transformation in feature
space

Face recognition across pose with assistance of 3D models

Cylindrical 3D pose recovery [26]
Generic shape-based methods | Probabilistic geometry assisted face recognitidj [5
Automatic texture synthesis [85]

Composite deformable model [48], Jiang’s method, [BRilti-level
guadratic variation minimisation [87]

Morphable model [13, 14], illumination cone mod29| 30]
Stereo matching [18]

Feature-based 3D reconstructio

Image-based 3D reconstruction

2 Problem definition, challenges, evaluations and categorisations

Face recognition across pose refers to recognifacg images in different poses by
computers. It is of great interest in many facegadtion applications, most notably those using
indifferent or uncooperative subjects, such aseliance systems. For example, face recognition
is appealing in airport security to recognise teste and keep them from boarding plane. Ideally,
the faces of terrorists are collected and stordtiendatabase against which travellers’ faces will
be compared. The face of everyone going througicardy checkpoint will be scanned. Once a

match is found, cameras will be turned on to slipeople with a live video feed, and then the



authorities will verify the match and decide wheth® stop the individual whose face matches
one in the database. The most natural solutionhigrtask might be to collect multiple gallery
images in all possible poses to cover the posatamnss in the captured images, which requires a
fairly easy face recognition algorithm and will Biscussed in detail in Subsection 4.1. In many
real situations, however, it is tedious and/oridift to collect these multiple gallery images in
different poses and therefore the ability of fageognition algorithm to tolerate pose variations
is desirable. For instance, if only a passport plp&r person was stored in the database, a good
face recognition algorithm should still be ableprform the above airport surveillance task. In
such sense, face recognition across pose refersctmnising face images whose poses are
different from the gallery (known) images. If a éacecognition doesn’'t have a good pose
tolerance, given a frontal passport photo, theesysippears to require cooperative subjects who
look directly at the camera [17] and face recognitis no longer passive and non-intrusive.
Therefore, pose invariance or tolerance is a kaltyalior face recognition to achieve its
advantages of being non-intrusive over other biomé&tchniques requiring cooperative subjects
such as fingerprint recognition and iris recogmitio

Due to the complex 3D structures and various sarfaftectivities of human faces, however,
pose variations bring serious challenges to cufesr® recognition systems. The image variations
of human faces under 3D transformations are lafggar that conventional face recognition can
tolerate. Specifically, innate characteristicshed faces, which distinguish one face from another,
do not vary greatly from individual to individuakhile magnitudes of image variations caused
by pose variations are often larger than magnitwdélse variations of the innate characteristics.
The challenging task faced by pose-invariant f@am®gnition algorithms is to extract the innate

characteristics free from pose variations. Gengrdlinore gallery images in different poses are
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available, the performance of recognising a facagenin an unseen pose will be better. Several
experiments conducted in the literature have supgathis observation. For instance in [47],
Eigenfaces and SOM+CN approaches both performedrbghen 5 gallery images per person
were available than when only 1 gallery image wesilable. The performance increase of
Eigenfaces was from 61.4% to 89.5% and that of SOM+as from 70.0% to 96.2%. This kind
of increases is due to the capability for face gedoon algorithms of tolerating small pose
variations. As the number of gallery images incesashe probability that the probe pose lies
closely to one of the gallery poses increases.rébegnition then degrades to a real view-based
matching, although the probe pose could have sdifiirence to the gallery pose. Multiple
gallery images also help various pose compensatgorithms better compensate pose variations.
For instance, MQVM [87] used two gallery imagedrohtal view and side view in feature-based
reconstruction of 3D human faces for recognitione Tnhclusion of additional side view gallery
image provides more depth information of human fsitactures, and consequently results in
better reconstructed models than those using sigagllery images. The inclusion of multiple
gallery images puts restricted requirements fol dadllections, because many existing face
database might only contain a limited number oe(esingle) gallery images such as a passport
photo database (single gallery images) or policg-shot database (one frontal image and one
side view image per face). Therefore, the requirenoé multiple gallery images (in different
poses) limits the applicability of face recognitialgorithms and the most generic scenario is to
recognise a probe image in an arbitrary pose fray a single gallery image in another
(arbitrary) pose, which is also more challengingntmultiple gallery view scenario. For the
recognition of faces from a single gallery per fact¢erested readers are redirected to a recent

survey specifically on face recognition from a $engallery image per person [21], though it
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didn’t emphasise pose invariance. It is often bierafif the pose angle of the input image can be
estimated before recognition such as in Modular P&l4 and Eigen Light Field [33]. Head pose
can estimated be either simultaneously in the moé recognition (as done in 3D Morphable
Model [14] and Cylindrical 3D Pose Recovery [26f)separately in an independent process. The
latter alternative has been recently reviewed 9j.[5

As many pose-invariant face recognition approadtaa® been proposed recently, the need
of evaluating different algorithms on a fair bagisreased. A number of face image database
have been established for the purpose to compaferpances of different face recognition
algorithms across pose. Currently, the most widebd database for face recognition across pose
are FERET database [62] and CMU-PIE database FBRET database contains about 200
faces with 9 pose variations within +40° in yaw.e8ifically, the poses are -37.9° (labelled as
“bi"), -26.5° (“bh”), -16.3° (“bg”), -7.1° (“bf"),-1.1° (“ba”), 11.2° (“be”), 18.9° (“bd"), 27.4°
(“bc”), 38.9° (“bb”) in yaw, which were estimatedsing 3DMM [14]. CMU-PIE database
contains 68 faces with 13 different poses. MQVM][Bds calculated the pose angles using the
coordinate information provided with the databasbkich were -62° yaw & 1° tilt (labelled as
“22"), -44° yaw & 11° tilt (“25"), -44° yaw (“02");31° yaw ( “37"), -16° yaw (“05”), 0° yaw & -
13° tilt (“07"), 0° yaw (“27"), 0° yaw & 13° tilt“09”), 17° yaw (“29"), 32° yaw (“11"), 47° yaw
(“14”), 47° yaw & 11° tilt (*31"), 66° yaw (“34").Compared to FERET database, CMU-PIE
database which was established more recently centarger pose variations and vertical in-
depth rotations, but fewer faces. The performaméefgice recognition algorithms reviewed in
this paper on FERET database and CMU-PIE datalvassuanmarised in Table 2 and Table 3,
respectively. On these two databases, differemiritfigms are able to be compared on a relatively

fair basis and one can easily pick up the algomthmith the good performances. However, the

7



direct performance comparison of face recogniticnoss pose is not to be solved by this survey,
because no algorithm can satisfactorily handle pasi@tions in face recognition as Table 2 and
Table 3 suggested. For instance, the highest réamgrperformance on CMU-PIE database
covering all 13 poses is around 70-80%, whichilsfat below the requirement of practical use.
This paper mainly focuses on the discussions démdiht methodologies for face recognition
across pose, in hope of providing helpful technicsights and promising directions to interested

researchers.

Table 2 Experiments and performances of face ratogralgorithms across pose on FERET
database. Pose angles are approximate (see tetktef@ccurate angles). The citations indicate
the papers reporting the results.

No. of Pose variations Gallery / probe Approach Accuracy
faces
o _ o Eignfaces 39.4%
100 9 poses within £40° in yaw 1 random / 8 remaining [33] |
ELF [33] 75%
200 7 poses: 0° £15° £25° +45° in | 1 random / 6 remaining KPDA [69] 44.32%
yaw 4 random / 3 remaining KPDA [69] 94.46%
7 poses: 0°, +22.5° +67.5° +90 1 (0°) / 2 (x22.5°) | 2 (x67.5°) | 100% | 99% |
Y in yaw 2(+90°) TR 2] 92%
194 10 poses within +40° in yaw 1 (0°) / 9 remadnin 3DMM [14] | 95.8%




Table 3 Experiments and performances of face retogralgorithms across pose on CMU-PIE
database. Pose angles are approximate (see tetktef@ccurate angles). The citations indicate

the papers reporting the results.

No. of Pose variations Gallery / probe Approach Accuracy
faces
13 poses within +66° in o Eignfaces [33] 16.6%
yaw and +15° in gl | © "andom/12remaining =2 e 66.3%
Eigenfaces [55] 20%
9 poses: 0° £15° £30° o - —— -
34 +45° £60° in yaw 1 (0°) / 8 remaining Probabilistic geometry assisted 86%
FR [55]
5 poses 0°, £16° +62° o o R 100% |
in yaw 1(0°) /2 (£16°) | 2 (x62°) | TFA [63] 91%
2 pose: 0° and 15° in R R Eigenfaces [85] 37.5%
40 yaw 1(0°)/1(15%) Automatic texture synthesis [85] 97.5%
Eigenfaces [32] 51.5%
5 poses: 0°, +15°, +30° o - ELF [32] 87.5%
in yaw 1 (0°) /4 remaining 3D-MM [32] 95.75%
PDM [32] 97.42%
5 poses: 0°, £30°, £609 3 (OO, +30°) / 5 (0°, £30°, Mosaicing [71] 96.88%
in yaw +60°)
1 random / 12 remaining | Stereo matching [18] 73.5%
13 poses within +66° in Eigenfaces [87] 40.64%
68 yaw and +15° in tilt 2 (0°, 66°) / 11 remaining | LBP [87] 74.27%
MQVM [87] 93.45%
13 poses within +66° in R - Eigenfaces [38] 26.3%
yaw and +15° in tilt x I:|L (i‘(l)til?]/ 12 remaining x 21 Fisherfaces [38] 25.7%
21 lighting ghting Jiang's method [38] 46.66%
o nosEE 0. 15. e 1 random / remaining 3DMM [14] 92.1%
yaw x 22 lighting
7 poses: 0°, +22.5°,
+45° in yaw, +15° in 1 (0°) / 6 remaining Local linear regression [19] 94.6%
tilt

For real data collection, more pose variations irequore cameras to be installed in various
locations and more complicated calibration andngniAn alternate is to use synthetic images
rendered from 3D face database such as USF-3Datatatvhich enables the experiment to have
thousands of different poses. USF-3D database iogni®86 3D face scans with facial textures,
which can be rotated to render as many poses asxfperiment requires. Other face database
also contain various face images in different posegh as ORL database (available at

http://www.cl.cam.ac.uk/research/dtg/attarchivegtiatabase.htyl MIT database (not publicly




available), Asian database (availablentip://nova.postech.ac.kr/special/imdb/imdb.hHindern

University database (no longer available), MVU 8ase (not publicly available), Yale B

database (available athttp://cvc.yale.edu/projects/yalefacesB/yalefacksBl), XM2VTS

database (available dtttp://www.ee.surrey.ac.uk/CVSSP/xm2vtsdpayment required), etc.

Compared to FERET and CMU-PIE, these databasesinogither fewer faces or smaller pose
variations. ORL database contains 10 poses witRor per face of 40 faces, Bern University
database contains 5 poses within +20° per faceOofaBes, WVU database contains 7 poses
within £60° per face of 40 faces, Asian databasataios 5 poses within £25° per face of 46
faces, MIT database contains 10 poses within +4€¢ face of 62 faces, etc. Reported
experiments and performances of face algorithmsgusiese above databases are summarised in
Table 4. Although there are a number of face datdaontaining pose variations, it is always
helpful to establish new face databases for facegmtion across pose. Recent face recognition
researches are starting to solve recognition adfan an extremely large database, a database
containing over thousands of faces is then desir&tnl the experiments for face recognition

across pose targeting on that problem.
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Table 4 Experiments and performances of face rattogralgorithms across pose on USF-3D
database, ORL database, Bern University databaBRVXS databaseMIT database, Asian
database, MVU database, etc. Pose angles are apptex The citations indicate the papers
reporting the results.

Database gzéf Pose variations Gallery / probe Approach Result
Eigenfaces [47] 89.5%
5 random /5
i N SOM+CN [47] 96.2%
10 random poses within | remaining
ORL 40 ¥20° in yaw and tilt PDBNN [53] 96.0%
1 random /5 Eigenfaces [47] 61.4%
remaining random SOM+CN [47] 70.0%
Eigenfaces [27] 65.12%
e o LEM [27] 72.09%
Bern Univ. | 30 2npd°tsiﬁs' 0%, £20°INyaW| 1 (9e) / 4 remaining | DCP [28] 68.61%
Cylindrical 3D pose
80%
recovery [26]
5 poses: 0° £30° in yaw o - Fisherfaces [42] 46%
HARTE Lo and tilt 1(0°) /4 remaining Expert fusion [42] 70%
100 3 poses: 0°, £90° in yaw| 1 (0°) / 2(£90°) TFA [63] 91%
0,
USF-3D 2025 poses within £40° | 1 (0°) / 2024 KPCA [50] 43'30/0
(Synthetic 50 in yaw and £12° in tilt. | remaining GDA [50] 36.0%
images) B Correlation filter [50] 79.7%
100 2 poses: 0°, 24° in yaw 1(0°)/1 (24°) Linslaape models [76] 100%
7 poses: 0°, £20°, +40°,| 3 (0°, £40°) / 7 (0°, - 0
Wvu 40 +60° in yaw £20°, +40°, +60°) Mosaicing [71] 97.84%
MIT 62 10 poses within £40% in 1 (15°) / 9 remainin Parallel deformation [10] 3%
yaw and +20° in tilt 9
: 5 poses: 0°, £15°, £25° o - Eigenfaces [68] 31.5%
Asian 46 in yaw 1 (0°) / 4 remaining AAM [68] 68%

As mentioned in Section 1, all of the approacheddoe recognition across pose reviewed
were classified into three broad categories depgndin their different treatments to pose
variations. This categorisation, however, is nagua and alternative categorisations based on
other criteria are also possible. These criteriduste 1) single/multiple gallery image(s), 2)
whether training is required, 3) computational ctexjpy, 4) whether the algorithm is feature-
based or appearance-based, etc. Although we intepdovide insights on the problem of face
recognition across pose through categorisation doas® pose variation treatment, these
alternative categorisations might provide otherfulseformation for interested readers. These

categorisations have been summarised in Table 5.
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Table 5 Categorisation of face recognition techegjacross pose based on other categorisation

criteria.

Category Approach

Criteria 1: Single/multiple gallery image(s)

PCA [43, 74, 75], Template matching [16], SOM+CN]4.EM [27], DCP [28], Modular
PCA [61], EBGM [79], LBP [2], parallel deformatid@0], pose parameter manipulation [32],
cylindrical 3D pose recovery [26], probabilisticogeetry assisted FR [55], automatic texture

g synthesis [85], Jiang’s method [38], 3DMM [13, 14}M [29, 30], stereo matching [18], ELF
[33], Linear shape model [76], DCCF [50], TFA [68],R [19], Expert fusion [42], Composite
deformable model [48].

Multiple (>2) LDA [7], real-view matching [12], panoramic viewl} MQVM [87], View-based AAM [25,

68].
Criteria 2: Whether training isrequired
Template matching [16], LEM [27], DCP [28], LBP [Qylindrical 3D pose recovery [26],

No training probabilistic geometry assisted FR [55], automigtiture synthesis [85], ICM [29, 30], stere
matching [18], Composite deformable model [48],gramic view [71], MQVM [87].

PCA [43, 74, 75], SOM+CN [47], Modular PCA [61], EB/ [79], parallel deformation [10],
Training pose parameter manipulation [32], Jiang’s meth&{, [3DMM [13, 14], ELF [33], Linear
required shape model [76], DCCF [50], TFA [63], LLR [19], psrt fusion [42], LDA [7], real-view
matching [12], View-based AAM [25, 68].

Criteria 3: Computational complexity
PCA [43, 74, 75], LDA [7], LEM [27], DCP [28], Modar PCA [61], LBP [2], cylindrical 3D
pose recovery [26], probabilistic geometry assistRJ55], automatic texture synthesis [85].

Template matching [16], real-view matching [12], &CN [47], DCCF [50], parallel

deformation [10], ELF [33], pose parameter manipafa[32], TFA [63], LLR [19], composite
deformable model [48], view-based AAM [25, 68].dar shape model [76], expert fusion [42
Jiang’s method [38], MQVM [87], panoramic view [7¥}ereo matching [18].

High EBGM [79], 3DMM [13, 14], ICM [29, 30].
Criteria 4: Feature-based or appearance-based

PCA [43, 74, 75], LDA [7], LEM [27], DCP [28], Modar PCA [61], LBP [2], SOM+CN
[47], DCCF [50], parallel deformation [10], ELF [BIFA [63], LLR [19], EBGM [79].

Low

Intermediate

—_—

Feature-based

Higher-order | KpcA [66], GW-KPCA [54], GW-DKPCA [80], ESBMM-KFDA36], CFDA [82].
feature-based

Automatic texture synthesis [85], template matcHit®], real-view matching [12], pose

Qgg:;rance- parameter manipulation [32], composite deformabdel@h[48], view-based AAM [25, 68],
Jiang’s method [38], ICM [29, 30].
Hybrid Cylindrical 3D pose recovery [26], probabilisticageetry assisted FR [55], expert fusion [42],

panoramic view [71], MQVM [87], 3SDMM [13, 14].
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3 General Face Recognition Techniques and Their Sensitivitiesto Pose Variations

A typical face recognition problem is to visualtlentify a person in an input image through
examining his/her face. The first attempt to tlaiskt can trace back to more than 30 years ago
[41]. After that, a number of face recognition noeth have been proposed, among which
Principal Component Analysis (PCA, also known ageBfaces) [43, 75], Fisher Discriminant
Analysis (FDA, also known as Fisherfaces, Lineasddminant Analysis, or LDA in short) [7],
Self Organising Map and Convolutional Network (SOBN) [47], template matching [16],
Modular PCA [61], Line Edge Maps (LEM) [27], ElasBunch Graph Matching (EBGM) [79],
Directional Corner Point (DCP) [28] and Local BipdrPatterns (LBP) [2] are some of the
representative works. All of these methods attetm@xtract classification patterns (or features)
from 2D face images and to recognise input facegemabased on these patterns against the

known face images in the database.

3.1 Holistic Approaches
Kirby and Sirovich [43] used principal componentgsis (PCA) to efficiently represent

face images by a small number of coefficients gpoading to the most significant eigen values.
Turk and Pentland [74, 75] used Eigenfaces for thatection and identification. In particular, a
set of eigen vectors and eigen values were filsutated through principal component analysis
to form the eigen space of human faces (or “Eigeadg from a training face image set. The
gallery and probe images were projected to thisregpace and their eigen values are compared
in the recognition stage. The Eigenfaces approageas to be a fast, simple, and practical
method, which has become the most widely used fe@agnition technique. However, it does

not provide invariance over changes in poses amdesc Fisherfaces approach (or Fisher
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discriminant analysis, FDA) [7] was applied to eegsly provide the discrimination among

classes, when multiple training data per classaamslable. Through the training process, the
ratio of between-class difference to within-clagéedence is to be maximised to find a base of
vectors that best discriminate the classes. Thedsst-class difference is characterised using

between-class scatter mati® which calculates the summed differences betweasscmean
i and overall mearu . The within-class difference is represented asithinclass scatter
matrix S,, which calculates the summed differences betweenidual imagex, to class mean
MU . The generalised eigen vectors and eigen values tven computed to maximise the ratio of
S; to §,, expressed as§;w =AS,w, i =1...m, wherew are them largest generalised
eigen vectors andl, are the corresponding generalised eigen valuesmgUshis specific

projection method, the training and recognitionavperformed similarly to those of Eigenfaces.
To overcome the problem of within-class scatterrixdieing singular, the face images were first
projected using PCA to reduce the dimensionalitg fower level that FDA can handle. In this
case, it requires multiple gallery images per cl@esson) or FDA will be identical to PCA. As
holistic face recognition approaches, both FDA &@A are very sensitive to pose variations
[21], because in-depth rotations of 3D human fade®st always cause misalignment of image
pixels which are the only classification cluestfuese holistic approaches.

The attractiveness of using artificial neural natv@ANN) could be due to its nonlinearity
in the network. One of the first artificial neuratwork techniques used for face recognition is
the single layer network WISARD [72], which contaia separate network for each stored
individual. Lin et al. [53] used a Probabilistic @&on Based Neural Network (PDBNN) which

also used one network for one face and requiredipteiigallery images per person in training
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the network. Lawrence et al. [47] proposed a hybadral network, which combined local image
sampling, a self-organising map (SOM), and a camiahal network (CN). In this approach, the
SOM was used for dimension reduction which mapgh Hdimensional sub-image space (e.g.,
5x5=25) to a lower dimensional discrete space sgpted by nodes (e.g., 3 dimensional space
with 5 nodes per dimension). Each node is assiguéu a set ofn weights wheren is the
dimension of the sub-image. In training, the Besttdlling Unit (BMU) to each training sub-
image is found as the closest match. The BMU archtides around it are adjusted towards the
training data controlled by a neighbourhood functi®uring iteration, the neighbourhood
function will reduce its size gradually to zero wltée iteration time goes towards infinity. In the
feature detection and classification stage, a comemal network has been applied which
contains iterative convolution and down-samplingeta. Each convolutional layer containing
multiple planes is formed by convolving a fixed kelrwith the previous layer. Then the layer is
down-sampled by neighbour averaging. The planetheffinal layer have only one element,
which indicates the classification results. In gahehowever, neural network approaches
encounter problems when the number of classes ifdividuals) increases. For pose-invariant
face recognition, one individual may require selela@sses in different poses.

Edge information of faces can also be used for facegnition. A Line Edge Map (LEM)
[27] approach was proposed, which gives a distamezsurement between two line edge maps of
faces and performs face matching based on thossumesa The LEM of a face image is
generated by sequentially 1) extracting edges,hRining, and 3) polygonal line fitting. To
measure the similarity between two LEMs, a linensegt Hausdorff distance was introduced,
which computes two line segments’ distance as saat-square of three distance components,

i.e., parallel distance, orientation distance, gmetpendicular distance. Then the typical
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Hausdorff distance on point sets was extended tvld. Based on the defined individual line
segment distance. In recognition, each face image fwst converted to an LEM, followed by
matching probe LEMs against gallery LEMs using lihe segment Hausdorff distance. A face
feature descriptor, namely Directional Corner PODEP) [28], was proposed which is extracted
by detecting image corner points which are not seamely facial components. A DCP is
represented by its Cartesian coordinates and twextthnal attributes pointing to the point’s
anterior and posterior neighbouring corner poifitse distance of two DCPs is measured by
calculating the warping cost through translatiostation and opening/closing operations and
averaging the minimum warping costs as the disanityl score. Face image retrieval using
DCPs is generally economical for storage and robugtumination changes. Its robustness to
illumination changes is inherited from edge maps;anse a corner point can be considered as
the “edge of edges”. Both LEM and DCP are, howesensitive to pose variations, because in-
depth rotations always cause distortions of imatgeenaps which will affect the performances

of the methods using image edges as classificaatterns.

3.2 Local Approaches

For all of the above methods, the face recognitiecisions are made considering the entire
face images, which can be classified as holistar@gches. In contrast, local approaches only or
mainly consider a set of isolated points or regionghe face images and classification patterns
are extracted from a limited region in the face gmaTemplate matching provides an early
attempt to recognise faces by considering locabregrepresented in templates, which compares
input images pixel-wisely against a template (Ugultbm a gallery image) using a suitable

metric such as the Euclidean distance. BruneliRoglgio [16] automatically selected a set of 4
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feature template, i.e., the eyes, nose, mouth laa@dvhole face, for all of the available faces.
Within each template, the input image region is parad with each database image in the same
region through normalised cross correlation. The®geaition decision was made using summed
matching scores. One problem of template matchiegyih the description of these templates.
Since the recognition system has to be toleraogttain discrepancies between gallery and probe
images, this tolerance might average out the diffees that make individual faces unique.
Pentland et al. [61] extended PCA to Modular PCAP@A) to improve robustness of face
recognition. Instead of building a holistic eiggrase for the entire images, MPCA establishes
multiple eigen spaces around facial components.,(eges, nose, and mouth) to form
“Eigenfeatures” (Figure 1). Multiple fixed-size sudgions are first located through facial
component detection to the facial components (eyes) and only image pixels in the sub-
regions are considered in the Eigenfeatures prondsaining and recognition. Eigen values of a
face image are calculated separately in differend®regions which are then concatenated for
classification. The pose tolerance is achieved hmimating the effect of facial feature
misalignment under pose variations, at the priceegflecting some useful image patterns such as
freckles, birthmarks, and wrinkles which can bestdered in holistic approaches. As MPCA
relies on the predefined facial components (oralaf@atures), the feature detection is crucial to
this approach similar to other feature-based facegnition methods. In experiments, it didn’t
provide any test on face recognition across posetduhe difficulty of automatically detecting
facial components under rotated face images. Siypilather holistic recognition methods can
also become modular, such as modular FDA, withlamgains and losses. The local feature

extraction approaches can only alleviate pose tvansiin certain extent, because in local regions,
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image distortions brought by pose variations siist. The benefit of localising the image

matching is also at the cost of extra requireméf¢ature detections.

Figure 1 The Modular PCA builds multiple eigen sgm (eigenfeatures) in the regions of facial
components (e.g., eyes, nose, and mouth) to achasestolerances [61].

One successful local face recognition method isti€laBunch Graph Matching (EBGM)
[79], in which human faces were described usingdéalavelets in facial components (e.g., eyes,
nose, and mouth) and an extended Dynamic Link Aechire (DLA) [44] for graph matching. In
feature extraction, a Gabor jet on a point of a&famage was introduced as a set of 40 Gabor
wavelet coefficients obtained by convoluting 40 Grakernels with the local region around the
point. The jet similarity measurement of two Galjets was defined by multiplying the
magnitudes of the Gabor coefficients. These Gakatufes were used for both facial component
locating and recognition. In recognition, the Gafeatures were extracted on facial components
and the gallery and probe images was compared Ibylaang the similarity of the two sets of
Gabor jets. Despite of the expensive computatiddGHE outperformed holistic approaches on
the testing sets containing in-depth pose variatiamhich is largely due to Gabor features’
robustness against image distortion and scalinf [4969], elastic graph matching is extended

and modified to apply a further Fourier transform @abor wavelet coefficients to be used as
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features and to perform classifications using Kelbased projection discriminative analysis
(KPDA) to achieve pose and expression tolerance.

Ahonen et al. [2] applied Local Binary Patterns R)H60], a successful texture descriptor,
to the task of face recognition. The local patisraextracted by binarising the gradients of centre
point to its 8 neighbouring points pixel-wisely atids binary pattern is used as image features
for classification. Then the face image is dividiei several sub-regions (or patches) and within
each patch, the histogram of the local pixel-wiadgwns is calculated. Comparing two images,
the histograms are compared through calculatingghted Chi square distance, whose weights
are trained by separate recognition process ongéespatch. Though the LBP mainly focuses on
pixel-wise local patterns, the holistic informatisnalso considered by concatenating the regional
histograms into a single description over the entirtage. Compared to holistic approaches, LBP
is more robust to pose changes because it doesyqiire exact locations of patterns but relies
only on histogram (or existence) of the patterrairegion. In our experiments, it is found that
LBP can tolerate small pose variations and achparéect recognition rates when the rotations
are less than 15 degrees. When the rotation bectarges, however, the dividing face images
into regions becomes problematic, because of ttlsallghment of image regions (e.g., a face
region in a frontal image could become backgrouna i45° rotated image). A feature-based

dividing could alleviate this effect, given an acxte feature detection result.

3.3 Discussions
In this section, some representative methods of facognition have be reviewed with
attentions on their performances under pose vanstiThe methodologies in each stage of face

recognition are summarised in Table 6. More comepletviews on general face recognition
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algorithms can be found in [1, 21, 89]. In methadyl level, local approaches such as EBGM
and LBP are more robust to pose variations thaisttmhpproaches such as PCA and LDA. This
is because local approaches are relatively lessndiemt on pixel-wised correspondence between
gallery and probe images, which is adversely agfétty pose variations. Their tolerance to pose
variations is, however, limited to small in-depthtations. Under intermediate or large pose
variations, pose compensation or specific poseriant feature extraction are necessary and
beneficial. The performances of local-region-basethods, e.g. template matching and Modular
PCA, depend largely on the accuracy of facial canepd locating, which is also problematic on
pose variant face images. These methods are noelgniobust to pose variations, because

distortions exist in local image regions under pasgations.

Table 6 The methodologies of the general face mitog algorithms in each stage of face

recognition.

FR Stage

Approach

Region-based
representation

Feature extraction

Dimension reduction

Classification

Eigenfaces [74,
75]

Holistic

Pixel intensity

Principal component
analysis

Nearest neighbou

Fisherfaces [7]

Holistic

Pixel intensity

Linear discriminative
analysis

Nearest neighbou

Evenly distributed image

Convolutional

SOM+CN [47] patches Pixel intensity Self organising map network
- . Line segment ]
LEM [27] Holistic Line edge map Hausdorff distance Nearest neighbou
DCP [28] Holistic Losl dlre.ctlonal Minimum warping cost Nearest neighbou
corner points
Template Patches around eyes, nose Pixel intensit None Normalised
matching [16] |and mouth Y correlation
Modular PCA | Regions around eyes, nose Pixel intensity Pr|nC|p_aI component Nearest neighbou
[61] and mouth analysis
EBGM [79] Regions aroun-d 31 facial Gabor wavelet Normalised correlation Averaging
component points
LBP [2] Evenly distributed image chal gradient Histogram Weighted Chi
patches binary codes square
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For the evaluations of these general face recagnigigorithms, the experiments mainly
focused on recognition of frontal or near-frontaté images and few reports have conducted
thorough experimentations on face recognition acrpgse. Most experiments of holistic
approaches such as Eigenfaces, SOM+CN, LEM ardelimio 20 degree rotations, where
Eigenfaces yielded about 63% accuracy, SOM+CN’s ld8d’'s performances are above 70%.
These results show that small in-depth rotatiorecfthe performances of the holistic face
recognition algorithms adversely. Local algorithmere tested on datasets containing much
larger pose variations, e.g., EBGM was tested dna@ 90° rotated views in [7@9hd KPDA
was tested on +45° rotated views (mixed with otbmaller rotated views) in [69]. However,
their recognition rates are below 50%, which is flam the practical requirements. Table 7
summarises the advantages and disadvantages ef fées recognition algorithms in terms of
their pose tolerance. In the next two sectionsfdle recognition approaches explicitly handling
pose variations are reviewed. Section 4 discusBegéhniques that compensate pose variations

while 3D methods are reviewed in Section 5.
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Table 7 The advantages and disadvantages of theesentative general face recognition
algorithms to face recognition across pose.

Approach Advantages Disadvantages

Eigenfaces [74, | ... _Sensitive t.o pixel misalignmgnt, qannot separalte

75] '| Simple, fast image variances caused by identity and pose

variation

Fisherfaces [7] _I\/Iaxim_ising the separability of different Sensitive to pixel misaligpment, Iinear cl_asses
identities cannot adequately describe pose variations

SOM+CN [47] Fast, _tole_rance to pixel misalignment due t Lin(_aar mapping cannot adequately describe pose
guantisation variations

LEM [27] Simplg, no trai_ning and facial component Ser)si.tive to edge distortions caused by pose
detection required variation

DCP [28] Fast, no trainiqg and facial component Ser)si.tive to edge distortions caused by pose
detection required variation

Template Simple, Local regions around facial Sensitive to pixel misalignment in sub-image

components provide some tolerance to pose

matching [16] variations ”fegions, dependent on facial component detection

Simple, fast, local regions around facial

Modular PCA . |_Sensitive to pixel misalignment in sub-image
components provide some tolerance to posé . : _
[61] e fegions, dependent on facial component detection
variations
Local regions around facial components andSlow, distortions within local regions were not
EBGM [79] .
Gabor wavelet provide pose tolerance treated
LBP [2] Simple, histogram in local regions tolerates Image dividing is problematic when pose
pixel misalignment variation is large

4 2D Techniquesfor Face Recognition across Pose

Due to the observation that most of the genera facognition approaches are sensitive to
pose variations [21], a number of approaches haen lproposed to explicitly handle pose
variations. 2D techniques [10, 19, 25, 42, 71, &&] 3D methods [11, 13, 62, 63] were used to
handle or predict the appearance variations of Imufaees brought by changing poses. In this
section, 2D techniques are classified into threaigs, i.e., 1) pose-tolerant feature extraction [36
50, 61], 2) real view-based matching [12, 71], &®D pose transformation [10, 25, 32, 39].
Approaches based on pose-tolerant feature extraetitempt to find face classifiers or pre-
processing of linear/non-linear mapping in the imapgace that can tolerate pose variations. Real

view-based matching captures and stores multigeally a large number of) real views to cover
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exhaustively all possible poses for face recogniBeicause most of the face recognisers as
reviewed in Section 3 are robust to small poseatians (~15°), a certain level of quantisation on
the in-depth rotations is possible which can sigairitly reduce the number of real views. In case
there are only a limited number of real views (egreonly a single view) per person stored in the
database in which real view-based matching is nmdsiple, approaches using 2D pose
transformation alter the appearances of the knoage fimages to the unknown poses to

synthesise virtual views to help the face recogris@erform recognition across pose.

4.1 Real View-Based Matching

Despite of tolerating pose variations, one canvalyti compensate pose variations by
providing gallery views in rotation to recogniseated probe views. The natural way to realise a
face recognition system against pose variatiorthigidirection is to prepare multiple real view
templates for every known individual. Because galnf@ace recognition algorithms as previously
reviewed are able to tolerate small pose variati@g., 15 degree rotation), the number of
required real gallery images can be significarglyuced by quantisation on the in-depth rotations.
Beymer [12] designed a real view-based (RVB) faeeognition system using a template
matching of image-based single-view representatiGach input view was geometrically
registered to the known person’s templates by ukicgtions of eyes and nose, which were
automatically located by that system. The recograsguires 15 gallery face images to cover a
range of pose variations with approximatef0° in yaw and +20° in tilt as shown in Figure 2.
The recognition process is a typical template matchalgorithm with templates around eyes,
nose and mouth, while the only difference is thatatches an off-centred probe face image with

gallery face images in similar poses.
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Figure 2 The view-based recogniser using real sistores a certain number of face images
taken in different poses of the same person. [12]

Singh et al. [71] proposed a mosaicing scheme (fd$)rm a panoramic view as shown in
Figure 3 from multiple gallery images to cover fassible appearances under all horizontal in-
depth rotations. The panoramic (namely composii@y s generated from a frontal view and
rotated views in three steps, i.e., 1) view aligntn€) image segmentation, and 3) image
stitching. In the first step, views in differentges were aligned by coarse affine alignment and
fine mutual information based general alignmente Doundary blocks of 8 by 8 pixels for the
segmentation were detected using phase correlatioich were used as the connection regions
of the two views to stitch. A multi-resolution splhg was applied to straddle the connecting
boundary of the images and the splined images axgpanded and summed together to form the
final composite face mosaic. In recognition, thatkgsised face mosaics were used as gallery
and single normal face images in arbitrary pose® wetched using a face recognition algorithm
combining log Gabor transform, C2 feature extragt@nd 2-support vector machine. The clear
advantage of using face mosaics over virtual vigntleesis is the save of storage spaces, because

only a single image per person is required to calempossible poses. The proposed face
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mosaicing method, however, doesn’t actively compengose variations and the recognition
improvements are mainly contributed by 1) the usmwltiple gallery images in different poses,
and 2) the pose-invariance of the face recogndigorithm. In experiment, it was found that the
optimal combination of gallery images is frontalage plus left and right views in 40 degree
rotations. The main reason is that face recognitdgorithms can normally tolerate small
horizontal rotations and the input face images vmeagéched against the part of the face mosaics

for the nearest viewpoint.

Figure 3 The process of face image mosaicing [(&LE) three raw images in different poses, -
20°, 0°, 20° in yaw, (d) panoromic view mosaicednirthese three images, and (e) cropped
panoromic image used in recognition experiment.

In general, face recognition methods of real-viasdal matching require multiple real views
of each person as gallery. Either the raw gallergges or some transformations of them are
considered in recognition to cover possible posgatrans. These face recognition algorithms
then rely on the capability of general (non-fropti@ice recogniser in small pose tolerance to
match the probe views in arbitrary poses exhaugtagainst all gallery images or transformed

images, in hope that the closest appearance matchdito the same identity.

4.2 Pose Transformation in image space

As it is generally impractical or unfavourable tollect multiple images in different poses
for real view-based matching, a feasible altermat® synthesise virtual views to substitute the
demand of real views from a limited number of knowews (even from a single view). The
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virtual view synthesis can be undertaken in 2D spex pose transformation or in 3D space as
3D face reconstruction and projection. The virtuaw synthesis involving 3D models will be
discussed in the next section, while various 2Degoansformation methods are discussed in this
subsection, which include parallel deformation [1Ppse parameter manipulation [32], and
active appearance models [25, 39]. Besides, 2D frassformation was performed on a model
database containing image under different posd®witvirtual view synthesis in [58].

Beymer and Poggio [10] are probably the first redears to specifically handling pose
variations in face recognition. They proposed peraleformation to generate virtual views
covering a set of possible poses from a single plariew using feature-based 2D warping [6].
A 2D non-rigid transformation on a prototype faceni the real view in a standard pose to the
real view in a target pose was recorded. To syrgbesvirtual view of a gallery face (the face in
the database to be matched against) in the saget f@wse, the real view in the standard pose
was parallel deformed based on the recorded 2Bfsamation on the prototype face. Figure 4
shows a diagram of the process of parallel defaonatvhich synthesise a virtual image in the
target pose from 3 real images, i.e., an imagéenstandard pose of the gallery face, images in
the standard pose and the target pose of the ppetédce. Figure 4(a) and 4(b) are the prototype
face’s two real views in different poses. A pixdabe/ correspondence and a pose deformation
path (Figure 4e) are recorded by applying a grashased optical flow on the two prototypical
views. This pose deformation is then further defednfreferred as identity deformation) to the
gallery face based on the differences of the fawes in the standard pose between the gallery
face and the prototype face, which are achievea Inyanual feature-based 2D warping or an
automatic face vectorisation. Applying the deforntedformation on the gallery image in the

standard pose, a novel image in the target posbeagnthesised by directly taking the raw pixel
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intensity from the gallery image as the textureshef novel image. In this process, the recorded
non-rigid 2D transformation serves as the priorvdeolge of the class of human faces, which
provides reasonable predictions of the possible &upearances for rotated faces. 8 virtual views
were synthesised per person from an example vieabout 15 degree rotation away from the
standard pose and 6 virtual views were synthedisethirroring the corresponding face view
with respect to the vertical axis using face symmneatformation, covering -30 to 30 degree
rotations in yaw and -15 to 15 degree rotationilin Tested on a dataset containing 5 in-plane
rotated views and 5 in-depth rotated views per grersf 62 people, the proposed parallel
deformation achieved an accuracy of 82.2% using uaén labelled interpersonal

correspondences. When using the automatic facensation [11], the recognition rate was 75%.

(b) (d)

Figure 4 The process of parallel deformation.tf&) prototypical image in standard pose, (b)
the prototypical image in target pose, (c) theagglimage at standard pose, (d) the synthesised
novel image at target pose, and (e) the recordixirdation in prototype from the standard view

to the virtual viewy; . [10]
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Active Shape Model (ASM) originally proposed by @emo et al. [23] is one of the most
successful approaches in automatic face imageseptation [46], structure locating in medical
images [22] and face recognition [25]. In ASM, Ripal Component Analysis (PCA) was
applied on the locations of facial components (dagial contours, eyes, eyebrows, lips, etc.)
presented as connected point distributions fromaaety of manually labelled images (i.e.,
images with facial components marked on), contginiarious image variations such as pose,
illumination, and expression variations. The disitions of the eigen model parameters obtained
by projecting face shapes (represented as poitrtbdisons) onto this eigen space are then used
to exclude invalid shapes, e.g., a face shape wherenouth location is between those of eyes
and nose. To automatically adjust the point distrdn to the new face image, a local searching
strategy is applied on each point. First, a graei@sed local profile on the point is extract along
the local line segment perpendicular to the boundéarthe point. Based on the training set, an
average profile is calculated which captures tlealldexture variations around the point. This
profile, in adjustment step, is used to find theakton of that point in the new image whose local
profile best fits this reference profile. To enstine adjustment always follow the correct (or
valid) path, the adjusted point distribution is rtherojected onto the previously trained eigen
space. Those parameters whose values are larger3thaare set to3c which limits the
deformation of the point distributions within theald range of the assumed Gaussian
distributions of the prior shape knowledge.

Gonzalez-Jiménez and Alba-Castro [32] applied thiecept of ASM with manual facial
component locating to synthesise virtual views iffecent poses in their proposed Point
Distribution Model (PDM). PCA was applied on thedtions of facial components (e.g., facial

contours, eyes, eyebrows, lips, etc.) presentedP@bls and they argued that the second
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significant parameter is the “pose parameter” widchtrols the left-right rotations of faces. To
build this eigen space, a variety of manually llzkimages (i.e., images with facial components
marked on) are used as the training set. Findiadgdp principal components using PCA doesn’t
guarantee these parameters are specifically ptstederee from other variations, because these
variations are mutually dependent in 2D face imggace. Taking pose and expression as an
example, some kind of image variations such as niowement of mouth corners can be
explained by either pose variations (head tiltingexpression changes (smiling). To make the
most principal components more specific to poseatians, the training set is intentionally
chosen to include much more pose variations thiaeromage variations. The 2D transformation
was then achieved by only altering the pose pammietaving other personal information intact
as shown in Figure 5. A probe image is labellechwitprobe point distribution map (Figure 5a)
and the gallery image is also labelled with a ggligoint distribution map (Figure 5b). Both
distribution maps are projected on to the pointrifistion model (previously trained eigen space)
and the pose parameter of the gallery map is suteti by that from the probe map. Then the
synthetic point distribution map is recovered bagedhese parameters (pose parameter is from
probe while other parameters are all from the gglleso that the synthesised mesh preserves all
image information (e.g., identity) from the galléage except pose, which is from the probe face.
In this way, the pose variations are compensatedface recognition is performed using the
typical EBGM recogniser (i.e., Gabor wavelet + nalised correlation) on two images in the
same pose (e.g., probe). Tested on the CMU-PIBbds¢awith different 13 poses per face of 68
faces, their method achieved much higher recognitates than [10]. For example, to recognise
15 degree rotated views and 30 degree rotated \vins frontal gallery views, [32] achieved

accuracies of 99.26% and 95.59% respectively. Whermrotation angle increases, however, the
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recognition rates drop to 67.5% (45 degree rotataord about 20% (65 degree rotation). The
performance of the proposed method on face viewtewutilt (vertical rotation) hasn’'t been
reported, probably due to lack of training imagesilt from the CMU PIE database (the CMU-

PIE database contains three different tilt rotatjore., £10 and O degrees).
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Figure 5 The process of generating virtual facewgi from training and input images by
altering pose parameters and performing 2D imagping The pose parameter was extracted
from the mesh (shape) of the training image (b) #&meh replaced by the extracted pose
parameter from input image (a) to form a mesh kzet the same pose with input but the same
identity information with training (c). [32]

As an extension of ASM, Active Appearance ModelAKA [24] has been proposed to
simultaneously model the variations of shape regmesl by point distributions and textures
represented by pixel intensities. The shape vanativere obtained in the same manner of ASM,
using PCA on a training set of point distributiof®r texture variations, each image in the
training set was warped to a uniform shape (avepaget distribution) and the pixel intensities

were then analysed using PCA. With both shape arture eigen spaces, a new face was

represented by a vector of model parameters cdingdice variations based on the two eigen
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spaces, a vector of similarity transformation paetars controlling shape transformations, and a
vector of scaling and offset transformation pararsetcontrolling texture transformations. In
searching, all of the model, shape, and texturarmpaters were iteratively altered towards
minimising the differences of the reconstructecefanage and the real face image. Because the
AAM is based on 2D image transformation, the inttegtation (pose) cannot be decoupled
from the identity changes (face shape differend@®).further explicitty model in-depth pose
variations, a view-based AAM was proposed in [254 avas applied to face recognition across
pose in [67]. In view-based AAM, the model parameids approximated by a sum of triangular

functions of rotation anglé asc =¢, +C, cosé +C,sinéd, where(c,,c,,C, )were learned using

regression by estimating and giving@ in at least three different poses in the traings].
Estimating pose from a new image is then perfortnedalculating the rotation angt from the

estimated model parametérof the input image an¢t,,c,,C, Of the training set. In this process,

the inter-person differences containedCirare discarded and only the pose-related diffeence
are modelled. To synthesise virtual views in a p@se (e.g., frontal view) from an input image
in a certain pose (e.g., rotated view), the modeameterc was first estimated from the input
image and the closest matching image in the trgirdata was found by minimising the
difference of the two model parameters. Then thmtinmodel parameter was projected to the
AAM of the closest match. The residual of the mogalameters is retained to record the
identity-related difference and the pose-relateffiedince is altered by changiryto a new
value. This process is similar to that of the dataleformation where the closest match is served
as prior knowledge of the pose transformation, evttie difference lies in that the choice of the
reference face is unique in view-based AAM and teaby in parallel deformation. In [67],

frontal virtual views were synthesised using thisgess from a single non-frontal face image
31



(ranging within £25°) based on a view-based AAMrteal on three images per face (0°, £15°) of
40 faces. Then an adaptive PCA was applied onyhitaestic frontal face images for recognition.
On a face image set of 46 faces with 4 poses per (fl5° and £25°), the recognition achieved
63% identification accuracy which is higher thae tirect matching of rotated face with the

frontal gallery image.

Vetter [76] further extended the concept of AAM fieplacing the sparse point distributions
with a pixel-wise correspondence between two imagedifferent poses using optical flow. It
differs from the typical AAM in two aspects. FirgdD shape information is represented by a
dense point distributions and the dimension is amalple to that of a face image. Second,
different linear shape models are learned distriebtiin different poses where two models share
the same set of model parameters thanks to thstasse of a set of 3D scans. Specifically, a
linear shape model of dense point distribution8nspace was built using PCA on a set of 3D
training face shape. Then it was projected to wbffe poses to generate different linear shape
models in 2D image space, where a single set ofempdrameters can describe the 2D
projections in these poses of the same 3D shapaligio the linear shape model to new image,
optical flow was applied to establish a dense spwadence between the projected model shape
in the same pose and the input image, followedstiynating model parameters by projecting the
shape distribution onto the eigen space of thealinedD shape model. The same model
parameters were then used on the linear 2D shapelmo the target pose to synthesise new
shape in that pose. The texture mapping is sinolakAM, except that the model parameters of
texture model are independent to shape model. per@rent, the face recognition system using
synthesised face images in target pose achieve® Hifg¢uracy on 100 synthetic faces with 2

poses per face (24° in yaw as gallery and 0° abg)rdBecause the 3D face models were only
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involved in model establishment and the main steg in 2D image space free from 3D data,

this approach was classified as a 2D techniquedesadissed in this section.

Gross et al. [33] proposed Eigen Light-Field (ELRgthod to extend the capability of
Vetter's method of handling multiple gallery images different poses per face in face
recognition across pose. They unified all possatppearances of faces in different poses within a
framework of light field, which is in a 4D spac&t viewing directions and two pixel positions).
Assuming human faces as convex Lambertian obj#uts]ight-field was highly redundant and
consequently the light field coefficients were a$ated in different poses for the same identity.
In training stage, a set of face images in diffeposes of different identities were first warped t
a uniform shape based on a set of manually lodatdre points (e.g., eyes and mouth), where
each pixel corresponded to a unique pixel locaiiothe light field. The pose variant images
were represented by a single concatenated vectoedoh identity and principal component
analysis was performed on those concatenated geftton different training identities. Because
of the redundancy of the light-field, face imagasdifferent poses were represented using a
single set of eigen vectors and eigen values ttuoaphe variations due to identity changes. In
recognition, input images (gallery image and/orbgramage) were also warped and then
projected onto the established eigen space bysadgaare method instead of direct dot product,
because the dimensionality of input images is Uggahaller than that of the light field (image
dimension times number of poses). The recogniti@s when performed by comparing the
projected eigen coefficients from gallery imagegs§l probe image in Euclidean distance. This
algorithm was tested on CMU-PIE [70] and the FER&]] face databases. On FERET database
with 9 poses within £40° in yaw per face of 100escELF achieved 75% identification accuracy

using any pose as gallery image and the remainjngs8s as probe. On CMU-PIE database with
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13 poses within £62° in yaw and +20° in tilt pecdaof 34 faces, ELF achieved 66.3% accuracy.
This method also showed capability of improvingogmtion accuracy when more gallery
images were available. However, since ELF requaresstricted alignment of 2D image to the
light field space, it actually discarded face shageations due to different identity which was a
critical feature for face recognition. In this senthis ELF method is parallel to those methods

using generic face shape for pose recovery whidtb@idiscussed in Subsection 5.1.

Kahraman et al. [39] enhanced AAM'’s capability wsp tolerance by enlarging the training
set with synthetic pose variant face images. Ineposrmalisation step, they recorded
displacements of all landmarks of the AAM usingterence face and the landmark’s coordinate
ratios between rotated view and frontal view wessuaed constant when transforming from the
reference face to an input face. This assumptioalss similar to parallel deformation which
introduces the errors from different choices of teierence faces. Synthetic images in different
poses were then generated from single frontal imdge moving the landmarks along the
recorded displacements. A single AAM was trainedt@nsynthetic images covering 8 different
poses rather than multiple AAMs trained in diffdrggoses as done in [25]. Frontal and non-
frontal images within 45 degree rotations can thentransformed mutually by altering the
parameters controlling pose variations after the MMAvas aligned to each image. The
experiments of face recognition were conducted aleYB database but the focus is on
illumination tolerance, not pose tolerance. Thepps®ed modified AAM method advantages the
original AAM in the single training and alignmentopess for all poses, while it suffers from
incapability to handle larger pose variations beead#AM cannot be reliably aligned to rotated

views with occluded landmarks.
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4.3 Pose Transformation in Feature Space

Pose tolerance can also be achieved in featuree dpatead of the explicit image space,
where the feature-space transformed data cannweishelly displayed as face images as in the
image space. These transformations in feature spaeedesigned either to general image
variations (e.g., kernel tricks) or specificallygose variations (linear pose transformation). One
possible feature space transformation for facegmition is kernel tricks which nonlinearly map
face images into a higher dimensional non-lineatuiee space, so that the previously non-
separable distributions caused by pose variatiangdcbe (better) linearly separable. This is
supported by Cover’'s theorem [34], that nonlineadparable patterns in an input space will
become linearly separable with a high probabifithe input space is transformed nonlinearly to
a high-dimensional feature space. A number of Kdvased face recognisers were proposed to
perform face recognition or other pattern recognitiasks, such as various Kernel PCAs [54, 66,
80] and Kernel FDA [36, 82]. In [66], Scholkopf &t proposed a framework of performing a
non-linear PCA with kernel functions in high-dimersal feature space transformed from the
input image space. Liu [54] pre-processed the Fagiages with Gabor wavelets and extended
kernel polynomial functions to have fractional posven Kernel PCA. Xie and Lam [80]
proposed to train an eigenmask as an additionalekdunction to adjust the contributions of
different image pixels due to their importance d@criminative power), e.g., pixels around eyes
might be more important in face recognition thaheotpixels in cheeks so that they will be
assigned higher weights.

Huang et al. [36] proposed to automatically tundind optimal parameters of a Gaussian
radial basis function in their Kernel Fisher Disaimant Analysis (K-FDA) using an Eigenvalue-

Stability-Bounded Margin Maximisation (ESBMM) algihm. Experimental results on face
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recognition across pose were reported on Yale BawB and CMU-PIE database and showed
their method outperformed other algorithms such PEBA and KPCA. However, these
experimental evaluations are quite limited. Yaletdbase B contains only small in-depth
rotations whin 24 degrees and 10 different faceghvis not a convincing test bed for face
recognition algorithms claiming to have pose hargllabilities. In CMU-PIE database, the 13
face images of different poses are mixed with aoiadtl 43 images under different lighting
conditions, which diluted the test’s sharpness.granal. [82] proposed to perform FDA on the
KPCA transformed feature space and to differentiatgilar and irregular features based on the
singularity of the within-class scatter matrix. Thegular features were performed under the
standard FDA mechanism and the irregular feature® weated under PCA. Then the two sets
of coefficients were fused using summed normalistance for classification. The kernel tricks,
sometimes with Gabor filtering to extract localttee information, improved PCA’s or FDA’s
capability in handling pose variations. Howevers timprovement is limited due to the fact that
the actual nonlinear transformation forms causegdse variations are unknown. The existing
non-linear kernel functions only have random eHemt face recognition across pose, i.e., it may
equally possible to improve and to reduce the perémce and this effect is unknown before
experimental evaluations. The ideal pose transfoams, if they are known, could be unlikely
capable of being analytically formulated such ttiese transformations cannot be treated as
kernels in KPCA or KFDA.

To explicitly model the pose variations, researsh@pposed to train a linear transformation
based on a set of images under pose variationsata pose transformation free from identity-
related image features. Kim and Kittler [42] propdsa hybrid approach, expert fusion, fusing

four different systems to tolerate pose variationgace images for recognition. The first system
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is based on a linear pose transformation on PCAufes which are then classified using linear
discriminant analysis (LDA). The second system diameously trains linear transformation
matrix and the LDA system and uses raw image dateout the previous PCA feature extraction.
The third system applies generalised discriminaysis (GDA), which uses non-linear radial
basis function as pose transformation function® furth system applies a pose transformation
lookup table generated by rotating generic 3D fsltape. The first two systems belong to this
subcategory of linear pose-tolerant feature extractthe third system belongs to non-linear
pose-tolerant feature extraction (i.e., kernel-dasethod); and the last system is classified in 2D
transformation using a 3D generic face model. lnahese four systems are fused to form
single classification decisions in Euclidean disearassuming they are mutually independent.
After training on 170 people, the proposed fusepeets achieved 70% accuracy on 30 degree
rotated faces using single frontal views as galleny 125 different people from XM2VTS
database.

As the pose variation is a projection of 3D rigidnisformation onto 2D image space, the
global linear approximation is incapable of acceisatdescribing image variations caused by
pose changes, which results in unwanted distortinonsertain face regions. To alleviate this
problem, different localisations were proposed sashusing evenly distributed patches [19] and
using image regions around facial components [G6Bpse treatments are effective similar to
local approaches of general face recognition algms using evenly distributed patches (e.g.,
SOM+CN [47], LBP [2], etc.) or using image regica®und facial components (e.g., Template
Matching [16], Modular PCA [61], EBGM [79], etc.With the assistance of a generic
cylindrical face model, Chai et al. [19] proposedgenerate virtual frontal views from single

horizontally rotated views through Local Linear Regsion (LLR). In training stage, the face
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image was first divided into 10-30 evenly distribditpatches in terms of an average cylindrical
face model. In each patch, linear regression weeneed to minimise the sum-square of image
differences between frontal and non-frontal facages under a linear transformation. Then in
testing stage, the input non-frontal image was dlsaed into patches in the same manner and
each patch was transformed using the trained limaasformation matrix to form the appearance
in the frontal view. Finally, all reconstructed gla¢s were combined with a intensity averaging
of overlapped pixels to form holistic frontal vigiuwiews for recognition. On CMU PIE database
with a rotation within 45 degrees, the proposedhom@tshowed superior performance over Eigen
Light-field [33], achieving an average accuracypdf6%.

Prince et al. [63] proposed a linear statisticadelpTied Factor Analysis (TFA) model, to
describe pose variations on face images and achiestate-of-the-art face recognition
performances under large pose variations. The lymdgrassumption is that all face images of a
single person in different poses can be generatmd the same vector in identity space by
performing identity-independent (but pose-dependdéinear transformations. From a set of
training images in different known poses, the idgntectors and the parameters of the linear
transformations were estimated iteratively usindgedh algorithm. Figure 6(a) shows face image
distributions in the observed feature space, wisabither the raw space spanned by vectorised
image pixels or a transformed space after simpgeoedependent transformations (e.g., Gabor
wavelet or radial basis functions). In this spdbe, locations of pose variant face imageand
identity variant face images are mixed altogetisdrich makes the separation of identity from
pose variations infeasible. To effectively separdémtity from pose variations, an ideal identity
feature space is proposed and shown in Figure Bh3.identity space is spanned only by faces

of different identitiesh, free from pose variations. The relationship betwthese two spaces is
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under a linear transformation, which includes atiplitation F, an offsetm and a Gaussian
noise . Hence, a single poirtt in the identity space can be mapped to positionshiserved

feature space (e.gx, X,, and x,) under different pose transformations (exy.= Fh+ m+¢&,,

etc.), which represent different face images ofsdime identity in different poses. Because of the
inclusion of the offset and Gaussian noise, tmedr transformation can better model the actual
pose transformation projected to the 2D image splaae the linear transformation in Expert
Fusion [42]. However, the computation is more a&ading due to the nonlinearity of the noise
factor. The tied factor analysis approach also ragssua Gaussian distribution for the identity
space and these pose-independent identity vecters then used in face recognition through
Maximum A Posteriori (MAP) mechanism by choosing tiallery image which corresponds to
the maximum probability under this linear transfatimmn scheme. This approach has advantages
over applying fixed transformations before recagnit because the tied factor analysis explicitly
searches transformations to achieve pose-indepentiature extractions. Because the
transformation was limited to linear due to compoteal feasibility, it could be insufficient to
adequately describe pose variations which are maad transformations if mapped to 2D image
space. In recognition experiments, the estimatioidentity vectors were limited to two poses
only (the gallery pose and a single probe pose) @mdl00 faces from FERET database it
achieved accuracies of 83% for 22.5 degrees, 599%7®b degrees, and 41% for 90 degrees
respectively against frontal gallery images. Thégyenances were further improved to 100% for
22.5 degrees, 99% for 67.5 degrees, and 92% falegdees, when the algorithm takes local
Gabor data around manually labelled facial featumsgead of raw image data as input. This

result is consistent to the previous reports [&], that (1) Gabor features are robust to image
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distortions [49], and (2) local features are marbust to pose variations than global images as

discussed in the previous section.
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Figure 6 The explicit pose-dependent linear tramsétions and the pose-independent identity
vector in the tied factor analysis in [63]. (a) tire observed space (e.g., image space), pose
variant images of the same identity locate at tBffé locations which results in low performance
of face recognition across pose variations; (b) esnddentity-independent linear 2D
transformations, these images were traced backesame vector in the identity space which
represents solely the identity information frearirpose variations.

Pose transformation can also be approximated insfoamed space, other than in the
original image space. In this sense, the TFA amtrasing wavelet coefficients as the input data
also belongs to this subcategory. Besides, LevimteYau [50] compared five correlation filters
on face recognition in terms of their robustnespdee, illumination, and expression variations,
which all perform image transformations includingsp transformation approximation in Fourier
transformed frequency space. The best performedelation filter under pose variations,
Distance-Classifier Correlation Filter (DCCF) [5&chieved 79% recognition rate using single
gallery views on the USF 3D Human-ID database (3Bl-containing synthetic images of 50
people in 2050 different poses within 40 degreegim and 12 degrees in tilt. Similar to K-FDA,
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DCCF searches an optimal correlation filteto maximise a scatter cost functidigh) in a

Fourier transformed frequency space. Parallel té\ HDthe image space, the cost function is
defined as the ratio of a between-class scattesuneao a within-class scatter measure in the
Fourier transformed space. Applied to face recagmiicross pose, this mechanism is equivalent
to searching an optimal linear filter in frequerspace which best describes the pose variations
according to FDA classification criterion. This apach is nonlinear due to the involvement of
Fourier transform. Generally, correlation filtersed methods are more sensitive to pose
variations where nonlinear image distortion ocabesn other image variations (e.g., illumination
changes, expression, etc.) as shown in the expetsnoéd [50]. Because correlation filters are
linearly associated with a fixed nonlinear transfor(Fourier), this observation on face
recognition experiments could lead to a conclusibat pose variations cause severer
nonlinearity than illumination and expression vaoas do, at least in Fourier transformed space.
In this subcategory, various methods have beenogespto transform the image space to a
feature space where pose variation can be betemated, by 1) nonlinear mapping defined by
various kernel functions, and 2) pose specific dméransformation in image space, Gabor
coefficients, or frequency domain under Fouriemsfarm. Kernel-based methods rely on
predefined (fixed) nonlinear transform function dpproximate pose variations which are not
specifically adjusted to fit pose variations. Pagecific linear transformations tend to train
parameters from pose variant face images, which bmrused to specifically describe pose
variations. However, pose variations, when progdte 2D image space, are not exactly linear
transformations, because it contains a number ofusons and warps. Consequently linear
transformations are not capable to adequately ibespose variations in image spaces. One of

the possible directions could be the design of sepgpecific nonlinear transformation, which
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will better approximate image transformations cadubg pose variations, but will inevitably

result in more tractability and computation chajjes.

4.4 Summary and Discussions

The pose-invariant face recognition methods usidgeéthniques have been classified into
three groups, i.e., real view-based matching, posesformation in image space, and pose
transformation in feature space. The methodologii¢sese techniques have been summarised in
Table 8 and the advantages/disadvantages of differethods have been summarised in Table 9.
Real view-based methods are the most straight-faihwechniques in handling face recognition
across pose. They can make direct use of genemictassifiers discussed in Section 3 to match
input images with gallery images in the same rotgese. The performances of real view-based
matching methods are similar to those of frontakfaecognition using general face recognition
algorithms, because the only difference is its frontal matching. The limitation lies in that it
requires a relatively large number of real imagastured from all possible viewing directions,
which restrains them from practical applicationsac& recognition based on 2D pose
transformation in image space is a successful seidrrof the real view-based face recognition.
Instead of acquiring a large number of real imaggegallery views, these techniques synthesise
virtual views in possible poses from a limited n@nbf real gallery views (often from a single
gallery view) to substitute the real gallery viewish help of reference face(s) as prior knowledge.
The techniques used in virtual view synthesis dbeirdage transformations based on pixel
correspondence between the source images andr¢fet rmages. Assuming image continuity in
pose transformation, these techniques can effégtivendle pose variations within small to

median in-depth rotations usually limited to 45 @&s. However, large pose variations bring
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image discontinuities in the 2D image space soitlw@nnot be reliably handled within 2D space.
Under such circumstances, 3D approaches generatpjedorm 2D techniques and they are
reviewed in next section (Section 5). Another issu@ose transformations is the suboptimal
modelling of facial textures. Because pose vantiare always associated with the changes of
illumination, the same points on a face may appéerently in two face images taken from
different viewpoints. Most 2D transformation metkpdhowever, only considered shape
transformation by finding the corresponding pixbEween images and neglect that the pixel
values may change as well. Among the pose transttom methods reviewed in this section,
AAM and Vetter's linear shape model tend to acivelodel facial textures. The modelling of
facial textures is however in a linear interpolatrmanner, which cannot adequately approximate
the non-linear variations of reflected intensitiesm human face surfaces. An accurate yet
computationally feasible approximation of face auoe reflection may help to improve the
performance of 2D transformation methods in recsiggifaces across pose.

Pose transformations in feature space tend 1) phiditty improve linear separability of face
images under pose variations by non-linear mappm@ to recognition, and/or 2) to explicitly
model the pose transformation using linear apprations. The second strategy has the promise
to find a non-linear mapping and space best s@tbpose variations, while the current research
stage is primarily limited to fundamental mappinmdtions (e.g., radial basis functions). The
guestion of whether there is a feature space wimeated faces are separable is still open to the
research community. An answer to this question teag to a clearer understanding of pose-
invariant face recognition, similar to the findingt linear subspaces in illumination-invariant

face recognition [5, 8, 64].
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Table 8 The methodologies of the 2D techniquesdoe recognition across pose.

Approach

Pose tolerance and compensation

Face recognition algorithms

Real view
matching [12]

Multiple real views

Template matching

Mosaicing [71]

Panoramic view from multiple real views in diffeter
poses

Log Gabor transform + modified C2
features + support vector machine

Parallel
deformation [10]

Inter-person deformation + intra-person deformatig

across pose + double deforming the gallery view toTemplate matching

generate virtual views

n

PDM [32]

Facial components locating + PCA on point sets +
altering the second principal component to
compensate pose variations

EBGM matching

View-based AAM
[25, 68]

PCA on point sets and warped image intensities +
finding the closest matching model parameterseo {
input image + pose transformation in model
parameters with a residual

rAdaptive PCA

Linear shape
model [76]

Dense point distributions + 2D projections of 3D

linear shape model + pose transformation using 2D

linear shape models in different poses

Similarity measure using 1) correlatior

and 2) Euclidean distance

Eigen light-field
[33]

Feature-based warping image to uniform shape +
on concatenated image vectors in different poses
image projection onto eigen space using least squ
method

CPA
+HEuclidean distance on projected eiger
agoefficients of gallery and probe images

Pose Synthesising virtual views in different poses wdth

normalisation in |reference face + enhanced AAM training + standardCA, FDA

AAM [39] AAM searching

KPCA [66] Kernel functions Kernel principal component analysis

(KPCA)

GW-KPCA [54]

Fractional power polynomial kernel functions

Gabor wavelet + KPCA

GW-DKPCA [80]

Double nonlinear mapping in kernel functions

Trained weigh mask + Gabor wavelet
KPCA

E;?;?MM-KFDA Adaptive kernel functions Kernel Fisher’s discriminant analysis
CFDA [82] Kernel functions KPCA + KFDA and PCA + fused sumj

normalised distance

Expert fusion [42]

1) Linear pose transformation, 2) radial basis fiomg
3) 3D generic shape compensation

Fusion of 1) PCA + linear
transformation + LDA 2) generalised
discriminant analysis, and 3) linear
discriminant analysis

Fast Fourier transform + correlation

DCCF [50] Correlation filter in frequency domain filter + Inverse FFT + distance betwee
peaks
LLR [19] Evenly_distr_ibuted patches_ as input datf';l + linear FDA
approximation of pose variation on 2D image patc
Gabor wavelets on local regions around facial linear transformation + maximum a
TFA [63] components as input data + linear transformatidgh \

offset and noise factors

posteriori (MAP)
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Table 9 The advantages and disadvantages of tbe facognition algorithms using 2D
techniques in face recognition across pose.

Approach

Advantages

Disadvantages

Real view matching
[12]

Simple, straightforward, good
performance

Need to collect a large number of gallery imal
per person covering all possible poses

ges

Mosaicing [71]

Continuous pose coverage, single
panoramic view required

Distortions exist, no vertical in-depth rotation
(tilting)

Parallel deformation
[10]

Simple, fast, sharp, single gallery imag

Pose tolerance is small, the choice of referen
Sace is arbitrary

ce

PDM [32]

Simple, fast, single gallery image, goo
separation of pose and identity in
statistics

) .
Manual interference, performance largely

dependent on PCA training

View-based AAM [25,
68]

Considering both shape and texture,
single gallery image, intermediate pos¢
coverage

Searching is not always reliable, the choice d
creference image may introduce identity-relate
errors.

—h

Linear shape model
[76]

Detailed shape description, linking sha
variations in different poses

Automatic correspondence is not reliable on

pe . ;
non-feature points, many models are require

cover a range of poses

0 to

Eigen light-field [33]

Capable of handling multiple gallery
images, single eigen space for differen
poses

Discarding shape variations by warping whic
could be critical features for recognition

—

=)

Pose normalisation in
AAM [39]

Single AAM for all poses

The choice of reference face shape is arbitrary,

the pose normalisation assumption is coarse

Kernel tricks [36, 54,

Nonlinear transformation encapsulated

The existing kernel functions are not specific
pose variations, the choice of kernel function

66, 80, 82] dimension reduction, simple, fast L
are limited.
Nonlinearity by Fourier transform, Correlation filter cannot adequately describe
DCCF [50] R . . . .
translation invariant image variations caused by pose variations
Linear pose Linear transformation cannot adequately

transformation in
expert fusion [42]

Simple, characterising pose variations
using explicit transformation

describe image variations caused by pose
variations

Localisation alleviates inaccuracy of

Linear transformation cannot adequately
approximate pose variations even in local

LLR [19] linear approximation of pose . :
transformation regions, overlapping of patches may cause
problem
Consideration of noise factor and offsq Linear transformation cannot adequately
TFA [63] in linear pose transformation, localisati describe image variations caused by pose

around facial components

variations

5 Face Recognition across Pose with Assistance of 3D Models

Recently, face recognition with assistance of 3Ddet® becomes one of the successful

approaches, especially when dealing with pose Hmahination variations. The success of 3D

model-based approaches in handling pose variat®odege to the fact that human heads are 3D
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objects with fine structures and changes in viewsoall take places in the 3D spaces. The 3D
face models used in face recognition could be geB& shape models [26, 55, 85], personalised
3D scans [37, 40, 77, 83], and personalised 3D mageonstructed from 2D images [14, 18,
30, 38, 48, 86, 87]. Face recognition using persseh 3D scans belongs to 3D face recognition
and is out of the scope of this review, whose fosu2D image-based face recognition. We
redirect the interested readers to the excellerniewes specifically on 3D face recognition [15,
65]. Face recognition techniques using generic ehapnsider the uniform face shape as a tool
for the transformation of image pixels. Persondli3B face (shape) models can be reconstructed
using feature-based (Section 5.2) or image-basduhigues (Section 5.3). Feature-based 3D face
reconstructions [38, 48, 87] utilise facial featufe.g., eyes, nose, mouth, and etc.) extracted
from 2D images to predict the volumetric informatiof the input face. Image-based 3D face
reconstructions [14, 18, 30] consider facial tegtu(e.g., pixel intensities) as critical clues and

used them in reconstruction.

5.1 Generic Shape-Based Approaches

A simple and efficient pose recovery methodologyifidrical 3-D pose recovery) based on
a generic cylindrical face shape was proposed {@@jandle face images in small in-depth pose
variations. The face images in arbitrary horizonpalses were mapped onto the generic
cylindrical face shape and the frontal virtual véeean be recovered (Figure 7). Given a rotated
input image, this method first detected the locsiof two eyes, the vertical symmetric line, and
face boundary. By calculating the relationshipshef horizontal distances of eyes to symmetric
line and face width, the rotation angle can benestied by geometric transformations. Facial

textures were then mapped by transforming theedtatew to a frontal pose on a cylinder. In the

46



implementation, this process is integrated intogenaormalisation and the processing time can
be neglected compared to the rest of the proca@ss$ks recognition. Using LEM and Eigenfaces
as face classifiers, this pose recovery demonstredebe able to improve face recognition

performances under pose variations.

Figure 7 The pose recovery from a non-frontal vieva frontal view using a cylindrical face
shape. [26]

Liu and Chen [55] proposed a Probabilistic Geometsgisted (PGA) face recognition
algorithm to handle pose variations. In their aipon, human heads were approximated as an
ellipsoid whose radiuses, locations, and orientatiovere estimated based on universal mosaic
model. Then the facial textures of the image weaeped onto the surface of the ellipsoid which
became free from pose variations. Due to occludioa,visible regions of images in different
poses were different, so that a normalised pixskvizuclidean distance was used for recognition
which only considers the overlapped region of textire maps on the ellipsoid. A probabilistic
model was trained to assign different weights féedént pixels according to their discriminating
powers in recognition, which can further improve therformance of face recognition across
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pose. In experiments on CMU-PIE database with @pasd 34 faces, the probabilistic geometry
assisted face recognition algorithm achieved amageeof 86% identification accuracy. Yang

and Krzyzak [81] have recently incorporated thisrgetrical mapping technique into a complete
face detection and recognition system, where fatection is based on skin colour and pose

estimation is based on facial features.

Besides using simple geometries (e.g., cylinddipselid, etc.) as generic 3D face models,
Zhang et. al [85] proposed an Automatic TexturetBgsis (ATS) approach to synthesise rotated
virtual face views from a single frontal view fagcognition using a generic face shape model.
This face shape was generated by averaging 40 @Dsfaapes in range data format which were
aligned using two eyes’ locations. A gallery faneage was aligned using two eyes’ locations to
the 3D generic shape and standard computer graphicedure was applied to render virtual
face views in different poses. By considering diftand specular reflectivity of the face surface,
the texture mapping can generate simulated higtsligh the rotated face views. In experiment
on CMU-PIE database with one frontal gallery image one 15 degree-rotated probe image per

face of 40 faces, the ATS approach achieved 97d&#ttification accuracy.

Generally, 3D approaches are computationally comptenpared to their 2D counterparts.
However, approaches using generic 3D shapes dbawet this disadvantage. For instance, the
generic shape-based pose recovery method [26]rysefficient and the pose recovery step can
be neglected in the processing time. In this seesdniques using 3D generic shapes are very
similar to 2D pose transformation. The only differe is that the transformation space is no
longer the image space, but a non-linear spacefigaeby the 3D generic shape. Despite of their
simplicity and efficiency, techniques using 3D gemeshapes suffer from the incapability to

preserve inter-personal shape difference, whicanigmportant feature for face classification.
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Under a relatively large pose variation, the ddéfeses between the generic shape and the
individualised shape usually result in a decredseangnition accuracy. Due to this aspect, other
3D approaches try to build personalised 3D fac@peaha@ven though it could be computationally

demanding.

5.2 Feature-Based 3D Face Reconstructions

3D reconstruction is an active research area inpcoen vision, which inversely estimates
3D shape information from 2D images. Generalised@tonstruction considers all of the shape
modelling, the surface reflectivity descriptionsdahe estimation of environmental parameters
(e.g., lighting conditions). The clues for reconstmg 3D objects in 2D images are usually
image features (e.g., edges and corners) and imsggesities. In the context of face recognition
through 3D reconstructions, these two groups aatufe-based 3D face reconstructions and
image-based 3D reconstructions, respectively. Fedtased 3D face reconstructions [38, 48, 51]
reviewed in this subsection estimate personaliseg Shapes from the 2D locations of facial
features (facial components such as eyes, nosandtanage features such as edges or corners).
Other 3D face reconstructions use image intensatigsthe reflectance models to extract shape
and/or texture information from 2D images, in whictore complicated processing is usually
involved. These image-based reconstructions willdy@gewed in the next subsection (Subsection
5.3).

Lee and Ranganath [48] presented a composite 3Drrdable face model for pose
estimation and face synthesis based on a tempdditendation which maintained connectedness
and smoothness. Three sub-models of edge modeljrcadgion model and a wire frame model

were deformed correspondingly in minimising a dosiction consisting of edge fitting errors,
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colour region displacements and deformation energg. edge model defines the outlines of the
face as well as various facial features such agyebrows, eyes, nose, mouth and ears. In the
colour model, seven facial regions with colour mfation were considered. The regions were
eyebrows, eye, nostrils and mouth. In the wire amodel, the face surface was divided into
100 triangles, which are defined by 59 verticesoVercome false convergence on local minima,
multiple evenly distributed models were assignedhat initial stage and the model with the
lowest cost was chosen as the initial model. Theypigal gradient descent method was applied
for minimisation of the cost function. Using fivemages of the same person with different poses,
a complete 3D face model for the person can bergete The model was transformed to novel
poses and scales by rigid 3D rotation and the alifiextures were synthesised by estimating an
optimal set of coefficients on a linear texture cgaspanned by training images to best
approximate the input image. The recognition was therformed by comparing the synthesised
image with the probe real image pixel-wisely in kdgan distance. In experiments on a dataset
of 15 faces with 11 different conditions per faéeppses + 3 lighting + 2 scales), it achieved
56.2% recognition accuracy using a single gallerggge per person and 92.3% accuracy using 10
gallery images per person. For the latter experirsetting using 10 gallery images per person,
the pose-invariant face recognition algorithm wagrdded to real view-based matching as the
number of gallery images (10) is almost equal tortbmber of testing conditions (11).

Jiang et al. [38] used facial features to effidgméconstruct personalised 3D face models
from a single frontal face image for recognitiorhelr method is based on the automatic
detection of facial features on the frontal vievesng Bayesian shape localisation. A set of 100
3D face scans was used as prior knowledge of hdatas. Facial features on both input images

and 3D scans were used to find principal componainfigsce shapes on the shape spaces spanned
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by the training 3D shapes. Personalised 3D facpeshaere reconstructed and the facial textures
were directly mapped onto the face shape to syisthesrtual views in novel conditions as
shown in Figure 8. Because the facial featurebialle semantic meanings, this method is also
capable to synthesise virtual views with differerpressions through changing locations of the
facial features on the reconstructed 3D modelsCOItJ-PIE database, the method was shown to
improve both PCA and LDA recognition algorithmspesially for LDA in half-profile views.
This method, however, cannot effectively improve tlecognition performance of near-profile
views, due to the unreliable synthesis of the profirtual views. This indicates that the facial
features on the frontal views are not associated thie height information of face shapes. For
instance, a narrow nose may or may not be higler shbroad nose. Therefore, a side view per
person is desirable for more accurate estimatiah@fsurface heights of the face. Compared to
the composite deformable model [48], this modeldutbe distributions of facial feature points
on training face shapes as the space for new simjtes to project onto. Composite deformable
model, on the other hand, didn’t consider suchrgkimwledge and limited shape variations by
introducing a general deformation cost defined byefy geometric changes of the 3D model.
Such a deformation cost might be inappropriate @$cdbing face shape variations due to
identity changes. Jiang’s method limited the idgntlated shape variations within a training

distribution by introducing a fairly complicatecining mechanism.
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Figure 8 The process of 3D reconstruction and végwnthesis in [38]. 100 3D faces with
labelled images were used to relate 3D structutk 8D facial features. Neutral frontal images
were automatically labelled and 3D structures wesemated using the prior knowledge from
100 training faces. Then the 3D structures witht@Qures were altered to generate novel virtual
views in different poses, illumination conditiorad expressions and these views were used as
models in recognition.

Using two orthogonal gallery images per face, Zhangl. [84, 87] proposed to reconstruct
the personalised 3D face shape by using Multi-l€ughdratic Variation Minimisation (MQVM).
From a 3D feature point set manually specifiedlanftontal view and side view of an input face,
the 3D face shape was reconstructed from scratcimibymising a cost function of quadratic
variations of 3D surfaces which ensures a secoder@moothness. This process was performed
in a hierarchical manner to overcome the sparsesfetse facial feature points on facial images
as shown in Figure 9. Specifically, the global chsiction was defined as the second order
smoothness of the surface, which was expresse@acnind partial derivatives on the x and y
coordinates. Face shapes represented as vectasverged in seeking the minimal of the cost
function while maintaining the facial feature pairmin the right locations specified on the frontal

and side-view gallery images. This process staied coarse resolution which reached the

convergence quickly and provided a good initialpgh#or the next resolution level. Finally, a
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pixel-wise 3D surface model was reconstructed ie fimest resolution level. After shape
reconstruction, this method analysed facial texguog fitting the pixel intensities in Phong
reflection model in considerations of face shapd bghting directions known a prior. Then
virtual face views in different poses were syntbediand local binary patterns (LBP) were used
for recognition in a view-based manner. In expertmen CMU-PIE database containing 13
poses per face of 68 faces with frontal lightinigistmethod achieved 93.45% recognition
accuracy on 11 testing poses using two poses @ramd side-view) as gallery. Compared to
[38], MQVM used two views in different poses for 3Ace shape reconstruction which is
beneficial to face recognition across pose, becansadditional view in a different viewpoint
will provide more shape information otherwise unklde from a single viewpoint. This
extension, however, put an additional requiremenmt face database which might limit the

applicability in general face recognition scenario.

Figure 9 The hierarchical process of Multi-leveld@ratic Variation Minimisation in [87]. (a, d)
Reconstructed shape in coarse resolution, (b, mténmediate resolution level, and (c, f) in fine
resolution.
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In feature-based 3D face modelling approaches s&&tli above, personalised 3D face
shapes were reconstructed from a set of facialfeatspecified on facial images. The use of
prior knowledge as in [38] helps the systems taicedthe number of gallery views required.
However, the prior knowledge of human face shapesidlly obtained by analysing a set of
existing face shapes) will be unreliable if theunface shape is very different from the average
shape, which causes the shape deformation torfatbnverging to a plausible reconstruction
result. Because the facial features are usuallgssgabout 100 points can be specified compared
to 10,000 image pixels on 100x100 face images)y the unlikely capable of providing
sufficient information for fine structure recongttion such as eye balls and lips. A pixel-wise
feature set should be used to achieve better regcatien quality which will be discussed in the

next subcategory of image-based reconstruction.

5.3 Image-Based Reconstruction

Image-based 3D face reconstructions carefully sthdyrelationship between image pixel
intensities and its corresponding shape/texturpeatees. From a set of pixel intensities, 3D face
geometry and face surface properties can be esiimaging appropriate reflectance models,
which associate shape and texture information veflected intensities. Unlike feature-based 3D
face reconstructions’ limited use of a few featuoesthe face images, image-based 3D face
reconstructions make use of almost every pointhenface images and it is thought to closely

resemble the reality of reflections.

Blanz and Vetter [13, 14] proposed a successfuk faecognition system using 3D
Morphable Model (3DMM) based on image-based recansbn and prior knowledge of human

faces. The prior knowledge of face shapes and rextwas learned from a set of 3D face scans
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where pixel-wised inter-personal correspondence b@eh established using 3D version of
optical flow on 3D surfaces. Then shape and textoi@mation in the forms of vertices and
diffuse reflectance coefficients was spanned intffer@nt eigen spaces where principal
component analysis was performed to form a 3D madsfghmodel. The morphable model was
then fitted into a single face image in an arbytraondition by iteratively minimising pixel
differences of image intensities and reconstrugigdal intensities using the set of parameters
controlling the variations of shape, texture, ilination, pose, specularity, camera parameters,
etc. Using stochastic Newton optimisation methbeé, process first makes use of several facial
features defined on both image and 3D model todimdugh alignment and then relies more and
more on the comparison of pixel intensities. Thaen@pal components of shape model and
texture model were obtained in this process whiels then used to reconstruct personalised 3D
models and used for recognition using a modifieguéar (dot product) similarity measure based
on linear discriminative analysis. The recognitiwas then performed using the extracted shape
and texture parameters between gallery and prol&hasn in Figure 10. In experiments on
CMU-PIE database with 3 poses (0°, 15°, and 6§&iv) by 22 illumination conditions per face
of 68 faces, the recognition has achieved 92.1%gusne of the 66 (3x22) images as gallery and
the rest as probe for each person. On FERET datakiéis 9 poses ranging within +40° in yaw
per face of 194 faces, the recognition algorithimexed 95.8% using frontal view as gallery and

the rest as probe.
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Figure 10 The process of face recognition basedmorphable model [14]. The shape and
texture prior knowledge characterised by principainponents was learned from a database of
3D face scans. 3D morphable model was then fittesirigle input images for both gallery and
probe. Personalised shape and texture coefficigmts @ and B respectively) were extracted

which are free from external pose and illuminatbmmditions. These identity-related parameters
were then used in recognition.

Gallery

Georghiades et al. [30] proposed Illumination Caviedels (ICM) which successful
performed face recognition under pose and illuniimatvariations using the techniques of
photometric stereo. Their method is based on thetfat the set of images of an object with
Lambertian surfaces in fixed pose but under alkids illumination conditions is a convex cone
in the space of images. From a set of frontal fa@ges under different near frontal illumination
conditions, personalised face shape and surfadectafice information was reconstructed by
minimising the difference of the input gallery facseages and the corresponding rendered
images associated with surface gradients and tiefteproperties. The procedure sequentially

estimates lighting conditions (i.e. light directsoand intensities), surface gradients, and diffuse
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reflectance coefficients and gradually convergesrnooptimal solution in a least square sense
using singular value decomposition. Virtual viewsniovel illumination and viewing conditions
were then synthesised and used in face recogrtitianatch the probe image with the closest
virtual images in sampled poses and illuminatidreir recognition approach was tested on the
Yale Database B consisting 4,050 images of 10 faceker 45 illumination conditions x 9
different poses (£24° in-depth rotation). It acleév96.25% recognition accuracy using the
frontal image as gallery and other 8 poses as probes approach relies only on the pixel
intensities from multiple images under differerghliing conditions and a fixed pose and the
reconstruction process doesn’t require any formpobr knowledge of human faces. The
assumption of Lambertian surfaces, however, catilsseconstruction results to have a bas-
relief ambiguity [9], i.e., the reconstructed shaged estimated lighting are not unique. To
resolve this ambiguity, certain forms of prior krdedge on human faces are used such as left-
right symmetry, similar heights of forehead andn¢laind relationship of the surface heights and
width.

In [31], the illumination cone model was extended ibcorporating Torrance-Sparrow
model [73] into the process of 3D reconstructionhofman faces to resolve the bas-relief
ambiguity [9] associated with photometric steremgd ambertian model [45]. Using the results
of [30] as the initial estimate, the differencetbé real face images and the rendered images
using the estimated parameters based on a singpliii@rance-Sparrow model was minimised
using the steepest descent method. This algorihable to inversely estimate a set of spatially
varying diffuse reflectance coefficients with afenm specular reflectance coefficient, while the
estimation of a full set of spatially varying reftance coefficients remains open. Tested on the

same experiment setting as in [30], the face rdoactson method using Torrance-Sparrow
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model achieved slightly higher recognition rateantlthe method based on Lambertian model.
Other directions of the photometric stereo in fes@gnition include introducing a more general
illumination model, i.e. spherical harmonics [5,] &hd representing different faces within a
single class [91].

Besides photometric stereo which reconstruct faodets from a set of 2D images in the
same pose under different lighting conditions,estarision techniques can also be applied which
reconstructs 3D face models from 2 face imagesifierdnt poses. Castillo and Jacobs [18]
proposed to use the cost of stereo matching okryafiace image and probe face image to
recognise faces. The stereo matching algorithm usekis method defined four planes which
were left and right occluded planes and left arghtrimatched planes. It involved fourteen
transitions such as state preserving transitiorts mtween state transitions. The cost of the
stereo matching is defined as the sum of all theclmag rows of the first image (say left) to the
second (right) image. Exhaustively performing steretching using every view in the gallery to
the probe image, the match was selected when toieofostereo matching was the smallest.
Tested on PIE database with 13 poses per face ofa&és, this method achieved 73.5%

recognition accuracy using any one pose as galeaythe remaining 12 poses as probe.

54 Summary and Discussions

In this section, face recognition approaches wgbistance of 3D face models have been
reviewed. These approaches have been classifiedhrge subcategories, i.e., 1) generic shape-
based approaches, 2) feature-based 3D reconstrsicaod 3) image-based 3D reconstructions.
Compared to 2D approaches discussed in Sectiob 4pproaches try to approximate the image

variations caused by pose variations in 3D spaberahan limiting them within the image plane.

58



The different methodologies are summarised in Tdlfle The simplest strategy is to apply a

uniform (or generic) face shape to approximateoteriface shapes, which give these generic
shape-based approaches the benefit of efficienoyender, each individual face shape may
deviate from the generic face shape greatly duatiypersonal face shape differences, which
cannot be overcome by improving the generic sh@masequently, image distortions exist in

these recovered face images in different poses;hndiifect the performance of face recognition

across pose.

To better approximate face shape, personalised 88ets were reconstructed from a set of
facial features (feature-based) or from pixel-wisege intensities (image-based). Generally,
feature-based reconstructions require feature pordting, which is always based on image
contents. For instance, edge information was usedeatures in [48] and was extracted by
comparing the neighbouring pixels’ intensities. tdeaxbased reconstructions limit the use of
image intensities (textures) in 2D image plane xtraet features for reconstruction, which is
efficient and simple compared to considering imagensities in 3D space of image-based
reconstructions. However, facial features are spamsmpared to face image dimension.
Consequently the feature-based reconstructionsatar@ost accurate near facial features and
could be inaccurate in other non-feature regionsabge they are usually interpolated from
adjacent facial features. Image-based reconstngtiely on pixel-wise appearances of face
images to reconstruct 3D face models, where theatein mechanism of human face surfaces is
crucial. These approaches are generally capaldersrating more detailed face structures than
feature-based reconstructions, because each paslbben considered in reconstruction. The
price is more complex procedures and sometimesliabiéy. Table 11 summarises the

advantages and disadvantages of the above discaigpsuzhches.
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Table 10 The methodologies of face recognitiomwidigms with assistance of 3D models.

Approach

Pose tolerance and compensation

Face recognition
algorithms

Cylindrical 3D pose€
recovery [26]

Pose estimation using facial components and geBErishape +
texture mapping by pose transformation on cylirarghape

Eigenfaces, LEM

Probabilistic
geometry assisted
FR [55]

Pose estimation using universal mosaic modellingxture
mapping by pose transformation on ellipsoid shape

Weights assignments usin
probabilistic models +
normalised Euclidean
distance

Automatic texture
synthesis [85]

Texture mapping by pose transformation on averdaesl shape
+ reflection analysis and synthesis on Phong model

View-based PCA

Composite
deformable model
(48]

Fitting a deformable model to input image by mirsimg fitting
error and deformation cost + texture coefficientditearly
projecting the input image on gallery image texture

Nearest neighbours on the
estimated texture
coefficients

Jiang’s method [38

Constructing an eigen space on training 3D faceaisod
Projecting 2D input point distribution on the suasp of the
eigen + Reconstruct 3D point distribution on eigpace of 3D
points + direct texture mapping

Linear discriminant analysi

Multi-level
Quadratic Variatior
Minimisation [87]

Reconstructing 3D shape by minimising surface roegh
controlled by facial feature points + extractingttee
coefficients by fitting input images to Phong model
synthesising virtual views by rotating 3D model agherating
virtual textures

Local binary patterns

(2]

3D Morphable
Model [14]

Training shape and texture eigen spaces on 3Detatasigning
3D morphable model to 2D input image by minimising
weighted sum of feature displacement, image dissiityi and
external parameters variations from their averagestracting
shape and texture model coefficients

Modified dot product on

shape and texture model
coefficients based on lineg
discriminant analysis

Illumination Cone
Model [30]

Extracting surface normals and reflectance coeffits from
front images under different lighting + integratyilenforcement
to reconstruct 3D surface from normal directionsrtual view
synthesis in different poses and lighting

View-based exhaustive
searching in all possible
virtual images in Euclidearn
distance

Stereo Matching

[18]

Align images according to epipolar geometry + siaratching
+ extracting matching cost

Nearest neighbour of the

matching cost
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Table 11 The advantages and disadvantages ohtlerécognition algorithms with assistance
of 3D face models in face recognition across pose.

Approach Advantages Disadvantages

Cylindrical 3D pose Inaccurate face shape

recovery [26] SIEE, S approximation

Probabilistic

. . - Inaccurate face shape
geometry assisted H Simple, efficient R
[55] approximation
Automatic texture : : . Rigid face shape approximation
synthesis [85] Simple, facial textures were approximated doesn't fit to all faces
Composite
deformable model |Personalised 3D face shape was reconstructed Datiormis arbitrary
[48]

Texture mapping doesn't consider

Jiang's method [38]| Efficient, deformation is basedface shape variations 2
appearance variations

Multi-level
Quadratic Variation
Minimisation [87]

No prior knowledge is required, two gallery views Requires manual locating of facial
provide better 3D shape information features

Only single image is required for reconstructioothb Unstable, identity-related shape
3D Morphable shape and texture modelling are based on prior and texture coefficients were
Model [14] knowledge of shape and texture variations, recoottm | affected during cost function

is performed pixel-wisely comparing image intersti | minimisation

Requires multiple images under
lllumination Cone | No prior knowledge is required so that identityatetd | certain restrictions, surface

Model [30] parameters were preserved approximation discarded specular
reflection
Image-based matching doesn’t
Stereo Matching [18 Simple, single gallery is required consider appearance changes due

to pose variations

Though image-based reconstructions often involvengiex processing in considering
reflection of human faces, they made the most fismage information by exhaustive treatment
of all image pixels. Compared to feature-based nsiractions which at best can guarantee
accurate reconstruction around facial featuresgexzased reconstructions have the potential to
achieve pixel-wisely accurate reconstruction resufieature-based reconstructions also suffer
from the inaccuracy of feature detections, whiladiee detection is no longer required in image-
based reconstructions. Because image-based 3Dsteections consider pixel-wise reflection
mechanisms in estimating shape and texture infeomathey are generally more sensitive and

consequently vulnerable to image variations, suehsl@adows and spatial misalignment. To
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alleviate spatial misalignment, 3D morphable magsdd a feature-based approach as the initial
stage of the 3D reconstruction, and illuminatiomeanodel requires rigorous alignment of
multiple photometric stereo images under a fixenhwgoint.

The reflection mechanism of human faces is cruoi@nage-based 3D face reconstructions.
In contrast, existing approaches tend to make sstphpproximations on face surfaces. Most of
existing methods assume face surfaces as Lambestidaces, which only consider diffuse
reflection and neglect specular reflection. In faotiman faces reflect both diffusely and
specularly and reflectance models beyond Lamberagasumption should be taken into
considerations to achieve better reconstructiofiopeance by making more realistic surface
approximations. In feature-based 3D face reconstmc the texture estimation is also
suboptimal by primarily using the Lambertian asstiorpto approximate human face skins.
Similar to 2D pose transformation, image intensité real views are usually directly mapped
onto the reconstructed 3D shape without considetirggintensity variations caused by pose

changes.

6 Conclusionsand Further Discussions

As the prominent problem in face recognition, peagation received extensive attentions
in the research community of computer vision antepa recognition. A number of promising
techniques have been proposed to tolerate andfop@&asate image variations brought by pose
changes. However, achieving pose invariance in facegnition still remains an unsolved
challenge, which requires continuing attentions afidrts. This paper first reviewed these
techniques, providing a comprehensive survey aiti¢alrdiscussions on major challenges and

possible future research directions towards pogarant face recognition. This paper started on
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discussions of the problem of face recognition seneose, with elaborations on the challenges,
current evaluation methodologies, and performamdedifferent approaches. Face recognition
techniques relevant to handling pose variationsevileen classified into three broad categories,
i.e., general algorithms, 2D techniques and 3D @ggres. Representative general algorithms
have been reviewed with an emphasis on their $etist to pose variations. 2D techniques and
3D approaches which actively compensate pose \@rg@ahave been comprehensively reviewed
in the last two sections with discussions on thdirantages and limitations.

Based on this review, several insights are sumedias follows. Prior knowledge of human
faces plays an important role in handling poseat@ms in face recognition, especially with
limited gallery images (e.g., one example gallempge per person). The image variations caused
by pose changes can be learned from known facesisnagmodels in the 2D and 3D approaches,
which are then applied to new input image(s) tousate real pose transformations. The
inclusion of this prior knowledge often requirestensive trainings and the performance is
dependent on training data. The techniques withpoigr knowledge of human faces usually
don’t need any training process, which rely onlytba available gallery images. Consequently,
these techniques could better preserve discrinvad¢iatures of the gallery images, free from the
influences of the training data. Due to the insudint information provided by the 2D gallery
images, however, these techniques usually requine riihan one gallery image to successfully
compensate pose variations.

3D face recognition approaches can generally hatatiger pose variations than 2D
techniques. Because pose variations are 3D tranafmns rather than 2D image
transformations, 3D approaches are more promisin@dhieve better performance in face

recognition across pose. The existing 3D face rgticoction methods made suboptimal surface

63



assumptions on human faces, which affects the sdaarion results. The most common
assumption is Lambertian assumption, which onlysaters diffuse reflection of faces. Studies
in human skins show specular and diffuse refleotigi of human faces are both histological
characteristics different from person to personcivtuan be and should be used as discriminating
parameters in face recognition.

On the other hand, a comprehensive consideratidneoftomplicated face surface reflection
mechanism and external lighting parameters brieg®ss ill-conditions to 3D face modelling,
because the number of unknown parameters is exeessid the problems are intractable.
Several attempts have been made to extend Lambegsumption to include specular reflection,
at the price of resolving non-linear optimisatiamiems. These early attempts towards precise
descriptions on face surface reflection are ontyited to coarse approximations of specular
reflection, while ignoring other factors such agerrreflections and subsurface scattering. It is
still an open question on how to incorporate thesmaplicated image formation approximations
into face recognition to improve its pose toleramddle keeping the problem tractable. The
potential solutions towards this direction relylmoth better image formation models specifically
suitable to face modelling and task specific corapahal tools that reliably and efficiently solve
non-linear optimisation problems.

The strategy of nonlinear mapping has the pronmoséntd a feature space best suitable to
pose variations, while the current research stagedliminarily limited to fundamental mapping
functions (e.g., radial basis functions). The qgoestf whether there is a feature space where
rotated faces are separable is still open. An answehis question may lead to a clearer
understanding of pose-invariant face recognitioobfam, similar to the findings of linear

subspaces in illumination-invariant face recogmitio
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