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Abstract  

One of the major challenges encountered by current face recognition techniques lies in the 

difficulties of handling varying poses, i.e., recognition of faces in arbitrary in-depth rotations. 

The face image differences caused by rotations are often larger than the inter-person differences 

used in distinguishing identities. Face recognition across pose, on the other hand, has great 

potentials in many applications dealing with uncooperative subjects, in which the full power of 

face recognition being a passive biometric technique can be implemented and utilised. Extensive 

efforts have been put into the research toward pose-invariant face recognition in recent years and 

many prominent approaches have been proposed. However, several issues in face recognition 

across pose still remain open, such as lack of understanding about subspaces of pose variant 

images, problem intractability in 3D face modelling, complex face surface reflection mechanism, 

etc. This paper provides a critical survey of researches on image-based face recognition across 

pose. The existing techniques are comprehensively reviewed and discussed. They are classified 

into different categories according to their methodologies in handling pose variations. Their 

strategies, advantages/disadvantages and performances are elaborated. By generalising different 

tactics in handling pose variations and evaluating their performances, several promising 

directions for future research have been suggested. 
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1 Introduction 

As one of the most important biometric techniques, face recognition has clear advantages of 

being natural and passive over other biometric techniques requiring cooperative subjects such as 

fingerprint recognition and iris recognition. To benefit from the non-intrusive nature of face 

recognition, a system is supposed to be able to identify/recognise an uncooperative face in 

uncontrolled environment and an arbitrary situation without the notice of the subject. This 

generality of environment and situations, however, brought serious challenges to face recognition 

techniques, e.g., the appearances of a face due to viewing (or photo shooting) condition changes 

may vary too much to tolerate or handle. Though many face recognition approaches, for example 

[4, 7, 27, 35, 43, 53, 75], reported satisfactory performances, their successes are limited to the 

conditions of controlled environment, which are unrealistic in many real applications. In recent 

surveys of face recognition techniques [21, 89], pose variation was identified as one of the 

prominent unsolved problems in the research of face recognition and it gains great interest in the 

computer vision and pattern recognition research community. Consequently, a few promising 

methods have been proposed in tackling the problem of recognising faces in arbitrary poses, such 

as tied factor analysis [63], 3D morphable model [14], eigen light-field [33], illumination cone 

model [30], etc. However, none of them is free from limitations and is able to fully solve pose 

problem in face recognition. Continuing attentions and efforts are still necessary in the research 

activities towards ultimately reaching the goal of pose-invariant face recognition and achieving 

the full advantage of being passive for face recognition. Although several survey papers [1, 3, 20, 

21, 56, 89] and books [52, 78, 90] on face recognition have been published which gave very good 

reviews on face recognition in general, there is no review specific on this challenging problem of 

face recognition across pose. This paper provides the first survey on face recognition across pose, 
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with comprehensive and up-to-date reviews on existing techniques and critical discussions of 

major challenges and possible directions in this research area.  

In this review, techniques of face recognition across pose are broadly classified into three 

categories, i.e., general algorithms, 2D techniques, and 3D approaches. By “general algorithms”, 

we mean these algorithms didn’t contain specific tactics on handling pose variations. They were 

designed for general purpose of face recognition equally handling all image variations (e.g., 

illumination variations, expression variations, age variations, and pose variations, etc.). In each 

category, further classifications were also made and the details of categorisation is summarised in 

Table 1. Generally, there are two trends in developing face recognition techniques, i.e., 1) 

improving the capability and universality of general face recognition algorithms so that image 

variation can be tolerated, and 2) particularly designing mechanisms that can eliminate or at least 

compensate the difficulties brought by image variations (e.g., pose variations) according to its 

own characteristics, such as through 2D transformations or 3D reconstructions. The problem of 

face recognition across pose is elaborated in Section 2 with discussions of demands, challenges 

and evaluations. Section 3 presents a review on general face recognition algorithms with 

discussions on their pose sensitivities. In Sections 4 and 5, a comprehensive survey is provided 

on techniques that actively compensate pose variations in face recognition, dependent on whether 

they are 2D techniques (Section 4) or 3D approaches (Section 5). Finally, summarising 

discussions are given in Section 6.  
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Table 1. Categorisation of face recognition techniques across pose 

  Category Approach 

  General algorithms  

Holistic approaches 
Principal component analysis [43, 74, 75], Fisher discriminant analysis [7] 
Artificial neural network (Convolutional Networks [47]) 
Line edge maps [27], directional corner point [28] 

Local approaches 
Template matching [16], Modular PCA [61]  
Elastic bunch graph matching [79], local binary patterns [2] 

  2D techniques for face recognition across pose 

Real view-based matching  Beymer’s method [12], panoramic view [71] 

Pose transformation in image 
space 

Parallel deformation [10], pose parameter manipulation [32] 
Active appearance models [25, 39], linear shape model [40]  
Eigen light-field [33] 

Pose transformation in feature 
space 

Kernel methods (kernel PCA [54, 80], kernel FDA [36, 82]) 
Expert fusion [42], correlation filters [50] 
Local linear regression [19], tied factor analysis [63] 

  Face recognition across pose with assistance of 3D models 

Generic shape-based methods 
Cylindrical 3D pose recovery [26] 
Probabilistic geometry assisted face recognition [55] 
Automatic texture synthesis [85] 

Feature-based 3D reconstruction 
Composite deformable model [48], Jiang’s method [38], multi-level 
quadratic variation minimisation [87] 

Image-based 3D reconstruction 
Morphable model [13, 14], illumination cone model [29, 30] 
Stereo matching [18] 

 

2 Problem definition, challenges, evaluations and categorisations 

Face recognition across pose refers to recognising face images in different poses by 

computers. It is of great interest in many face recognition applications, most notably those using 

indifferent or uncooperative subjects, such as surveillance systems. For example, face recognition 

is appealing in airport security to recognise terrorists and keep them from boarding plane. Ideally, 

the faces of terrorists are collected and stored in the database against which travellers’ faces will 

be compared. The face of everyone going through a security checkpoint will be scanned. Once a 

match is found, cameras will be turned on to surveil people with a live video feed, and then the 
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authorities will verify the match and decide whether to stop the individual whose face matches 

one in the database. The most natural solution for this task might be to collect multiple gallery 

images in all possible poses to cover the pose variations in the captured images, which requires a 

fairly easy face recognition algorithm and will be discussed in detail in Subsection 4.1. In many 

real situations, however, it is tedious and/or difficult to collect these multiple gallery images in 

different poses and therefore the ability of face recognition algorithm to tolerate pose variations 

is desirable. For instance, if only a passport photo per person was stored in the database, a good 

face recognition algorithm should still be able to perform the above airport surveillance task. In 

such sense, face recognition across pose refers to recognising face images whose poses are 

different from the gallery (known) images. If a face recognition doesn’t have a good pose 

tolerance, given a frontal passport photo, the system appears to require cooperative subjects who 

look directly at the camera [17] and face recognition is no longer passive and non-intrusive. 

Therefore, pose invariance or tolerance is a key ability for face recognition to achieve its 

advantages of being non-intrusive over other biometric techniques requiring cooperative subjects 

such as fingerprint recognition and iris recognition.  

Due to the complex 3D structures and various surface reflectivities of human faces, however, 

pose variations bring serious challenges to current face recognition systems. The image variations 

of human faces under 3D transformations are larger than that conventional face recognition can 

tolerate. Specifically, innate characteristics of the faces, which distinguish one face from another, 

do not vary greatly from individual to individual, while magnitudes of image variations caused 

by pose variations are often larger than magnitudes of the variations of the innate characteristics. 

The challenging task faced by pose-invariant face recognition algorithms is to extract the innate 

characteristics free from pose variations. Generally, if more gallery images in different poses are 
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available, the performance of recognising a face image in an unseen pose will be better. Several 

experiments conducted in the literature have supported this observation. For instance in [47], 

Eigenfaces and SOM+CN approaches both performed better when 5 gallery images per person 

were available than when only 1 gallery image was available. The performance increase of 

Eigenfaces was from 61.4% to 89.5% and that of SOM+CN was from 70.0% to 96.2%. This kind 

of increases is due to the capability for face recognition algorithms of tolerating small pose 

variations. As the number of gallery images increases, the probability that the probe pose lies 

closely to one of the gallery poses increases. The recognition then degrades to a real view-based 

matching, although the probe pose could have small difference to the gallery pose. Multiple 

gallery images also help various pose compensation algorithms better compensate pose variations. 

For instance, MQVM [87] used two gallery images of frontal view and side view in feature-based 

reconstruction of 3D human faces for recognition. The inclusion of additional side view gallery 

image provides more depth information of human face structures, and consequently results in 

better reconstructed models than those using single gallery images. The inclusion of multiple 

gallery images puts restricted requirements for data collections, because many existing face 

database might only contain a limited number of (even single) gallery images such as a passport 

photo database (single gallery images) or police mug-shot database (one frontal image and one 

side view image per face). Therefore, the requirement of multiple gallery images (in different 

poses) limits the applicability of face recognition algorithms and the most generic scenario is to 

recognise a probe image in an arbitrary pose from only a single gallery image in another 

(arbitrary) pose, which is also more challenging than multiple gallery view scenario. For the 

recognition of faces from a single gallery per face, interested readers are redirected to a recent 

survey specifically on face recognition from a single gallery image per person [21], though it 
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didn’t emphasise pose invariance. It is often beneficial if the pose angle of the input image can be 

estimated before recognition such as in Modular PCA [61] and Eigen Light Field [33]. Head pose 

can estimated be either simultaneously in the process of recognition (as done in 3D Morphable 

Model [14] and Cylindrical 3D Pose Recovery [26]) or separately in an independent process. The 

latter alternative has been recently reviewed in [59]. 

As many pose-invariant face recognition approaches have been proposed recently, the need 

of evaluating different algorithms on a fair basis increased. A number of face image database 

have been established for the purpose to compare performances of different face recognition 

algorithms across pose. Currently, the most widely used database for face recognition across pose 

are FERET database [62] and CMU-PIE database [70]. FERET database contains about 200 

faces with 9 pose variations within ±40° in yaw. Specifically, the poses are -37.9º (labelled as 

“bi”), -26.5º (“bh”), -16.3º (“bg”), -7.1º (“bf”), -1.1º (“ba”), 11.2º (“be”), 18.9º (“bd”), 27.4º 

(“bc”), 38.9º (“bb”) in yaw, which were estimated using 3DMM [14]. CMU-PIE database 

contains 68 faces with 13 different poses. MQVM [87] has calculated the pose angles using the 

coordinate information provided with the database, which were -62º yaw & 1º tilt (labelled as 

“22”), -44º yaw & 11º tilt (“25”), -44º yaw (“02”), -31º yaw ( “37”), -16º yaw (“05”), 0º yaw & -

13º tilt (“07”), 0º yaw (“27”), 0º yaw & 13º tilt (“09”), 17º yaw (“29”), 32º yaw (“11”), 47º yaw 

(“14”), 47º yaw & 11º tilt (“31”), 66º yaw (“34”). Compared to FERET database, CMU-PIE 

database which was established more recently contains larger pose variations and vertical in-

depth rotations, but fewer faces. The performances of face recognition algorithms reviewed in 

this paper on FERET database and CMU-PIE database are summarised in Table 2 and Table 3, 

respectively. On these two databases, different algorithms are able to be compared on a relatively 

fair basis and one can easily pick up the algorithms with the good performances. However, the 
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direct performance comparison of face recognition across pose is not to be solved by this survey, 

because no algorithm can satisfactorily handle pose variations in face recognition as Table 2 and 

Table 3 suggested. For instance, the highest recognition performance on CMU-PIE database 

covering all 13 poses is around 70-80%, which is still far below the requirement of practical use. 

This paper mainly focuses on the discussions of different methodologies for face recognition 

across pose, in hope of providing helpful technical insights and promising directions to interested 

researchers.  

Table 2 Experiments and performances of face recognition algorithms across pose on FERET 
database. Pose angles are approximate (see text for the accurate angles). The citations indicate 
the papers reporting the results.  

No. of 
faces 

Pose variations Gallery / probe Approach Accuracy 

Eignfaces 
[33] 

39.4% 100 9 poses within ±40° in yaw 1 random / 8 remaining 
ELF [33] 75% 

1 random / 6 remaining KPDA [69] 44.32% 
200 

7 poses: 0° ±15° ±25° ±45° in 
yaw 4 random / 3 remaining KPDA [69] 94.46% 

100 
7 poses: 0°, ±22.5° ±67.5° ±90° 
in yaw 

1 (0°) / 2 (±22.5°) | 2 (±67.5°) | 
2(±90°)  

TFA [63] 
100% | 99% | 
92% 

194 10 poses within ±40° in yaw 1 (0°) / 9 remaining  3DMM [14] 95.8% 
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Table 3 Experiments and performances of face recognition algorithms across pose on CMU-PIE 
database. Pose angles are approximate (see text for the accurate angles). The citations indicate 
the papers reporting the results.  

No. of 
faces 

Pose variations Gallery / probe Approach Accuracy 

Eignfaces [33] 16.6% 13 poses within ±66° in 
yaw and ±15° in tilt 

1 random / 12 remaining 
ELF [33] 66.3% 
Eigenfaces [55] 20% 

9 poses: 0° ±15° ±30° 
±45° ±60° in yaw 

1 (0°) / 8 remaining Probabilistic geometry assisted 
FR [55] 

86% 
34 

5 poses 0°, ±16° ±62° 
in yaw 

1 (0°) / 2 (±16°) | 2 (±62°)  TFA [63] 
100% | 
91% 

Eigenfaces [85] 37.5% 
40 

2 pose: 0° and 15° in 
yaw 

1 (0°) / 1 (15°) 
Automatic texture synthesis [85] 97.5% 
Eigenfaces [32] 51.5% 
ELF [32] 87.5% 
3D-MM [32] 95.75% 

5 poses: 0°, ±15°, ±30° 
in yaw 

1 (0°) / 4 remaining 

PDM [32] 97.42% 
5 poses: 0°, ±30°, ±60° 
in yaw 

3 (0°, ±30°) / 5 (0°, ±30°, 
±60°) 

Mosaicing [71] 96.88% 

1 random / 12 remaining Stereo matching [18] 73.5% 
Eigenfaces [87] 40.64% 
LBP [87] 74.27% 

13 poses within ±66° in 
yaw and ±15° in tilt 2 (0°, 66°) / 11 remaining 

MQVM [87] 93.45% 
Eigenfaces [38] 26.3% 
Fisherfaces [38] 25.7% 

13 poses within ±66° in 
yaw and ±15° in tilt × 
21 lighting 

1 (0°) / 12 remaining  × 21 
lighting  

Jiang’s method [38] 46.66% 
3 poses: 0° 15° 60° in 
yaw × 22 lighting 

1 random / remaining  3DMM [14] 92.1% 

68 

7 poses: 0°, ±22.5°, 
±45° in yaw, ±15° in 
tilt 

1 (0°) / 6 remaining  Local linear regression [19] 94.6% 

 

For real data collection, more pose variations require more cameras to be installed in various 

locations and more complicated calibration and timing. An alternate is to use synthetic images 

rendered from 3D face database such as USF-3D database, which enables the experiment to have 

thousands of different poses. USF-3D database contains 136 3D face scans with facial textures, 

which can be rotated to render as many poses as the experiment requires. Other face database 

also contain various face images in different poses, such as ORL database (available at 

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html), MIT database (not publicly 
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available), Asian database (available at http://nova.postech.ac.kr/special/imdb/imdb.html), Bern 

University database (no longer available), MVU database (not publicly available), Yale B 

database (available at http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html), XM2VTS  

database (available at http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/, payment required), etc. 

Compared to FERET and CMU-PIE, these databases contain either fewer faces or smaller pose 

variations. ORL database contains 10 poses within ±20° per face of 40 faces, Bern University 

database contains 5 poses within ±20° per face of 30 faces, WVU database contains 7 poses 

within ±60° per face of 40 faces, Asian database contains 5 poses within ±25° per face of 46 

faces, MIT database contains 10 poses within ±40° per face of 62 faces, etc. Reported 

experiments and performances of face algorithms using these above databases are summarised in 

Table 4. Although there are a number of face databases containing pose variations, it is always 

helpful to establish new face databases for face recognition across pose. Recent face recognition 

researches are starting to solve recognition of faces in an extremely large database, a database 

containing over thousands of faces is then desirable for the experiments for face recognition 

across pose targeting on that problem.  
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Table 4 Experiments and performances of face recognition algorithms across pose on USF-3D 
database, ORL database, Bern University database, XM2VTS database, MIT database, Asian 
database, MVU database, etc. Pose angles are approximate. The citations indicate the papers 
reporting the results.  

Database  
No. of 
faces 

Pose variations Gallery / probe Approach Result 

Eigenfaces [47] 89.5% 
SOM+CN [47] 96.2% 

5 random / 5 
remaining 

PDBNN [53] 96.0% 
Eigenfaces [47] 61.4% 

ORL 40 
10 random poses within 
±20° in yaw and tilt 

1 random / 5 
remaining random SOM+CN [47] 70.0% 

Eigenfaces [27] 65.12% 
LEM [27] 72.09% 
DCP [28] 68.61% Bern Univ. 30 

5 poses: 0°, ±20° in yaw 
and tilt 

1 (0°) / 4 remaining 
Cylindrical 3D pose 
recovery [26] 

80% 

Fisherfaces [42] 46% 
125 

5 poses: 0° ±30° in yaw 
and tilt 

1 (0°) / 4 remaining 
Expert fusion [42] 70% 

XM2VTS 

100 3 poses: 0°, ±90° in yaw 1 (0°) / 2(±90°)  TFA [63] 91% 
KPCA [50] 43.3% 
GDA [50] 36.0% 50 

2025 poses within ±40° 
in yaw and ±12° in tilt.  

1 (0°) / 2024 
remaining 

Correlation filter [50] 79.7% 

USF-3D 
(Synthetic 
images) 

100 2 poses: 0°, 24° in yaw 1 (0°) / 1 (24°) Linear shape models [76] 100% 

WVU 40 
7 poses: 0°, ±20°, ±40°, 
±60° in yaw 

3 (0°, ±40°) / 7 (0°, 
±20°, ±40°, ±60°) 

Mosaicing [71] 97.84% 

MIT 62 
10 poses within ±40° in 
yaw and ±20° in tilt 

1 (15°) / 9 remaining Parallel deformation [10] 82.2% 

Eigenfaces [68] 31.5% 
Asian 46 

5 poses: 0°, ±15°, ±25° 
in yaw 

1 (0°) / 4 remaining 
AAM [68] 68% 

 

As mentioned in Section 1, all of the approaches for face recognition across pose reviewed 

were classified into three broad categories depending on their different treatments to pose 

variations. This categorisation, however, is not unique and alternative categorisations based on 

other criteria are also possible. These criteria include 1) single/multiple gallery image(s), 2) 

whether training is required, 3) computational complexity, 4) whether the algorithm is feature-

based or appearance-based, etc. Although we intend to provide insights on the problem of face 

recognition across pose through categorisation based on pose variation treatment, these 

alternative categorisations might provide other useful information for interested readers. These 

categorisations have been summarised in Table 5.  
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Table 5 Categorisation of face recognition techniques across pose based on other categorisation 

criteria. 

  Category Approach 

  Criteria 1: Single/multiple gallery image(s) 

Single 

PCA [43, 74, 75], Template matching [16], SOM+CN [47], LEM [27], DCP [28], Modular 
PCA [61], EBGM [79], LBP [2], parallel deformation [10], pose parameter manipulation [32], 
cylindrical 3D pose recovery [26], probabilistic geometry assisted FR [55], automatic texture 
synthesis [85], Jiang’s method [38], 3DMM [13, 14], ICM [29, 30], stereo matching [18], ELF 
[33], Linear shape model [76], DCCF [50], TFA [63], LLR [19], Expert fusion [42], Composite 
deformable model [48]. 

Multiple (≥2) 
LDA [7], real-view matching [12], panoramic view [71], MQVM [87], View-based AAM [25, 
68]. 

  Criteria 2: Whether training is required 

No training  
Template matching [16], LEM [27], DCP [28], LBP [2], cylindrical 3D pose recovery [26], 
probabilistic geometry assisted FR [55], automatic texture synthesis [85], ICM [29, 30], stereo 
matching [18], Composite deformable model [48], panoramic view [71], MQVM [87]. 

Training 
required 

PCA [43, 74, 75], SOM+CN [47], Modular PCA [61], EBGM [79], parallel deformation [10], 
pose parameter manipulation [32], Jiang’s method [38], 3DMM [13, 14], ELF [33], Linear 
shape model [76], DCCF [50], TFA [63], LLR [19], Expert fusion [42], LDA [7], real-view 
matching [12], View-based AAM [25, 68]. 

  Criteria 3: Computational complexity 

Low 
PCA [43, 74, 75], LDA [7], LEM [27], DCP [28], Modular PCA [61], LBP [2], cylindrical 3D 
pose recovery [26], probabilistic geometry assisted FR [55], automatic texture synthesis [85].  

Intermediate 

Template matching [16], real-view matching [12], SOM+CN [47], DCCF [50], parallel 
deformation [10], ELF [33], pose parameter manipulation [32], TFA [63], LLR [19], composite 
deformable model [48], view-based AAM [25, 68], linear shape model [76], expert fusion [42], 
Jiang’s method [38], MQVM [87], panoramic view [71], stereo matching [18]. 

High  EBGM [79], 3DMM [13, 14], ICM [29, 30].  

Criteria 4: Feature-based or appearance-based 

Feature-based 
PCA [43, 74, 75], LDA [7], LEM [27], DCP [28], Modular PCA [61], LBP [2], SOM+CN 
[47], DCCF [50], parallel deformation [10], ELF [33], TFA [63], LLR [19], EBGM [79]. 

Higher-order 
feature-based 

KPCA [66], GW-KPCA [54], GW-DKPCA [80], ESBMM-KFDA [36], CFDA [82].  

Appearance-
based 

Automatic texture synthesis [85], template matching [16], real-view matching [12], pose 
parameter manipulation [32], composite deformable model [48], view-based AAM [25, 68], 
Jiang’s method [38], ICM [29, 30]. 

Hybrid 
Cylindrical 3D pose recovery [26], probabilistic geometry assisted FR [55], expert fusion [42], 
panoramic view [71], MQVM [87], 3DMM [13, 14]. 
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3 General Face Recognition Techniques and Their Sensitivities to Pose Variations  

A typical face recognition problem is to visually identify a person in an input image through 

examining his/her face. The first attempt to this task can trace back to more than 30 years ago 

[41]. After that, a number of face recognition methods have been proposed, among which 

Principal Component Analysis (PCA, also known as Eigenfaces) [43, 75], Fisher Discriminant 

Analysis (FDA, also known as Fisherfaces, Linear Discriminant Analysis, or LDA in short) [7], 

Self Organising Map and Convolutional Network (SOM+CN) [47], template matching [16], 

Modular PCA [61], Line Edge Maps (LEM) [27], Elastic Bunch Graph Matching (EBGM) [79], 

Directional Corner Point (DCP) [28] and Local Binary Patterns (LBP) [2] are some of the 

representative works. All of these methods attempt to extract classification patterns (or features) 

from 2D face images and to recognise input face images based on these patterns against the 

known face images in the database.  

3.1 Holistic Approaches 

Kirby and Sirovich [43] used principal component analysis (PCA) to efficiently represent 

face images by a small number of coefficients corresponding to the most significant eigen values. 

Turk and Pentland [74, 75] used Eigenfaces for face detection and identification. In particular, a 

set of eigen vectors and eigen values were first calculated through principal component analysis 

to form the eigen space of human faces (or “Eigenfaces”) from a training face image set. The 

gallery and probe images were projected to this eigen space and their eigen values are compared 

in the recognition stage. The Eigenfaces approach appears to be a fast, simple, and practical 

method, which has become the most widely used face recognition technique. However, it does 

not provide invariance over changes in poses and scales. Fisherfaces approach (or Fisher 
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discriminant analysis, FDA) [7] was applied to expressly provide the discrimination among 

classes, when multiple training data per class are available. Through the training process, the 

ratio of between-class difference to within-class difference is to be maximised to find a base of 

vectors that best discriminate the classes. The between-class difference is characterised using 

between-class scatter matrix BS  which calculates the summed differences between class mean 

iµ  and overall mean µ . The within-class difference is represented as a within-class scatter 

matrix WS  which calculates the summed differences between individual image kx  to class mean 

iµ . The generalised eigen vectors and eigen values were then computed to maximise the ratio of 

BS  to WS , expressed as iWiiB wSwS λ= , mi ,...,1= , where iw  are the m  largest generalised 

eigen vectors and iλ  are the corresponding generalised eigen values. Using this specific 

projection method, the training and recognition were performed similarly to those of Eigenfaces. 

To overcome the problem of within-class scatter matrix being singular, the face images were first 

projected using PCA to reduce the dimensionality to a lower level that FDA can handle. In this 

case, it requires multiple gallery images per class (person) or FDA will be identical to PCA. As 

holistic face recognition approaches, both FDA and PCA are very sensitive to pose variations 

[21], because in-depth rotations of 3D human faces almost always cause misalignment of image 

pixels which are the only classification clues for these holistic approaches.  

The attractiveness of using artificial neural network (ANN) could be due to its nonlinearity 

in the network. One of the first artificial neural network techniques used for face recognition is 

the single layer network WISARD [72], which contains a separate network for each stored 

individual. Lin et al. [53] used a Probabilistic Decision Based Neural Network (PDBNN) which 

also used one network for one face and required multiple gallery images per person in training 
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the network. Lawrence et al. [47] proposed a hybrid neural network, which combined local image 

sampling, a self-organising map (SOM), and a convolutional network (CN). In this approach, the 

SOM was used for dimension reduction which maps a high dimensional sub-image space (e.g., 

5×5=25) to a lower dimensional discrete space represented by nodes (e.g., 3 dimensional space 

with 5 nodes per dimension). Each node is assigned with a set of n weights where n is the 

dimension of the sub-image. In training, the Best Matching Unit (BMU) to each training sub-

image is found as the closest match. The BMU and the nodes around it are adjusted towards the 

training data controlled by a neighbourhood function. During iteration, the neighbourhood 

function will reduce its size gradually to zero when the iteration time goes towards infinity. In the 

feature detection and classification stage, a convolutional network has been applied which 

contains iterative convolution and down-sampling layers. Each convolutional layer containing 

multiple planes is formed by convolving a fixed kernel with the previous layer. Then the layer is 

down-sampled by neighbour averaging. The planes of the final layer have only one element, 

which indicates the classification results. In general, however, neural network approaches 

encounter problems when the number of classes (i.e., individuals) increases. For pose-invariant 

face recognition, one individual may require several classes in different poses. 

Edge information of faces can also be used for face recognition. A Line Edge Map (LEM) 

[27] approach was proposed, which gives a distance measurement between two line edge maps of 

faces and performs face matching based on those measures. The LEM of a face image is 

generated by sequentially 1) extracting edges, 2) thinning, and 3) polygonal line fitting. To 

measure the similarity between two LEMs, a line segment Hausdorff distance was introduced, 

which computes two line segments’ distance as root-sum-square of three distance components, 

i.e., parallel distance, orientation distance, and perpendicular distance. Then the typical 
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Hausdorff distance on point sets was extended to LEMs based on the defined individual line 

segment distance. In recognition, each face image was first converted to an LEM, followed by 

matching probe LEMs against gallery LEMs using the line segment Hausdorff distance. A face 

feature descriptor, namely Directional Corner Point (DCP) [28], was proposed which is extracted 

by detecting image corner points which are not necessarily facial components. A DCP is 

represented by its Cartesian coordinates and two directional attributes pointing to the point’s 

anterior and posterior neighbouring corner points. The distance of two DCPs is measured by 

calculating the warping cost through translation, rotation and opening/closing operations and 

averaging the minimum warping costs as the dissimilarity score. Face image retrieval using 

DCPs is generally economical for storage and robust to illumination changes. Its robustness to 

illumination changes is inherited from edge maps, because a corner point can be considered as 

the “edge of edges”. Both LEM and DCP are, however, sensitive to pose variations, because in-

depth rotations always cause distortions of image edge maps which will affect the performances 

of the methods using image edges as classification patterns.  

3.2 Local Approaches 

For all of the above methods, the face recognition decisions are made considering the entire 

face images, which can be classified as holistic approaches. In contrast, local approaches only or 

mainly consider a set of isolated points or regions on the face images and classification patterns 

are extracted from a limited region in the face image. Template matching provides an early 

attempt to recognise faces by considering local regions represented in templates, which compares 

input images pixel-wisely against a template (usually from a gallery image) using a suitable 

metric such as the Euclidean distance. Bruneli and Poggio [16] automatically selected a set of 4 
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feature template, i.e., the eyes, nose, mouth and the whole face, for all of the available faces. 

Within each template, the input image region is compared with each database image in the same 

region through normalised cross correlation. The recognition decision was made using summed 

matching scores. One problem of template matching lies in the description of these templates. 

Since the recognition system has to be tolerant to certain discrepancies between gallery and probe 

images, this tolerance might average out the differences that make individual faces unique. 

Pentland et al. [61] extended PCA to Modular PCA (MPCA) to improve robustness of face 

recognition. Instead of building a holistic eigen space for the entire images, MPCA establishes 

multiple eigen spaces around facial components (e.g., eyes, nose, and mouth) to form 

“Eigenfeatures” (Figure 1). Multiple fixed-size sub-regions are first located through facial 

component detection to the facial components (e.g., eyes) and only image pixels in the sub-

regions are considered in the Eigenfeatures process in training and recognition. Eigen values of a 

face image are calculated separately in difference sub-regions which are then concatenated for 

classification. The pose tolerance is achieved by eliminating the effect of facial feature 

misalignment under pose variations, at the price of neglecting some useful image patterns such as 

freckles, birthmarks, and wrinkles which can be considered in holistic approaches. As MPCA 

relies on the predefined facial components (or facial features), the feature detection is crucial to 

this approach similar to other feature-based face recognition methods. In experiments, it didn’t 

provide any test on face recognition across pose due to the difficulty of automatically detecting 

facial components under rotated face images. Similarly, other holistic recognition methods can 

also become modular, such as modular FDA, with similar gains and losses. The local feature 

extraction approaches can only alleviate pose variations in certain extent, because in local regions, 
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image distortions brought by pose variations still exist. The benefit of localising the image 

matching is also at the cost of extra requirement of feature detections. 

 

Figure 1  The Modular PCA builds multiple eigen spaces (eigenfeatures) in the regions of facial 
components (e.g., eyes, nose, and mouth) to achieve pose tolerances [61]. 

One successful local face recognition method is Elastic Bunch Graph Matching (EBGM) 

[79], in which human faces were described using Gabor wavelets in facial components (e.g., eyes, 

nose, and mouth) and an extended Dynamic Link Architecture (DLA) [44] for graph matching. In 

feature extraction, a Gabor jet on a point of a face image was introduced as a set of 40 Gabor 

wavelet coefficients obtained by convoluting 40 Gabor kernels with the local region around the 

point. The jet similarity measurement of two Gabor jets was defined by multiplying the 

magnitudes of the Gabor coefficients. These Gabor features were used for both facial component 

locating and recognition. In recognition, the Gabor features were extracted on facial components 

and the gallery and probe images was compared by calculating the similarity of the two sets of 

Gabor jets. Despite of the expensive computation, EBGM outperformed holistic approaches on 

the testing sets containing in-depth pose variations, which is largely due to Gabor features’ 

robustness against image distortion and scaling [49]. In [69], elastic graph matching is extended 

and modified to apply a further Fourier transform on Gabor wavelet coefficients to be used as 
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features and to perform classifications using kernel-based projection discriminative analysis 

(KPDA) to achieve pose and expression tolerance.  

Ahonen et al. [2] applied Local Binary Patterns (LBP) [60], a successful texture descriptor, 

to the task of face recognition. The local pattern is extracted by binarising the gradients of centre 

point to its 8 neighbouring points pixel-wisely and this binary pattern is used as image features 

for classification. Then the face image is divided into several sub-regions (or patches) and within 

each patch, the histogram of the local pixel-wise patterns is calculated. Comparing two images, 

the histograms are compared through calculating weighted Chi square distance, whose weights 

are trained by separate recognition process on a single patch. Though the LBP mainly focuses on 

pixel-wise local patterns, the holistic information is also considered by concatenating the regional 

histograms into a single description over the entire image. Compared to holistic approaches, LBP 

is more robust to pose changes because it doesn’t require exact locations of patterns but relies 

only on histogram (or existence) of the pattern in a region. In our experiments, it is found that 

LBP can tolerate small pose variations and achieve perfect recognition rates when the rotations 

are less than 15 degrees. When the rotation becomes larger, however, the dividing face images 

into regions becomes problematic, because of the misalignment of image regions (e.g., a face 

region in a frontal image could become background in a 45º rotated image). A feature-based 

dividing could alleviate this effect, given an accurate feature detection result. 

3.3 Discussions  

In this section, some representative methods of face recognition have be reviewed with 

attentions on their performances under pose variations. The methodologies in each stage of face 

recognition are summarised in Table 6. More complete reviews on general face recognition 
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algorithms can be found in [1, 21, 89]. In methodology level, local approaches such as EBGM 

and LBP are more robust to pose variations than holistic approaches such as PCA and LDA. This 

is because local approaches are relatively less dependent on pixel-wised correspondence between 

gallery and probe images, which is adversely affected by pose variations. Their tolerance to pose 

variations is, however, limited to small in-depth rotations. Under intermediate or large pose 

variations, pose compensation or specific pose-invariant feature extraction are necessary and 

beneficial. The performances of local-region-based methods, e.g. template matching and Modular 

PCA, depend largely on the accuracy of facial component locating, which is also problematic on 

pose variant face images. These methods are not entirely robust to pose variations, because 

distortions exist in local image regions under pose variations. 

Table 6 The methodologies of the general face recognition algorithms in each stage of face 
recognition. 

FR Stage 
 

Approach 

Region-based 
representation  

Feature extraction Dimension reduction Classification 

Eigenfaces [74, 
75] 

Holistic   Pixel intensity  
Principal component 
analysis 

Nearest neighbour 

Fisherfaces [7] Holistic   Pixel intensity 
Linear discriminative 
analysis 

Nearest neighbour 

SOM+CN [47] 
Evenly distributed image 
patches 

Pixel intensity Self organising map 
Convolutional 
network 

LEM [27] Holistic   Line edge map 
Line segment 
Hausdorff distance 

Nearest neighbour 

DCP [28] Holistic   
Local directional 
corner points 

Minimum warping cost  Nearest neighbour 

Template 
matching [16] 

Patches around eyes, nose, 
and mouth 

Pixel intensity None  
Normalised 
correlation  

Modular PCA 
[61] 

Regions around eyes, nose, 
and mouth 

Pixel intensity 
Principal component 
analysis 

Nearest neighbour 

EBGM [79] 
Regions around 31 facial 
component points 

Gabor wavelet Normalised correlation Averaging 

LBP [2] 
Evenly distributed image 
patches 

Local gradient 
binary codes 

Histogram 
Weighted Chi 
square 
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For the evaluations of these general face recognition algorithms, the experiments mainly 

focused on recognition of frontal or near-frontal face images and few reports have conducted 

thorough experimentations on face recognition across pose.  Most experiments of holistic 

approaches such as Eigenfaces, SOM+CN, LEM are limited to 20 degree rotations, where 

Eigenfaces yielded about 63% accuracy, SOM+CN’s and LEM’s performances are above 70%. 

These results show that small in-depth rotation affect the performances of the holistic face 

recognition algorithms adversely. Local algorithms were tested on datasets containing much 

larger pose variations, e.g., EBGM was tested on 68° and 90° rotated views in [79] and KPDA 

was tested on ±45° rotated views (mixed with other smaller rotated views) in [69]. However, 

their recognition rates are below 50%, which is far from the practical requirements. Table 7 

summarises the advantages and disadvantages of these face recognition algorithms in terms of 

their pose tolerance. In the next two sections, the face recognition approaches explicitly handling 

pose variations are reviewed. Section 4 discusses 2D techniques that compensate pose variations 

while 3D methods are reviewed in Section 5. 
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Table 7  The advantages and disadvantages of the representative general face recognition 
algorithms to face recognition across pose. 

Approach Advantages Disadvantages 

Eigenfaces [74, 
75] 

Simple, fast 
Sensitive to pixel misalignment, cannot separate 
image variances caused by identity and pose 
variation 

Fisherfaces [7] 
Maximising the separability of different 
identities 

Sensitive to pixel misalignment, linear classes 
cannot adequately describe pose variations 

SOM+CN [47] 
Fast, tolerance to pixel misalignment due to 
quantisation 

Linear mapping cannot adequately describe pose 
variations 

LEM [27] 
Simple, no training and facial component 
detection required 

Sensitive to edge distortions caused by pose 
variation 

DCP [28] 
Fast, no training and facial component 
detection required 

Sensitive to edge distortions caused by pose 
variation 

Template 
matching [16] 

Simple, Local regions around facial 
components provide some tolerance to pose 
variations 

Sensitive to pixel misalignment in sub-image 
regions, dependent on facial component detection 

Modular PCA 
[61] 

Simple, fast, local regions around facial 
components provide some tolerance to pose 
variations 

Sensitive to pixel misalignment in sub-image 
regions, dependent on facial component detection 

EBGM [79] 
Local regions around facial components and 
Gabor wavelet provide pose tolerance  

Slow, distortions within local regions were not 
treated 

LBP [2] 
Simple, histogram in local regions tolerates 
pixel misalignment 

Image dividing is problematic when pose 
variation is large 

 
 

4 2D Techniques for Face Recognition across Pose 

Due to the observation that most of the general face recognition approaches are sensitive to 

pose variations [21], a number of approaches have been proposed to explicitly handle pose 

variations. 2D techniques [10, 19, 25, 42, 71, 88] and 3D methods [11, 13, 62, 63] were used to 

handle or predict the appearance variations of human faces brought by changing poses. In this 

section, 2D techniques are classified into three groups, i.e., 1) pose-tolerant feature extraction [36, 

50, 61], 2) real view-based matching [12, 71], and 3) 2D pose transformation [10, 25, 32, 39]. 

Approaches based on pose-tolerant feature extraction attempt to find face classifiers or pre-

processing of linear/non-linear mapping in the image space that can tolerate pose variations. Real 

view-based matching captures and stores multiple (usually a large number of) real views to cover 
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exhaustively all possible poses for face recogniser. Because most of the face recognisers as 

reviewed in Section 3 are robust to small pose variations (~15º), a certain level of quantisation on 

the in-depth rotations is possible which can significantly reduce the number of real views. In case 

there are only a limited number of real views (or even only a single view) per person stored in the 

database in which real view-based matching is not possible, approaches using 2D pose 

transformation alter the appearances of the known face images to the unknown poses to 

synthesise virtual views to help the face recogniser to perform recognition across pose.  

4.1 Real View-Based Matching 

Despite of tolerating pose variations, one can actively compensate pose variations by 

providing gallery views in rotation to recognise rotated probe views. The natural way to realise a 

face recognition system against pose variations in this direction is to prepare multiple real view 

templates for every known individual. Because general face recognition algorithms as previously 

reviewed are able to tolerate small pose variations (e.g., 15 degree rotation), the number of 

required real gallery images can be significantly reduced by quantisation on the in-depth rotations. 

Beymer [12] designed a real view-based (RVB) face recognition system using a template 

matching of image-based single-view representation. Each input view was geometrically 

registered to the known person’s templates by using locations of eyes and nose, which were 

automatically located by that system. The recogniser acquires 15 gallery face images to cover a 

range of pose variations with approximately ±40° in yaw and ±20° in tilt as shown in Figure 2. 

The recognition process is a typical template matching algorithm with templates around eyes, 

nose and mouth, while the only difference is that it matches an off-centred probe face image with 

gallery face images in similar poses.  
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Figure 2  The view-based recogniser using real views stores a certain number of face images 
taken in different poses of the same person. [12] 

Singh et al. [71] proposed a mosaicing scheme (MS) to form a panoramic view as shown in 

Figure 3 from multiple gallery images to cover the possible appearances under all horizontal in-

depth rotations. The panoramic (namely composite) view is generated from a frontal view and 

rotated views in three steps, i.e., 1) view alignment, 2) image segmentation, and 3) image 

stitching. In the first step, views in different poses were aligned by coarse affine alignment and 

fine mutual information based general alignment. The boundary blocks of 8 by 8 pixels for the 

segmentation were detected using phase correlation, which were used as the connection regions 

of the two views to stitch. A multi-resolution splining was applied to straddle the connecting 

boundary of the images and the splined images were expanded and summed together to form the 

final composite face mosaic. In recognition, the synthesised face mosaics were used as gallery 

and single normal face images in arbitrary poses were matched using a face recognition algorithm 

combining log Gabor transform, C2 feature extraction, and 2ν-support vector machine. The clear 

advantage of using face mosaics over virtual view synthesis is the save of storage spaces, because 

only a single image per person is required to cover all possible poses. The proposed face 
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mosaicing method, however, doesn’t actively compensate pose variations and the recognition 

improvements are mainly contributed by 1) the use of multiple gallery images in different poses, 

and 2) the pose-invariance of the face recognition algorithm. In experiment, it was found that the 

optimal combination of gallery images is frontal image plus left and right views in 40 degree 

rotations. The main reason is that face recognition algorithms can normally tolerate small 

horizontal rotations and the input face images were matched against the part of the face mosaics 

for the nearest viewpoint.  

 

Figure 3  The process of face image mosaicing [71]. (a-c) three raw images in different poses, -
20°, 0°, 20° in yaw, (d) panoromic view mosaiced from these three images, and (e) cropped 
panoromic image used in recognition experiment.  

In general, face recognition methods of real-view based matching require multiple real views 

of each person as gallery. Either the raw gallery images or some transformations of them are 

considered in recognition to cover possible pose variations. These face recognition algorithms 

then rely on the capability of general (non-frontal) face recogniser in small pose tolerance to 

match the probe views in arbitrary poses exhaustively against all gallery images or transformed 

images, in hope that the closest appearance match belong to the same identity.  

4.2 Pose Transformation in image space 

As it is generally impractical or unfavourable to collect multiple images in different poses 

for real view-based matching, a feasible alternate is to synthesise virtual views to substitute the 

demand of real views from a limited number of known views (even from a single view). The 
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virtual view synthesis can be undertaken in 2D space as pose transformation or in 3D space as 

3D face reconstruction and projection. The virtual view synthesis involving 3D models will be 

discussed in the next section, while various 2D pose transformation methods are discussed in this 

subsection, which include parallel deformation [10], pose parameter manipulation [32], and 

active appearance models [25, 39]. Besides, 2D pose transformation was performed on a model 

database containing image under different poses without virtual view synthesis in [58].  

Beymer and Poggio [10] are probably the first researchers to specifically handling pose 

variations in face recognition. They proposed parallel deformation to generate virtual views 

covering a set of possible poses from a single example view using feature-based 2D warping [6]. 

A 2D non-rigid transformation on a prototype face from the real view in a standard pose to the 

real view in a target pose was recorded. To synthesise a virtual view of a gallery face (the face in 

the database to be matched against) in the same target pose, the real view in the standard pose 

was parallel deformed based on the recorded 2D transformation on the prototype face. Figure 4 

shows a diagram of the process of parallel deformation, which synthesise a virtual image in the 

target pose from 3 real images, i.e., an image in the standard pose of the gallery face, images in 

the standard pose and the target pose of the prototype face. Figure 4(a) and 4(b) are the prototype 

face’s two real views in different poses. A pixel-wise correspondence and a pose deformation 

path (Figure 4e) are recorded by applying a gradient-based optical flow on the two prototypical 

views. This pose deformation is then further deformed (referred as identity deformation) to the 

gallery face based on the differences of the face images in the standard pose between the gallery 

face and the prototype face, which are achieved by a manual feature-based 2D warping or an 

automatic face vectorisation. Applying the deformed deformation on the gallery image in the 

standard pose, a novel image in the target pose can be synthesised by directly taking the raw pixel 
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intensity from the gallery image as the textures of the novel image. In this process, the recorded 

non-rigid 2D transformation serves as the prior knowledge of the class of human faces, which 

provides reasonable predictions of the possible face appearances for rotated faces. 8 virtual views 

were synthesised per person from an example view in about 15 degree rotation away from the 

standard pose and 6 virtual views were synthesised by mirroring the corresponding face view 

with respect to the vertical axis using face symmetry information, covering -30 to 30 degree 

rotations in yaw and -15 to 15 degree rotation in tilt. Tested on a dataset containing 5 in-plane 

rotated views and 5 in-depth rotated views per person of 62 people, the proposed parallel 

deformation achieved an accuracy of 82.2% using manually labelled interpersonal 

correspondences. When using the automatic face vectorisation [11], the recognition rate was 75%.  

 

Figure 4  The process of parallel deformation. (a) the prototypical image in standard pose, (b) 
the prototypical image in target pose, (c) the gallery image at standard pose, (d) the synthesised 
novel image at target pose, and (e) the recorded deformation in prototype from the standard view 
to the virtual view ,

p
p r vy − . [10] 
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Active Shape Model (ASM) originally proposed by Cootes et al. [23] is one of the most 

successful approaches in automatic face image representation [46], structure locating in medical 

images [22] and face recognition [25]. In ASM, Principal Component Analysis (PCA) was 

applied on the locations of facial components (e.g., facial contours, eyes, eyebrows, lips, etc.) 

presented as connected point distributions from a variety of manually labelled images (i.e., 

images with facial components marked on), containing various image variations such as pose, 

illumination, and expression variations. The distributions of the eigen model parameters obtained 

by projecting face shapes (represented as point distributions) onto this eigen space are then used 

to exclude invalid shapes, e.g., a face shape where the mouth location is between those of eyes 

and nose. To automatically adjust the point distribution to the new face image, a local searching 

strategy is applied on each point. First, a gradient-based local profile on the point is extract along 

the local line segment perpendicular to the boundary of the point. Based on the training set, an 

average profile is calculated which captures the local texture variations around the point. This 

profile, in adjustment step, is used to find the location of that point in the new image whose local 

profile best fits this reference profile. To ensure the adjustment always follow the correct (or 

valid) path, the adjusted point distribution is then projected onto the previously trained eigen 

space. Those parameters whose values are larger than 3σ  are set to 3σ  which limits the 

deformation of the point distributions within the valid range of the assumed Gaussian 

distributions of the prior shape knowledge.  

González-Jiménez and Alba-Castro [32] applied the concept of ASM with manual facial 

component locating to synthesise virtual views in different poses in their proposed Point 

Distribution Model (PDM). PCA was applied on the locations of facial components (e.g., facial 

contours, eyes, eyebrows, lips, etc.) presented as PDMs and they argued that the second 
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significant parameter is the “pose parameter” which controls the left-right rotations of faces. To 

build this eigen space, a variety of manually labelled images (i.e., images with facial components 

marked on) are used as the training set. Finding the top principal components using PCA doesn’t 

guarantee these parameters are specifically pose-related free from other variations, because these 

variations are mutually dependent in 2D face image space. Taking pose and expression as an 

example, some kind of image variations such as the movement of mouth corners can be 

explained by either pose variations (head tilting) or expression changes (smiling). To make the 

most principal components more specific to pose variations, the training set is intentionally 

chosen to include much more pose variations than other image variations. The 2D transformation 

was then achieved by only altering the pose parameter, leaving other personal information intact 

as shown in Figure 5. A probe image is labelled with a probe point distribution map (Figure 5a) 

and the gallery image is also labelled with a gallery point distribution map (Figure 5b). Both 

distribution maps are projected on to the point distribution model (previously trained eigen space) 

and the pose parameter of the gallery map is substituted by that from the probe map. Then the 

synthetic point distribution map is recovered based on these parameters (pose parameter is from 

probe while other parameters are all from the gallery), so that the synthesised mesh preserves all 

image information (e.g., identity) from the gallery face except pose, which is from the probe face. 

In this way, the pose variations are compensated and face recognition is performed using the 

typical EBGM recogniser (i.e., Gabor wavelet + normalised correlation) on two images in the 

same pose (e.g., probe). Tested on the CMU-PIE database with different 13 poses per face of 68 

faces, their method achieved much higher recognition rates than [10]. For example, to recognise 

15 degree rotated views and 30 degree rotated views from frontal gallery views, [32] achieved 

accuracies of 99.26% and 95.59% respectively. When the rotation angle increases, however, the 
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recognition rates drop to 67.5% (45 degree rotation) and about 20% (65 degree rotation). The 

performance of the proposed method on face views under tilt (vertical rotation) hasn’t been 

reported, probably due to lack of training images in tilt from the CMU PIE database (the CMU-

PIE database contains three different tilt rotations, i.e., ±10 and 0 degrees).  

 

Figure 5  The process of generating virtual face views from training and input images by 
altering pose parameters and performing 2D image warping. The pose parameter was extracted 
from the mesh (shape) of the training image (b) and then replaced by the extracted pose 
parameter from input image (a) to form a mesh that has the same pose with input but the same 
identity information with training (c). [32] 

As an extension of ASM, Active Appearance Models (AAM) [24] has been proposed to 

simultaneously model the variations of shape represented by point distributions and textures 

represented by pixel intensities. The shape variations were obtained in the same manner of ASM, 

using PCA on a training set of point distributions. For texture variations, each image in the 

training set was warped to a uniform shape (average point distribution) and the pixel intensities 

were then analysed using PCA. With both shape and texture eigen spaces, a new face was 

represented by a vector of model parameters controlling face variations based on the two eigen 
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spaces, a vector of similarity transformation parameters controlling shape transformations, and a 

vector of scaling and offset transformation parameters controlling texture transformations. In 

searching, all of the model, shape, and texture parameters were iteratively altered towards 

minimising the differences of the reconstructed face image and the real face image. Because the 

AAM is based on 2D image transformation, the in-depth rotation (pose) cannot be decoupled 

from the identity changes (face shape difference). To further explicitly model in-depth pose 

variations, a view-based AAM was proposed in [25] and was applied to face recognition across 

pose in [67]. In view-based AAM, the model parameter c
r

 is approximated by a sum of triangular 

functions of rotation angle θ  as θθ sincos 210 cccc
rrrr ++= , where ),,( 210 ccc

rrr
 were learned using 

regression by estimating c
r

 and giving θ  in at least three different poses in the training set. 

Estimating pose from a new image is then performed by calculating the rotation angle θ  from the 

estimated model parameter c
r

 of the input image and ),,( 210 ccc
rrr

 of the training set. In this process, 

the inter-person differences contained in c
r

 are discarded and only the pose-related differences 

are modelled. To synthesise virtual views in a new pose (e.g., frontal view) from an input image 

in a certain pose (e.g., rotated view), the model parameter c
r

 was first estimated from the input 

image and the closest matching image in the training data was found by minimising the 

difference of the two model parameters. Then the input model parameter was projected to the 

AAM of the closest match. The residual of the model parameters is retained to record the 

identity-related difference and the pose-related difference is altered by changing θ  to a new 

value. This process is similar to that of the parallel deformation where the closest match is served 

as prior knowledge of the pose transformation, while the difference lies in that the choice of the 

reference face is unique in view-based AAM and arbitrary in parallel deformation. In [67], 

frontal virtual views were synthesised using this process from a single non-frontal face image 
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(ranging within ±25°) based on a view-based AAM trained on three images per face (0°, ±15°) of 

40 faces. Then an adaptive PCA was applied on the synthetic frontal face images for recognition. 

On a face image set of 46 faces with 4 poses per face (±15° and ±25°), the recognition achieved 

63% identification accuracy which is higher than the direct matching of rotated face with the 

frontal gallery image.  

Vetter [76] further extended the concept of AAM by replacing the sparse point distributions 

with a pixel-wise correspondence between two images in different poses using optical flow. It 

differs from the typical AAM in two aspects. First, 2D shape information is represented by a 

dense point distributions and the dimension is comparable to that of a face image. Second, 

different linear shape models are learned distinctively in different poses where two models share 

the same set of model parameters thanks to the assistance of a set of 3D scans. Specifically, a 

linear shape model of dense point distributions in 3D space was built using PCA on a set of 3D 

training face shape. Then it was projected to different poses to generate different linear shape 

models in 2D image space, where a single set of model parameters can describe the 2D 

projections in these poses of the same 3D shape. To align the linear shape model to new image, 

optical flow was applied to establish a dense correspondence between the projected model shape 

in the same pose and the input image, followed by estimating model parameters by projecting the 

shape distribution onto the eigen space of the linear 2D shape model. The same model 

parameters were then used on the linear 2D shape model in the target pose to synthesise new 

shape in that pose. The texture mapping is similar to AAM, except that the model parameters of 

texture model are independent to shape model. In experiment, the face recognition system using 

synthesised face images in target pose achieved 100% accuracy on 100 synthetic faces with 2 

poses per face (24° in yaw as gallery and 0° as probe). Because the 3D face models were only 
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involved in model establishment and the main steps were in 2D image space free from 3D data, 

this approach was classified as a 2D technique and discussed in this section.  

Gross et al. [33] proposed Eigen Light-Field (ELF) method to extend the capability of 

Vetter’s method of handling multiple gallery images in different poses per face in face 

recognition across pose. They unified all possible appearances of faces in different poses within a 

framework of light field, which is in a 4D space (two viewing directions and two pixel positions). 

Assuming human faces as convex Lambertian objects, this light-field was highly redundant and 

consequently the light field coefficients were associated in different poses for the same identity. 

In training stage, a set of face images in different poses of different identities were first warped to 

a uniform shape based on a set of manually located feature points (e.g., eyes and mouth), where 

each pixel corresponded to a unique pixel location in the light field. The pose variant images 

were represented by a single concatenated vector for each identity and principal component 

analysis was performed on those concatenated vectors from different training identities. Because 

of the redundancy of the light-field, face images in different poses were represented using a 

single set of eigen vectors and eigen values to capture the variations due to identity changes. In 

recognition, input images (gallery image and/or probe image) were also warped and then 

projected onto the established eigen space by a least square method instead of direct dot product, 

because the dimensionality of input images is usually smaller than that of the light field (image 

dimension times number of poses). The recognition was then performed by comparing the 

projected eigen coefficients from gallery image(s) and probe image in Euclidean distance. This 

algorithm was tested on CMU-PIE [70] and the FERET [62] face databases. On FERET database 

with 9 poses within ±40° in yaw per face of 100 faces, ELF achieved 75% identification accuracy 

using any pose as gallery image and the remaining 8 poses as probe. On CMU-PIE database with 
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13 poses within ±62° in yaw and ±20° in tilt per face of 34 faces, ELF achieved 66.3% accuracy. 

This method also showed capability of improving recognition accuracy when more gallery 

images were available. However, since ELF requires a restricted alignment of 2D image to the 

light field space, it actually discarded face shape variations due to different identity which was a 

critical feature for face recognition. In this sense, this ELF method is parallel to those methods 

using generic face shape for pose recovery which will be discussed in Subsection 5.1. 

Kahraman et al. [39] enhanced AAM’s capability in pose tolerance by enlarging the training 

set with synthetic pose variant face images. In pose normalisation step, they recorded 

displacements of all landmarks of the AAM using a reference face and the landmark’s coordinate 

ratios between rotated view and frontal view were assumed constant when transforming from the 

reference face to an input face. This assumption is also similar to parallel deformation which 

introduces the errors from different choices of the reference faces. Synthetic images in different 

poses were then generated from single frontal images by moving the landmarks along the 

recorded displacements. A single AAM was trained on the synthetic images covering 8 different 

poses rather than multiple AAMs trained in different poses as done in [25]. Frontal and non-

frontal images within 45 degree rotations can then be transformed mutually by altering the 

parameters controlling pose variations after the AAM was aligned to each image. The 

experiments of face recognition were conducted on Yale B database but the focus is on 

illumination tolerance, not pose tolerance. The proposed modified AAM method advantages the 

original AAM in the single training and alignment process for all poses, while it suffers from 

incapability to handle larger pose variations because AAM cannot be reliably aligned to rotated 

views with occluded landmarks.  
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4.3 Pose Transformation in Feature Space  

Pose tolerance can also be achieved in feature space instead of the explicit image space, 

where the feature-space transformed data cannot be visually displayed as face images as in the 

image space. These transformations in feature space are designed either to general image 

variations (e.g., kernel tricks) or specifically to pose variations (linear pose transformation). One 

possible feature space transformation for face recognition is kernel tricks which nonlinearly map 

face images into a higher dimensional non-linear feature space, so that the previously non-

separable distributions caused by pose variations could be (better) linearly separable. This is 

supported by Cover’s theorem [34], that nonlinearly separable patterns in an input space will 

become linearly separable with a high probability if the input space is transformed nonlinearly to 

a high-dimensional feature space. A number of kernel-based face recognisers were proposed to 

perform face recognition or other pattern recognition tasks, such as various Kernel PCAs [54, 66, 

80] and Kernel FDA [36, 82]. In [66], Schölkopf et al. proposed a framework of performing a 

non-linear PCA with kernel functions in high-dimensional feature space transformed from the 

input image space. Liu [54] pre-processed the facial images with Gabor wavelets and extended 

kernel polynomial functions to have fractional powers in Kernel PCA. Xie and Lam [80] 

proposed to train an eigenmask as an additional kernel function to adjust the contributions of 

different image pixels due to their importance (or discriminative power), e.g., pixels around eyes 

might be more important in face recognition than other pixels in cheeks so that they will be 

assigned higher weights.  

Huang et al. [36] proposed to automatically tune to find optimal parameters of a Gaussian 

radial basis function in their Kernel Fisher Discriminant Analysis (K-FDA) using an Eigenvalue-

Stability-Bounded Margin Maximisation (ESBMM) algorithm. Experimental results on face 
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recognition across pose were reported on Yale Database B and CMU-PIE database and showed 

their method outperformed other algorithms such as PCA and KPCA. However, these 

experimental evaluations are quite limited. Yale Database B contains only small in-depth 

rotations whin 24 degrees and 10 different faces which is not a convincing test bed for face 

recognition algorithms claiming to have pose handling abilities. In CMU-PIE database, the 13 

face images of different poses are mixed with additional 43 images under different lighting 

conditions, which diluted the test’s sharpness. Yang et al. [82] proposed to perform FDA on the 

KPCA transformed feature space and to differentiate regular and irregular features based on the 

singularity of the within-class scatter matrix. The regular features were performed under the 

standard FDA mechanism and the irregular features were treated under PCA. Then the two sets 

of coefficients were fused using summed normalised-distance for classification. The kernel tricks, 

sometimes with Gabor filtering to extract local texture information, improved PCA’s or FDA’s 

capability in handling pose variations. However, this improvement is limited due to the fact that 

the actual nonlinear transformation forms caused by pose variations are unknown. The existing 

non-linear kernel functions only have random effects on face recognition across pose, i.e., it may 

equally possible to improve and to reduce the performance and this effect is unknown before 

experimental evaluations. The ideal pose transformations, if they are known, could be unlikely 

capable of being analytically formulated such that these transformations cannot be treated as 

kernels in KPCA or KFDA.  

To explicitly model the pose variations, researchers proposed to train a linear transformation 

based on a set of images under pose variations to learn pose transformation free from identity-

related image features. Kim and Kittler [42] proposed a hybrid approach, expert fusion, fusing 

four different systems to tolerate pose variations in face images for recognition. The first system 



 

37 

is based on a linear pose transformation on PCA features which are then classified using linear 

discriminant analysis (LDA). The second system simultaneously trains linear transformation 

matrix and the LDA system and uses raw image data without the previous PCA feature extraction. 

The third system applies generalised discriminant analysis (GDA), which uses non-linear radial 

basis function as pose transformation functions. The fourth system applies a pose transformation 

lookup table generated by rotating generic 3D face shape. The first two systems belong to this 

subcategory of linear pose-tolerant feature extraction; the third system belongs to non-linear 

pose-tolerant feature extraction (i.e., kernel-based method); and the last system is classified in 2D 

transformation using a 3D generic face model. Finally, these four systems are fused to form 

single classification decisions in Euclidean distance assuming they are mutually independent. 

After training on 170 people, the proposed fused experts achieved 70% accuracy on 30 degree 

rotated faces using single frontal views as gallery on 125 different people from XM2VTS 

database.  

As the pose variation is a projection of 3D rigid transformation onto 2D image space, the 

global linear approximation is incapable of accurately describing image variations caused by 

pose changes, which results in unwanted distortions in certain face regions. To alleviate this 

problem, different localisations were proposed such as using evenly distributed patches [19] and 

using image regions around facial components [63]. These treatments are effective similar to 

local approaches of general face recognition algorithms using evenly distributed patches (e.g., 

SOM+CN [47], LBP [2], etc.) or using image regions around facial components (e.g., Template 

Matching [16], Modular PCA [61], EBGM [79], etc.). With the assistance of a generic 

cylindrical face model, Chai et al. [19] proposed to generate virtual frontal views from single 

horizontally rotated views through Local Linear Regression (LLR). In training stage, the face 
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image was first divided into 10-30 evenly distributed patches in terms of an average cylindrical 

face model. In each patch, linear regression was performed to minimise the sum-square of image 

differences between frontal and non-frontal face images under a linear transformation. Then in 

testing stage, the input non-frontal image was also divided into patches in the same manner and 

each patch was transformed using the trained linear transformation matrix to form the appearance 

in the frontal view. Finally, all reconstructed patches were combined with a intensity averaging 

of overlapped pixels to form holistic frontal virtual views for recognition. On CMU PIE database 

with a rotation within 45 degrees, the proposed method showed superior performance over Eigen 

Light-field [33], achieving an average accuracy of 94.6%.  

Prince et al. [63] proposed a linear statistical model, Tied Factor Analysis (TFA) model, to 

describe pose variations on face images and achieved state-of-the-art face recognition 

performances under large pose variations. The underlying assumption is that all face images of a 

single person in different poses can be generated from the same vector in identity space by 

performing identity-independent (but pose-dependent) linear transformations. From a set of 

training images in different known poses, the identity vectors and the parameters of the linear 

transformations were estimated iteratively using an EM algorithm. Figure 6(a) shows face image 

distributions in the observed feature space, which is either the raw space spanned by vectorised 

image pixels or a transformed space after simple pose-independent transformations (e.g., Gabor 

wavelet or radial basis functions). In this space, the locations of pose variant face images x  and 

identity variant face images are mixed altogether, which makes the separation of identity from 

pose variations infeasible. To effectively separate identity from pose variations, an ideal identity 

feature space is proposed and shown in Figure 6(b). This identity space is spanned only by faces 

of different identities h , free from pose variations. The relationship between these two spaces is 
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under a linear transformation, which includes a multiplication F , an offset m  and a Gaussian 

noise ε . Hence, a single point h  in the identity space can be mapped to positions in observed 

feature space (e.g., 1x , 2x , and 3x ) under different pose transformations (e.g., 1 1 1 1x F h m ε= + + , 

etc.), which represent different face images of the same identity in different poses. Because of the 

inclusion of the offset and Gaussian noise, this linear transformation can better model the actual 

pose transformation projected to the 2D image space than the linear transformation in Expert 

Fusion [42]. However, the computation is more challenging due to the nonlinearity of the noise 

factor. The tied factor analysis approach also assumes a Gaussian distribution for the identity 

space and these pose-independent identity vectors were then used in face recognition through 

Maximum A Posteriori (MAP) mechanism by choosing the gallery image which corresponds to 

the maximum probability under this linear transformation scheme. This approach has advantages 

over applying fixed transformations before recognition, because the tied factor analysis explicitly 

searches transformations to achieve pose-independent feature extractions. Because the 

transformation was limited to linear due to computational feasibility, it could be insufficient to 

adequately describe pose variations which are non-linear transformations if mapped to 2D image 

space. In recognition experiments, the estimation of identity vectors were limited to two poses 

only (the gallery pose and a single probe pose) and on 100 faces from FERET database it 

achieved accuracies of 83% for 22.5 degrees, 59% for 67.5 degrees, and 41% for 90 degrees 

respectively against frontal gallery images. The performances were further improved to 100% for 

22.5 degrees, 99% for 67.5 degrees, and 92% for 90 degrees, when the algorithm takes local 

Gabor data around manually labelled facial features instead of raw image data as input. This 

result is consistent to the previous reports [61, 79] that (1) Gabor features are robust to image 
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distortions [49], and (2) local features are more robust to pose variations than global images as 

discussed in the previous section.  

 

Figure 6  The explicit pose-dependent linear transformations and the pose-independent identity 
vector in the tied factor analysis in [63]. (a) In the observed space (e.g., image space), pose 
variant images of the same identity locate at different locations which results in low performance 
of face recognition across pose variations; (b) Under identity-independent linear 2D 
transformations, these images were traced back to the same vector in the identity space which 
represents solely the identity information free from pose variations.  

Pose transformation can also be approximated in transformed space, other than in the 

original image space. In this sense, the TFA approach using wavelet coefficients as the input data 

also belongs to this subcategory. Besides, Levine and Yu [50] compared five correlation filters 

on face recognition in terms of their robustness to pose, illumination, and expression variations, 

which all perform image transformations including pose transformation approximation in Fourier 

transformed frequency space. The best performed correlation filter under pose variations, 

Distance-Classifier Correlation Filter (DCCF) [57], achieved 79% recognition rate using single 

gallery views on the USF 3D Human-ID database (USF-3D) containing synthetic images of 50 

people in 2050 different poses within 40 degrees in yaw and 12 degrees in tilt. Similar to K-FDA, 
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DCCF searches an optimal correlation filter h  to maximise a scatter cost function ( )J h  in a 

Fourier transformed frequency space. Parallel to FDA in the image space, the cost function is 

defined as the ratio of a between-class scatter measure to a within-class scatter measure in the 

Fourier transformed space. Applied to face recognition across pose, this mechanism is equivalent 

to searching an optimal linear filter in frequency space which best describes the pose variations 

according to FDA classification criterion. This approach is nonlinear due to the involvement of 

Fourier transform. Generally, correlation filter-based methods are more sensitive to pose 

variations where nonlinear image distortion occurs than other image variations (e.g., illumination 

changes, expression, etc.) as shown in the experiments of [50]. Because correlation filters are 

linearly associated with a fixed nonlinear transform (Fourier), this observation on face 

recognition experiments could lead to a conclusion that pose variations cause severer 

nonlinearity than illumination and expression variations do, at least in Fourier transformed space.  

In this subcategory, various methods have been proposed to transform the image space to a 

feature space where pose variation can be better tolerated, by 1) nonlinear mapping defined by 

various kernel functions, and 2) pose specific linear transformation in image space, Gabor 

coefficients, or frequency domain under Fourier transform. Kernel-based methods rely on 

predefined (fixed) nonlinear transform function to approximate pose variations which are not 

specifically adjusted to fit pose variations. Pose specific linear transformations tend to train 

parameters from pose variant face images, which can be used to specifically describe pose 

variations. However, pose variations, when projected to 2D image space, are not exactly linear 

transformations, because it contains a number of occlusions and warps. Consequently linear 

transformations are not capable to adequately describe pose variations in image spaces. One of 

the possible directions could be the design of a pose specific nonlinear transformation, which 
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will better approximate image transformations caused by pose variations, but will inevitably 

result in more tractability and computation challenges.  

4.4 Summary and Discussions 

The pose-invariant face recognition methods using 2D techniques have been classified into 

three groups, i.e., real view-based matching, pose transformation in image space, and pose 

transformation in feature space. The methodologies of these techniques have been summarised in 

Table 8 and the advantages/disadvantages of different methods have been summarised in Table 9. 

Real view-based methods are the most straight-forward techniques in handling face recognition 

across pose. They can make direct use of general face classifiers discussed in Section 3 to match 

input images with gallery images in the same rotated pose. The performances of real view-based 

matching methods are similar to those of frontal face recognition using general face recognition 

algorithms, because the only difference is its non-frontal matching. The limitation lies in that it 

requires a relatively large number of real images captured from all possible viewing directions, 

which restrains them from practical applications. Face recognition based on 2D pose 

transformation in image space is a successful extension of the real view-based face recognition. 

Instead of acquiring a large number of real images as gallery views, these techniques synthesise 

virtual views in possible poses from a limited number of real gallery views (often from a single 

gallery view) to substitute the real gallery views with help of reference face(s) as prior knowledge. 

The techniques used in virtual view synthesis are 2D image transformations based on pixel 

correspondence between the source images and the target images. Assuming image continuity in 

pose transformation, these techniques can effectively handle pose variations within small to 

median in-depth rotations usually limited to 45 degrees. However, large pose variations bring 
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image discontinuities in the 2D image space so that it cannot be reliably handled within 2D space. 

Under such circumstances, 3D approaches generally outperform 2D techniques and they are 

reviewed in next section (Section 5). Another issue in pose transformations is the suboptimal 

modelling of facial textures. Because pose variations are always associated with the changes of 

illumination, the same points on a face may appear differently in two face images taken from 

different viewpoints. Most 2D transformation methods, however, only considered shape 

transformation by finding the corresponding pixels between images and neglect that the pixel 

values may change as well. Among the pose transformation methods reviewed in this section, 

AAM and Vetter’s linear shape model tend to actively model facial textures. The modelling of 

facial textures is however in a linear interpolation manner, which cannot adequately approximate 

the non-linear variations of reflected intensities from human face surfaces. An accurate yet 

computationally feasible approximation of face surface reflection may help to improve the 

performance of 2D transformation methods in recognising faces across pose.  

Pose transformations in feature space tend 1) to implicitly improve linear separability of face 

images under pose variations by non-linear mapping prior to recognition, and/or 2) to explicitly 

model the pose transformation using linear approximations. The second strategy has the promise 

to find a non-linear mapping and space best suitable to pose variations, while the current research 

stage is primarily limited to fundamental mapping functions (e.g., radial basis functions). The 

question of whether there is a feature space where rotated faces are separable is still open to the 

research community. An answer to this question may lead to a clearer understanding of pose-

invariant face recognition, similar to the findings of linear subspaces in illumination-invariant 

face recognition [5, 8, 64].  
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Table 8  The methodologies of the 2D techniques for face recognition across pose. 

Approach Pose tolerance and compensation Face recognition algorithms 
Real view 
matching [12] 

Multiple real views Template matching 

Mosaicing [71] 
Panoramic view from multiple real views in different 
poses 

Log Gabor transform + modified C2 
features + support vector machine 

Parallel 
deformation [10] 

Inter-person deformation + intra-person deformation 
across pose + double deforming the gallery view to 
generate virtual views 

Template matching 

PDM [32] 
Facial components locating + PCA on point sets + 
altering the second principal component to 
compensate pose variations 

EBGM matching 

View-based AAM 
[25, 68] 

PCA on point sets and warped image intensities + 
finding the closest matching model parameters to the 
input image + pose transformation in model 
parameters with a residual 

Adaptive PCA 

Linear shape 
model [76] 

Dense point distributions + 2D projections of 3D 
linear shape model + pose transformation using 2D 
linear shape models in different poses 

Similarity measure using 1) correlation, 
and 2) Euclidean distance 

Eigen light-field 
[33] 

Feature-based warping image to uniform shape + CPA 
on concatenated image vectors in different poses + 
image projection onto eigen space using least square 
method 

Euclidean distance on projected eigen 
coefficients of gallery and probe images 

Pose 
normalisation in 
AAM [39] 

Synthesising virtual views in different poses with a 
reference face + enhanced AAM training + standard 
AAM searching 

PCA, FDA 

KPCA [66] Kernel functions 
Kernel principal component analysis 
(KPCA) 

GW-KPCA [54] Fractional power polynomial kernel functions  Gabor wavelet + KPCA 

GW-DKPCA [80] Double nonlinear mapping in kernel functions 
Trained weigh mask + Gabor wavelet + 
KPCA 

ESBMM-KFDA 
[36] 

Adaptive kernel functions  Kernel Fisher’s discriminant analysis 

CFDA [82] Kernel functions 
KPCA + KFDA and PCA + fused sum-
normalised distance 

Expert fusion [42] 
1) Linear pose transformation, 2) radial basis function, 
3) 3D generic shape compensation 

Fusion of 1) PCA + linear 
transformation + LDA 2) generalised 
discriminant analysis, and 3) linear 
discriminant analysis 

DCCF [50] Correlation filter in frequency domain 
Fast Fourier transform + correlation 
filter + Inverse FFT + distance between 
peaks 

LLR [19] 
Evenly distributed patches as input data + linear 
approximation of pose variation on 2D image patches 

FDA 

TFA [63] 
Gabor wavelets on local regions around facial 
components as input data + linear transformation with 
offset and noise factors  

linear transformation + maximum a 
posteriori (MAP) 
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Table 9  The advantages and disadvantages of the face recognition algorithms using 2D 
techniques in face recognition across pose. 

Approach Advantages Disadvantages 
Real view matching 
[12] 

Simple, straightforward, good 
performance 

Need to collect a large number of gallery images 
per person covering all possible poses 

Mosaicing [71] 
Continuous pose coverage, single 
panoramic view required 

Distortions exist, no vertical in-depth rotation 
(tilting) 

Parallel deformation 
[10] 

Simple, fast, sharp, single gallery image 
Pose tolerance is small, the choice of reference 
face is arbitrary 

PDM [32] 
Simple, fast, single gallery image, good 
separation of pose and identity in 
statistics 

Manual interference, performance largely 
dependent on PCA training 

View-based AAM [25, 
68] 

Considering both shape and texture, 
single gallery image, intermediate pose 
coverage 

Searching is not always reliable, the choice of 
reference image may introduce identity-related 
errors. 

Linear shape model 
[76] 

Detailed shape description, linking shape 
variations in different poses 

Automatic correspondence is not reliable on 
non-feature points, many models are required to 
cover a range of poses 

Eigen light-field [33] 
Capable of handling multiple gallery 
images, single eigen space for different 
poses 

Discarding shape variations by warping which 
could be critical features for recognition 

Pose normalisation in 
AAM [39] 

Single AAM for all poses 
The choice of reference face shape is arbitrary, 
the pose normalisation assumption is coarse. 

Kernel tricks [36, 54, 
66, 80, 82] 

Nonlinear transformation encapsulated in 
dimension reduction, simple, fast 

The existing kernel functions are not specific to 
pose variations, the choice of kernel functions 
are limited. 

DCCF [50] 
Nonlinearity by Fourier transform, 
translation invariant 

Correlation filter cannot adequately describe 
image variations caused by pose variations 

Linear pose 
transformation in 
expert fusion [42] 

Simple, characterising pose variations 
using explicit transformation 

Linear transformation cannot adequately 
describe image variations caused by pose 
variations  

LLR [19] 
Localisation alleviates inaccuracy of 
linear approximation of pose 
transformation 

Linear transformation cannot adequately 
approximate pose variations even in local 
regions, overlapping of patches may cause 
problem 

TFA [63] 
Consideration of noise factor and offset 
in linear pose transformation, localisation 
around facial components  

Linear transformation cannot adequately 
describe image variations caused by pose 
variations 

 

5 Face Recognition across Pose with Assistance of 3D Models 

Recently, face recognition with assistance of 3D models becomes one of the successful 

approaches, especially when dealing with pose and illumination variations. The success of 3D 

model-based approaches in handling pose variations is due to the fact that human heads are 3D 
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objects with fine structures and changes in viewpoints all take places in the 3D spaces. The 3D 

face models used in face recognition could be generic 3D shape models [26, 55, 85], personalised 

3D scans [37, 40, 77, 83], and personalised 3D models reconstructed from 2D images [14, 18, 

30, 38, 48, 86, 87]. Face recognition using personalised 3D scans belongs to 3D face recognition 

and is out of the scope of this review, whose focus is 2D image-based face recognition. We 

redirect the interested readers to the excellent reviews specifically on 3D face recognition [15, 

65]. Face recognition techniques using generic shapes consider the uniform face shape as a tool 

for the transformation of image pixels. Personalised 3D face (shape) models can be reconstructed 

using feature-based (Section 5.2) or image-based techniques (Section 5.3). Feature-based 3D face 

reconstructions [38, 48, 87] utilise facial features (e.g., eyes, nose, mouth, and etc.) extracted 

from 2D images to predict the volumetric information of the input face. Image-based 3D face 

reconstructions [14, 18, 30] consider facial textures (e.g., pixel intensities) as critical clues and 

used them in reconstruction.  

5.1 Generic Shape-Based Approaches 

A simple and efficient pose recovery methodology (cylindrical 3-D pose recovery) based on 

a generic cylindrical face shape was proposed [26] to handle face images in small in-depth pose 

variations. The face images in arbitrary horizontal poses were mapped onto the generic 

cylindrical face shape and the frontal virtual views can be recovered (Figure 7). Given a rotated 

input image, this method first detected the locations of two eyes, the vertical symmetric line, and 

face boundary. By calculating the relationships of the horizontal distances of eyes to symmetric 

line and face width, the rotation angle can be estimated by geometric transformations. Facial 

textures were then mapped by transforming the rotated view to a frontal pose on a cylinder. In the 
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implementation, this process is integrated into image normalisation and the processing time can 

be neglected compared to the rest of the processes in the recognition. Using LEM and Eigenfaces 

as face classifiers, this pose recovery demonstrated to be able to improve face recognition 

performances under pose variations.  

 

Figure 7  The pose recovery from a non-frontal view to a frontal view using a cylindrical face 
shape. [26] 

Liu and Chen [55] proposed a Probabilistic Geometry Assisted (PGA) face recognition 

algorithm to handle pose variations. In their algorithm, human heads were approximated as an 

ellipsoid whose radiuses, locations, and orientations were estimated based on universal mosaic 

model. Then the facial textures of the image were warped onto the surface of the ellipsoid which 

became free from pose variations. Due to occlusion, the visible regions of images in different 

poses were different, so that a normalised pixel-wise Euclidean distance was used for recognition 

which only considers the overlapped region of two texture maps on the ellipsoid. A probabilistic 

model was trained to assign different weights to different pixels according to their discriminating 

powers in recognition, which can further improve the performance of face recognition across 
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pose. In experiments on CMU-PIE database with 9 poses and 34 faces, the probabilistic geometry 

assisted face recognition algorithm achieved an average of 86% identification accuracy. Yang 

and Krzyzak [81] have recently incorporated this geometrical mapping technique into a complete 

face detection and recognition system, where face detection is based on skin colour and pose 

estimation is based on facial features.  

Besides using simple geometries (e.g., cylinder, ellipsoid, etc.) as generic 3D face models, 

Zhang et. al [85] proposed an Automatic Texture Synthesis (ATS) approach to synthesise rotated 

virtual face views from a single frontal view for recognition using a generic face shape model. 

This face shape was generated by averaging 40 3D face shapes in range data format which were 

aligned using two eyes’ locations. A gallery face image was aligned using two eyes’ locations to 

the 3D generic shape and standard computer graphics procedure was applied to render virtual 

face views in different poses. By considering diffuse and specular reflectivity of the face surface, 

the texture mapping can generate simulated highlights on the rotated face views. In experiment 

on CMU-PIE database with one frontal gallery image and one 15 degree-rotated probe image per 

face of 40 faces, the ATS approach achieved 97.5% identification accuracy.  

Generally, 3D approaches are computationally complex compared to their 2D counterparts. 

However, approaches using generic 3D shapes do not have this disadvantage. For instance, the 

generic shape-based pose recovery method [26] is very efficient and the pose recovery step can 

be neglected in the processing time. In this sense, techniques using 3D generic shapes are very 

similar to 2D pose transformation. The only difference is that the transformation space is no 

longer the image space, but a non-linear space specified by the 3D generic shape. Despite of their 

simplicity and efficiency, techniques using 3D generic shapes suffer from the incapability to 

preserve inter-personal shape difference, which is an important feature for face classification. 
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Under a relatively large pose variation, the differences between the generic shape and the 

individualised shape usually result in a decrease of recognition accuracy. Due to this aspect, other 

3D approaches try to build personalised 3D face shapes even though it could be computationally 

demanding.  

5.2 Feature-Based 3D Face Reconstructions 

3D reconstruction is an active research area in computer vision, which inversely estimates 

3D shape information from 2D images. Generalised 3D reconstruction considers all of the shape 

modelling, the surface reflectivity descriptions and the estimation of environmental parameters 

(e.g., lighting conditions). The clues for reconstructing 3D objects in 2D images are usually 

image features (e.g., edges and corners) and image intensities. In the context of face recognition 

through 3D reconstructions, these two groups are feature-based 3D face reconstructions and 

image-based 3D reconstructions, respectively. Feature-based 3D face reconstructions [38, 48, 51] 

reviewed in this subsection estimate personalised face shapes from the 2D locations of facial 

features (facial components such as eyes, nose, etc and image features such as edges or corners). 

Other 3D face reconstructions use image intensities and the reflectance models to extract shape 

and/or texture information from 2D images, in which more complicated processing is usually 

involved. These image-based reconstructions will be reviewed in the next subsection (Subsection 

5.3).  

Lee and Ranganath [48] presented a composite 3D deformable face model for pose 

estimation and face synthesis based on a template deformation which maintained connectedness 

and smoothness. Three sub-models of edge model, colour region model and a wire frame model 

were deformed correspondingly in minimising a cost function consisting of edge fitting errors, 
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colour region displacements and deformation energy. The edge model defines the outlines of the 

face as well as various facial features such as the eyebrows, eyes, nose, mouth and ears. In the 

colour model, seven facial regions with colour information were considered. The regions were 

eyebrows, eye, nostrils and mouth. In the wire frame model, the face surface was divided into 

100 triangles, which are defined by 59 vertices. To overcome false convergence on local minima, 

multiple evenly distributed models were assigned at the initial stage and the model with the 

lowest cost was chosen as the initial model. Then a typical gradient descent method was applied 

for minimisation of the cost function. Using five images of the same person with different poses, 

a complete 3D face model for the person can be generated. The model was transformed to novel 

poses and scales by rigid 3D rotation and the virtual textures were synthesised by estimating an 

optimal set of coefficients on a linear texture space spanned by training images to best 

approximate the input image. The recognition was then performed by comparing the synthesised 

image with the probe real image pixel-wisely in Euclidean distance. In experiments on a dataset 

of 15 faces with 11 different conditions per face (6 poses + 3 lighting + 2 scales), it achieved 

56.2% recognition accuracy using a single gallery image per person and 92.3% accuracy using 10 

gallery images per person. For the latter experiment setting using 10 gallery images per person, 

the pose-invariant face recognition algorithm was degraded to real view-based matching as the 

number of gallery images (10) is almost equal to the number of testing conditions (11).  

Jiang et al. [38] used facial features to efficiently reconstruct personalised 3D face models 

from a single frontal face image for recognition. Their method is based on the automatic 

detection of facial features on the frontal views using Bayesian shape localisation. A set of 100 

3D face scans was used as prior knowledge of human faces. Facial features on both input images 

and 3D scans were used to find principal components of face shapes on the shape spaces spanned 
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by the training 3D shapes. Personalised 3D face shapes were reconstructed and the facial textures 

were directly mapped onto the face shape to synthesise virtual views in novel conditions as 

shown in Figure 8. Because the facial features all have semantic meanings, this method is also 

capable to synthesise virtual views with different expressions through changing locations of the 

facial features on the reconstructed 3D models. On CMU-PIE database, the method was shown to 

improve both PCA and LDA recognition algorithms, especially for LDA in half-profile views. 

This method, however, cannot effectively improve the recognition performance of near-profile 

views, due to the unreliable synthesis of the profile virtual views. This indicates that the facial 

features on the frontal views are not associated with the height information of face shapes. For 

instance, a narrow nose may or may not be higher than a broad nose. Therefore, a side view per 

person is desirable for more accurate estimation of the surface heights of the face. Compared to 

the composite deformable model [48], this model used the distributions of facial feature points 

on training face shapes as the space for new input shapes to project onto. Composite deformable 

model, on the other hand, didn’t consider such prior knowledge and limited shape variations by 

introducing a general deformation cost defined by purely geometric changes of the 3D model. 

Such a deformation cost might be inappropriate of describing face shape variations due to 

identity changes. Jiang’s method limited the identity-related shape variations within a training 

distribution by introducing a fairly complicated training mechanism.  
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Figure 8  The process of 3D reconstruction and view synthesis in [38]. 100 3D faces with 
labelled images were used to relate 3D structure with 2D facial features. Neutral frontal images 
were automatically labelled and 3D structures were estimated using the prior knowledge from 
100 training faces. Then the 3D structures with 2D textures were altered to generate novel virtual 
views in different poses, illumination conditions, and expressions and these views were used as 
models in recognition. 

Using two orthogonal gallery images per face, Zhang et al. [84, 87] proposed to reconstruct 

the personalised 3D face shape by using Multi-level Quadratic Variation Minimisation (MQVM). 

From a 3D feature point set manually specified on the frontal view and side view of an input face, 

the 3D face shape was reconstructed from scratch by minimising a cost function of quadratic 

variations of 3D surfaces which ensures a second order smoothness. This process was performed 

in a hierarchical manner to overcome the sparseness of the facial feature points on facial images 

as shown in Figure 9. Specifically, the global cost function was defined as the second order 

smoothness of the surface, which was expressed of second partial derivatives on the x and y 

coordinates. Face shapes represented as vectors were varied in seeking the minimal of the cost 

function while maintaining the facial feature points on the right locations specified on the frontal 

and side-view gallery images. This process started in a coarse resolution which reached the 

convergence quickly and provided a good initial shape for the next resolution level. Finally, a 
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pixel-wise 3D surface model was reconstructed in the finest resolution level. After shape 

reconstruction, this method analysed facial textures by fitting the pixel intensities in Phong 

reflection model in considerations of face shape and lighting directions known a prior. Then 

virtual face views in different poses were synthesised and local binary patterns (LBP) were used 

for recognition in a view-based manner. In experiment on CMU-PIE database containing 13 

poses per face of 68 faces with frontal lighting, this method achieved 93.45% recognition 

accuracy on 11 testing poses using two poses (frontal and side-view) as gallery. Compared to 

[38], MQVM used two views in different poses for 3D face shape reconstruction which is 

beneficial to face recognition across pose, because an additional view in a different viewpoint 

will provide more shape information otherwise unavailable from a single viewpoint. This 

extension, however, put an additional requirement for face database which might limit the 

applicability in general face recognition scenario.  

 

Figure 9  The hierarchical process of Multi-level Quadratic Variation Minimisation in [87]. (a, d) 
Reconstructed shape in coarse resolution, (b, e) in intermediate resolution level, and (c, f) in fine 
resolution.  
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In feature-based 3D face modelling approaches discussed above, personalised 3D face 

shapes were reconstructed from a set of facial features specified on facial images. The use of 

prior knowledge as in [38] helps the systems to reduce the number of gallery views required. 

However, the prior knowledge of human face shapes (usually obtained by analysing a set of 

existing face shapes) will be unreliable if the input face shape is very different from the average 

shape, which causes the shape deformation to fail in converging to a plausible reconstruction 

result. Because the facial features are usually sparse (about 100 points can be specified compared 

to 10,000 image pixels on 100x100 face images), they are unlikely capable of providing 

sufficient information for fine structure reconstruction such as eye balls and lips. A pixel-wise 

feature set should be used to achieve better reconstruction quality which will be discussed in the 

next subcategory of image-based reconstruction.  

5.3 Image-Based Reconstruction 

Image-based 3D face reconstructions carefully study the relationship between image pixel 

intensities and its corresponding shape/texture properties. From a set of pixel intensities, 3D face 

geometry and face surface properties can be estimated using appropriate reflectance models, 

which associate shape and texture information with reflected intensities. Unlike feature-based 3D 

face reconstructions’ limited use of a few features on the face images, image-based 3D face 

reconstructions make use of almost every point on the face images and it is thought to closely 

resemble the reality of reflections.  

Blanz and Vetter [13, 14] proposed a successful face recognition system using 3D 

Morphable Model (3DMM) based on image-based reconstruction and prior knowledge of human 

faces. The prior knowledge of face shapes and textures was learned from a set of 3D face scans 
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where pixel-wised inter-personal correspondence had been established using 3D version of 

optical flow on 3D surfaces. Then shape and texture information in the forms of vertices and 

diffuse reflectance coefficients was spanned into different eigen spaces where principal 

component analysis was performed to form a 3D morphable model. The morphable model was 

then fitted into a single face image in an arbitrary condition by iteratively minimising pixel 

differences of image intensities and reconstructed virtual intensities using the set of parameters 

controlling the variations of shape, texture, illumination, pose, specularity, camera parameters, 

etc. Using stochastic Newton optimisation method, the process first makes use of several facial 

features defined on both image and 3D model to find a rough alignment and then relies more and 

more on the comparison of pixel intensities. The principal components of shape model and 

texture model were obtained in this process which was then used to reconstruct personalised 3D 

models and used for recognition using a modified angular (dot product) similarity measure based 

on linear discriminative analysis. The recognition was then performed using the extracted shape 

and texture parameters between gallery and probe as shown in Figure 10. In experiments on 

CMU-PIE database with 3 poses (0º, 15º, and 60º in yaw) by 22 illumination conditions per face 

of 68 faces, the recognition has achieved 92.1% using one of the 66 (3x22) images as gallery and 

the rest as probe for each person. On FERET database with 9 poses ranging within ±40º in yaw 

per face of 194 faces, the recognition algorithm achieved 95.8% using frontal view as gallery and 

the rest as probe.  
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Figure 10  The process of face recognition based on 3D morphable model [14]. The shape and 
texture prior knowledge characterised by principal components was learned from a database of 
3D face scans. 3D morphable model was then fitted to single input images for both gallery and 

probe. Personalised shape and texture coefficients (i.e., αr  and β
r

 respectively) were extracted 
which are free from external pose and illumination conditions. These identity-related parameters 
were then used in recognition. 

Georghiades et al. [30] proposed Illumination Cone Models (ICM) which successful 

performed face recognition under pose and illumination variations using the techniques of 

photometric stereo. Their method is based on the fact that the set of images of an object with 

Lambertian surfaces in fixed pose but under all possible illumination conditions is a convex cone 

in the space of images. From a set of frontal face images under different near frontal illumination 

conditions, personalised face shape and surface reflectance information was reconstructed by 

minimising the difference of the input gallery face images and the corresponding rendered 

images associated with surface gradients and reflecting properties. The procedure sequentially 

estimates lighting conditions (i.e. light directions and intensities), surface gradients, and diffuse 
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reflectance coefficients and gradually converges to an optimal solution in a least square sense 

using singular value decomposition. Virtual views in novel illumination and viewing conditions 

were then synthesised and used in face recognition to match the probe image with the closest 

virtual images in sampled poses and illuminations. Their recognition approach was tested on the 

Yale Database B consisting 4,050 images of 10 faces under 45 illumination conditions × 9 

different poses (±24º in-depth rotation). It achieved 96.25% recognition accuracy using the 

frontal image as gallery and other 8 poses as probe. This approach relies only on the pixel 

intensities from multiple images under different lighting conditions and a fixed pose and the 

reconstruction process doesn’t require any form of prior knowledge of human faces. The 

assumption of Lambertian surfaces, however, causes the reconstruction results to have a bas-

relief ambiguity [9], i.e., the reconstructed shape and estimated lighting are not unique. To 

resolve this ambiguity, certain forms of prior knowledge on human faces are used such as left-

right symmetry, similar heights of forehead and chin, and relationship of the surface heights and 

width.  

In [31], the illumination cone model was extended by incorporating Torrance-Sparrow 

model [73] into the process of 3D reconstruction of human faces to resolve the bas-relief 

ambiguity [9] associated with photometric stereo using Lambertian model [45]. Using the results 

of [30] as the initial estimate, the difference of the real face images and the rendered images 

using the estimated parameters based on a simplified Torrance-Sparrow model was minimised 

using the steepest descent method. This algorithm is able to inversely estimate a set of spatially 

varying diffuse reflectance coefficients with a uniform specular reflectance coefficient, while the 

estimation of a full set of spatially varying reflectance coefficients remains open. Tested on the 

same experiment setting as in [30], the face reconstruction method using Torrance-Sparrow 
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model achieved slightly higher recognition rates than the method based on Lambertian model. 

Other directions of the photometric stereo in face recognition include introducing a more general 

illumination model, i.e. spherical harmonics [5, 64] and representing different faces within a 

single class [91].  

Besides photometric stereo which reconstruct face models from a set of 2D images in the 

same pose under different lighting conditions, stereo vision techniques can also be applied which 

reconstructs 3D face models from 2 face images in different poses. Castillo and Jacobs [18] 

proposed to use the cost of stereo matching of gallery face image and probe face image to 

recognise faces. The stereo matching algorithm used in this method defined four planes which 

were left and right occluded planes and left and right matched planes. It involved fourteen 

transitions such as state preserving transitions and between state transitions. The cost of the 

stereo matching is defined as the sum of all the matching rows of the first image (say left) to the 

second (right) image. Exhaustively performing stereo matching using every view in the gallery to 

the probe image, the match was selected when the cost of stereo matching was the smallest. 

Tested on PIE database with 13 poses per face of 68 faces, this method achieved 73.5% 

recognition accuracy using any one pose as gallery and the remaining 12 poses as probe.  

5.4 Summary and Discussions 

In this section, face recognition approaches with assistance of 3D face models have been 

reviewed. These approaches have been classified into three subcategories, i.e., 1) generic shape-

based approaches, 2) feature-based 3D reconstructions, and 3) image-based 3D reconstructions. 

Compared to 2D approaches discussed in Section 4, 3D approaches try to approximate the image 

variations caused by pose variations in 3D space rather than limiting them within the image plane. 
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The different methodologies are summarised in Table 10. The simplest strategy is to apply a 

uniform (or generic) face shape to approximate various face shapes, which give these generic 

shape-based approaches the benefit of efficiency. However, each individual face shape may 

deviate from the generic face shape greatly due to interpersonal face shape differences, which 

cannot be overcome by improving the generic shape. Consequently, image distortions exist in 

these recovered face images in different poses, which affect the performance of face recognition 

across pose.  

To better approximate face shape, personalised 3D models were reconstructed from a set of 

facial features (feature-based) or from pixel-wise image intensities (image-based). Generally, 

feature-based reconstructions require feature point locating, which is always based on image 

contents. For instance, edge information was used as features in [48] and was extracted by 

comparing the neighbouring pixels’ intensities. Feature-based reconstructions limit the use of 

image intensities (textures) in 2D image plane to extract features for reconstruction, which is 

efficient and simple compared to considering image intensities in 3D space of image-based 

reconstructions. However, facial features are sparse compared to face image dimension. 

Consequently the feature-based reconstructions are at most accurate near facial features and 

could be inaccurate in other non-feature regions because they are usually interpolated from 

adjacent facial features. Image-based reconstructions rely on pixel-wise appearances of face 

images to reconstruct 3D face models, where the reflection mechanism of human face surfaces is 

crucial. These approaches are generally capable of generating more detailed face structures than 

feature-based reconstructions, because each pixel has been considered in reconstruction. The 

price is more complex procedures and sometimes unreliability. Table 11 summarises the 

advantages and disadvantages of the above discussed approaches. 
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Table 10  The methodologies of face recognition algorithms with assistance of 3D models. 

Approach Pose tolerance and compensation 
Face recognition 
algorithms 

Cylindrical 3D pose 
recovery [26] 

Pose estimation using facial components and generic 3D shape + 
texture mapping by pose transformation on cylindrical shape 

Eigenfaces, LEM 

Probabilistic 
geometry assisted 
FR [55] 

Pose estimation using universal mosaic modelling + texture 
mapping by pose transformation on ellipsoid shape 

Weights assignments using 
probabilistic models + 
normalised Euclidean 
distance 

Automatic texture 
synthesis [85] 

Texture mapping by pose transformation on averaged face shape 
+ reflection analysis and synthesis on Phong model 

View-based PCA 

Composite 
deformable model 
[48] 

Fitting a deformable model to input image by minimising fitting 
error and deformation cost + texture coefficients by linearly 
projecting the input image on gallery image textures 

Nearest neighbours on the 
estimated texture 
coefficients 

Jiang’s method [38] 

Constructing an eigen space on training 3D face models + 
Projecting 2D input point distribution on the subspace of the 
eigen + Reconstruct 3D point distribution on eigen space of 3D 
points + direct texture mapping 

Linear discriminant analysis 

Multi-level 
Quadratic Variation 
Minimisation [87] 

Reconstructing 3D shape by minimising surface roughness 
controlled by facial feature points + extracting texture 
coefficients by fitting input images to Phong model + 
synthesising virtual views by rotating 3D model and generating 
virtual textures 

Local binary patterns 

3D Morphable 
Model [14] 

Training shape and texture eigen spaces on 3D dataset + aligning 
3D morphable model to 2D input image by minimising a 
weighted sum of feature displacement, image dissimilarity and 
external parameters variations from their averages + extracting 
shape and texture model coefficients 

Modified dot product on 
shape and texture model 
coefficients based on linear 
discriminant analysis 

Illumination Cone 
Model [30] 

Extracting surface normals and reflectance coefficients from 
front images under different lighting + integrability enforcement 
to reconstruct 3D surface from normal directions + virtual view 
synthesis in different poses and lighting 

View-based exhaustive 
searching in all possible 
virtual images in Euclidean 
distance 

Stereo Matching 
[18] 

Align images according to epipolar geometry + stereo matching 
+ extracting matching cost 

Nearest neighbour of the 
matching cost 
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Table 11  The advantages and disadvantages of the face recognition algorithms with assistance 
of 3D face models in face recognition across pose.  

Approach Advantages Disadvantages 
Cylindrical 3D pose 
recovery [26] 

Simple, efficient 
Inaccurate face shape 
approximation 

Probabilistic 
geometry assisted FR 
[55] 

Simple, efficient 
Inaccurate face shape 
approximation 

Automatic texture 
synthesis [85] 

Simple, facial textures were approximated 
Rigid face shape approximation 
doesn’t fit to all faces 

Composite 
deformable model 
[48] 

Personalised 3D face shape was reconstructed Deformation is arbitrary 

Jiang’s method [38] Efficient, deformation is based on face shape variations 
Texture mapping doesn’t consider 
appearance variations 

Multi-level 
Quadratic Variation 
Minimisation [87] 

No prior knowledge is required, two gallery views 
provide better 3D shape information 

Requires manual locating of facial 
features 

3D Morphable 
Model [14] 

Only single image is required for reconstruction, both 
shape and texture modelling are based on prior 
knowledge of shape and texture variations, reconstruction 
is performed pixel-wisely comparing image intensities 

Unstable, identity-related shape 
and texture coefficients were 
affected during cost function 
minimisation 

Illumination Cone 
Model [30] 

No prior knowledge is required so that identity-related 
parameters were preserved  

Requires multiple images under 
certain restrictions, surface 
approximation discarded specular 
reflection 

Stereo Matching [18] Simple, single gallery is required 
Image-based matching doesn’t 
consider appearance changes due 
to pose variations 

 
Though image-based reconstructions often involve complex processing in considering 

reflection of human faces, they made the most use of image information by exhaustive treatment 

of all image pixels. Compared to feature-based reconstructions which at best can guarantee 

accurate reconstruction around facial features, image-based reconstructions have the potential to 

achieve pixel-wisely accurate reconstruction results. Feature-based reconstructions also suffer 

from the inaccuracy of feature detections, while feature detection is no longer required in image-

based reconstructions. Because image-based 3D reconstructions consider pixel-wise reflection 

mechanisms in estimating shape and texture information, they are generally more sensitive and 

consequently vulnerable to image variations, such as shadows and spatial misalignment. To 
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alleviate spatial misalignment, 3D morphable model used a feature-based approach as the initial 

stage of the 3D reconstruction, and illumination cone model requires rigorous alignment of 

multiple photometric stereo images under a fixed viewpoint.  

The reflection mechanism of human faces is crucial to image-based 3D face reconstructions. 

In contrast, existing approaches tend to make simplistic approximations on face surfaces. Most of 

existing methods assume face surfaces as Lambertian surfaces, which only consider diffuse 

reflection and neglect specular reflection. In fact, human faces reflect both diffusely and 

specularly and reflectance models beyond Lambertian assumption should be taken into 

considerations to achieve better reconstruction performance by making more realistic surface 

approximations. In feature-based 3D face reconstruction, the texture estimation is also 

suboptimal by primarily using the Lambertian assumption to approximate human face skins. 

Similar to 2D pose transformation, image intensities of real views are usually directly mapped 

onto the reconstructed 3D shape without considering the intensity variations caused by pose 

changes.   

6 Conclusions and Further Discussions  

As the prominent problem in face recognition, pose variation received extensive attentions 

in the research community of computer vision and pattern recognition. A number of promising 

techniques have been proposed to tolerate and/or compensate image variations brought by pose 

changes. However, achieving pose invariance in face recognition still remains an unsolved 

challenge, which requires continuing attentions and efforts. This paper first reviewed these 

techniques, providing a comprehensive survey and critical discussions on major challenges and 

possible future research directions towards pose-invariant face recognition. This paper started on 
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discussions of the problem of face recognition across pose, with elaborations on the challenges, 

current evaluation methodologies, and performances of different approaches. Face recognition 

techniques relevant to handling pose variations were then classified into three broad categories, 

i.e., general algorithms, 2D techniques and 3D approaches. Representative general algorithms 

have been reviewed with an emphasis on their sensitivities to pose variations. 2D techniques and 

3D approaches which actively compensate pose variations have been comprehensively reviewed 

in the last two sections with discussions on their advantages and limitations.  

Based on this review, several insights are summarised as follows. Prior knowledge of human 

faces plays an important role in handling pose variations in face recognition, especially with 

limited gallery images (e.g., one example gallery image per person). The image variations caused 

by pose changes can be learned from known face images or models in the 2D and 3D approaches, 

which are then applied to new input image(s) to simulate real pose transformations. The 

inclusion of this prior knowledge often requires extensive trainings and the performance is 

dependent on training data. The techniques without prior knowledge of human faces usually 

don’t need any training process, which rely only on the available gallery images. Consequently, 

these techniques could better preserve discriminative features of the gallery images, free from the 

influences of the training data. Due to the insufficient information provided by the 2D gallery 

images, however, these techniques usually require more than one gallery image to successfully 

compensate pose variations.  

3D face recognition approaches can generally handle larger pose variations than 2D 

techniques. Because pose variations are 3D transformations rather than 2D image 

transformations, 3D approaches are more promising to achieve better performance in face 

recognition across pose. The existing 3D face reconstruction methods made suboptimal surface 
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assumptions on human faces, which affects the reconstruction results. The most common 

assumption is Lambertian assumption, which only considers diffuse reflection of faces. Studies 

in human skins show specular and diffuse reflectivities of human faces are both histological 

characteristics different from person to person which can be and should be used as discriminating 

parameters in face recognition.  

On the other hand, a comprehensive consideration of the complicated face surface reflection 

mechanism and external lighting parameters brings serious ill-conditions to 3D face modelling, 

because the number of unknown parameters is excessive and the problems are intractable. 

Several attempts have been made to extend Lambertian assumption to include specular reflection, 

at the price of resolving non-linear optimisation problems. These early attempts towards precise 

descriptions on face surface reflection are only limited to coarse approximations of specular 

reflection, while ignoring other factors such as inter-reflections and subsurface scattering. It is 

still an open question on how to incorporate these complicated image formation approximations 

into face recognition to improve its pose tolerance while keeping the problem tractable. The 

potential solutions towards this direction rely on both better image formation models specifically 

suitable to face modelling and task specific computational tools that reliably and efficiently solve 

non-linear optimisation problems.  

The strategy of nonlinear mapping has the promise to find a feature space best suitable to 

pose variations, while the current research stage is preliminarily limited to fundamental mapping 

functions (e.g., radial basis functions). The question of whether there is a feature space where 

rotated faces are separable is still open. An answer to this question may lead to a clearer 

understanding of pose-invariant face recognition problem, similar to the findings of linear 

subspaces in illumination-invariant face recognition.  
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