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Quantum computation offers the potential to solve fundamental yet otherwise intractable prob-
lems across a range of active fields of research. Recently, universal quantum-logic gate sets—the
building blocks for a quantum computer—have been demonstrated in several physical architectures.
A serious obstacle to a full-scale implementation is the sheer number of these gates required to
implement even small quantum algorithms. Here we present and demonstrate a general technique
that harnesses higher dimensions of quantum systems to significantly reduce this number, allowing
the construction of key quantum circuits with existing technology. We are thereby able to present
the first implementation of two key quantum circuits: the three-qubit Toffoli and the two-qubit
controlled-unitary. The gates are realised in a linear optical architecture, which would otherwise be
absolutely infeasible with current technology.

The realisation of a full-scale quantum computer
presents one of the most challenging problems facing
modern science. Even the implementation of small scale
quantum algorithms requires an unprecedented level of
control over multiple quantum systems and a deep under-
standing of quantum mechanics. Recently much progress
has been made with demonstrations of universal quan-
tum gates sets - the fundamental building blocks of a
quantum computer - in a number of physical architec-
tures including ion-traps[1, 2], linear optics[3, 4], and
superconductors[5]. In theory these gates can now be
put together to implement any quantum algorithm and
build a scalable quantum computer. However, in prac-
tice there are many significant obstacles that will require
much theoretical and technological development to over-
come. One of the most daunting is the sheer number of
gates required to implement quantum algorithms.

Most approaches to quantum computing employ
qubits—the quantum version of bits—encoded in two-
level quantum systems. However, candidate systems for
encoding quantum information typically have a far more
complex physical structure with many readily accessi-
ble degrees of freedom, such as atoms[6], ions[1, 2] or
photons[3, 4]. In this paper we show how harnessing
these higher dimensions of quantum systems during com-
putation can drastically reduce the number of gates re-
quired to implement key quantum circuits. This is based
on a recent proposal[7], which we extend and use to build
two key quantum logic gates for the first time. The tech-
nique has the potential for application in a wide range of
physical architectures in combination with existing tech-
nology, and offers numerous advantages inherent in a re-
duced circuit complexity.

One of the most important quantum logic gates that
has yet to be realised is the Toffoli—a three-qubit en-
tangling gate that flips the logical state of the ‘target’
qubit conditional on the logical state of the two ‘control’
qubits. Famously, Toffoli gates allow universal reversible
classical computation. The Toffoli also plays a central
role in quantum error correction[8] and fault tolerance[9].
Furthermore, the combination of the Toffoli and the one-
qubit Hadamard offers a simple universal quantum gate
set[10]. The implementation of this gate requires a new
level of coherent control over multiple quantum systems
and represents a significant experimental challenge. We
note that previous demonstrations in a liquid NMR ar-
chitecture have since been shown to represent, at best, a
classical simulation of quantum logic leading to no com-
putational advantage[11, 12].

The Toffoli-sign (ts) is a three-qubit gate that applies
a sign shift to one logical input state and is equivalent
to a Toffoli under the action of only a few additional
one-qubit gates. The simplest decomposition[13] of a ts
gate when restricted to qubits throughout the calculation
requires five two-qubit gates. If we further restrict our-
selves to controlled-z (or cnot) gates this number climbs
to six[13], Fig. 1a. A quantum logic circuit that requires
only three two-qubit gates is shown in Fig. 1b[7]. The in-
creased efficiency is achieved by harnessing a third level
of one of the information carriers during computation—
i.e. one carrier becomes a qutrit with logical states 0, 1
and 2. The action of the first Xa gate is to move infor-
mation encoded in the logical 0 state of this qutrit into
its third level (2), which then bypasses the subsequent
two-qubit gates. The final Xa gate coherently brings this
information back into the 0 state, reconstructing the log-
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ical qubit. This shortcut through a higher dimension
allows the two-qubit gates to operate on a subspace of
the original target qubit and implementation of the TS
with a reduced number of gates. Note that standard
two-qubit gates are necessary, with only the additional
requirement that they apply the identity to information
encoded in the logical 2 state of the qutrit. The technique
can be generalized to implement higher-order n-control-
qubit Toffoli gates (nt) by harnessing a single (n+1)-level
information carrier during computation and only (2n−1)
standard two-qubit gates[7] (see supplementary informa-
tion).

We extend this approach to simplify the construction
of another key quantum circuit: the two-qubit controlled-
unitary (cu) which applies an arbitrary one-qubit gate
(u) to a target qubit conditional on the state of a single
control qubit, Fig. 1b. This circuit plays a central role in
quantum computing, particularly in the phase estimation
algorithm[13] which in turn finds application in quantum
simulation and quantum chemistry[14]. Phase estimation
also underpins Shor’s famous quantum algorithm for fac-
toring numbers[15], the implementation of which would
have significant consequence for modern cryptography.
Futhermore, the set of cu’s alone is sufficient for univer-
sal quantum computing; a cu can implement a cnot and
induce any single qubit rotation at the expense of an ad-
ditional ancilla qubit, for example. Our technique can be
generalized to implement higher-order n-control-bit uni-
tary (cnu) gates using an (n+1)-level target and only 2n
two-qubit gates (see supplementary information). Even
more generally, the approach can be used to efficiently
add n control-qubits to an arbitrary controlled unitary
that operates on k qubits (see supplementary informa-
tion).

The simplest known decompositions[13] of a nt
and cnu into two-qubit gates requires (12n−11) and
(12n−10) gates, respectively‡. In each case this is
achieved by employing an additional overhead of (n−1)
ancilla qubits. (Note that implementations without an-
cillas require on the order of n2 two-qubit gates[13]). By
harnessing only higher dimensions of existing information
carriers we achieve a significant reduction in all cases.
For example, a known decomposition[13] of the 5t and
c5u both require 50 two-qubit gates plus 4 ancilla qubits,
when restricted to qubits. Our technique requires only 9
for the former, 10 for the latter and no ancillary infor-
mation carriers in either case.

With an abundance of higher dimensions available in
most candidate systems for encoding quantum informa-
tion, our technique has the potential for wide application.

‡ We note that an architecture-specific decomposition of the nt
has been proposed for implementation in an ion trap[16]. This
requires (2n+1) qubit-qutrit entangling gates.
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FIG. 1: a) Quantum logic circuit for a three-qubit Toffoli
gate requiring six two-qubit cnot gates when restricted to
employing only qubits[13]. Standard symbols are used (see
supplementary information). b) Circuit for a Toffoli Sign or
controlled-zθ gate. The Toffoli Sign gate (r=i, the identity)
requires only three two-qubit gates (two cnot’s and one cz).
A sign change occurs only on the input |C2, C1, T 〉=|1,0,1〉.
For the controlled-unitary r=zθ (imparting an arbitrary
phase shift between logical states) the circuit implements a
controlled-zθ between C1 and T . C2 and the gate it controls
are redundant in this case. Xa expands the Hilbert space of
the target (T ) from a qubit to a qutrit. Its action is defined
by: Xa|0〉=|2〉, Xa|2〉=|0〉, Xa|1〉=|1〉. The two-qubit gates
act on the qubit levels in the usual way[13] and always impart
the identity on a qutrit in level 2. c) Conceptual logic circuit
for our linear-optic implementation. The final cnot in b) has
been replaced by a non-deterministic recombination of the
target qubit (dashed box). d) Layout of our photon source.
Forward and backward photons pairs are produced via para-
metric downconversion (PDC) of a frequency-doubled mode-
locked Ti:Saph laser (820 nm →410 nm, ∆τ=80 fs at 82 MHz
repetition rate) through a Type I PDC 2 mm BiB3O6 crystal.
The photons are collected into four single-mode optical fibres
and detected using fibre-coupled single photon counting mod-
ules. e) Experimental implementation of the conceptual cir-
cuit shown in c). A successful run of the ts (cu) is flagged by
a four-fold (two-fold) coincident measurement at D1-4 (D1-2).
We employ an inherently stable Jamin-Lebedev interferome-
ter using two calcite beam-displacers[3] to coherently expand
the dimension of T from a polarisation qubit to a four-level
system distributed across polarisation and spatial-mode. We
spectrally filter using unblocked interference filters centered
at 820 nm (bandwidths as shown) and realise an arbitrary
one-qubit gate (rh) using a quarter-half-quarter waveplate
combination.

A clear example is the photon, which has a large num-
ber of degrees of freedom including polarisation, trans-
verse spatial-mode, arrival-time, photon number, and fre-
quency. Coherent control over and between many of these
dimensions has already been demonstrated and shown to
offer significant advantages in a range of applications such
as quantum communication and measurement[17, 18].
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Trapped ions also offer a range of higher dimensions that
can be readily exploited, including additional electronic
and vibrational energy levels. Indeed, these levels are
routinely used for read-out and to coherently implement
individual logic gates[16, 19]. An immediate benefit of
a significant reduction in the number of two-qubit gates
required for quantum circuits is an equally significant
speed-up in processing time. This has particular advan-
tages for the many architectures where short coherence
times are an obstacle in the path to scalability.

Here we present an implementation using photons to
encode information and linear optics to construct quan-
tum gates. Such gates are high performing, well char-
acterised and offer fast gate speeds. Linear optics pro-
vide an excellent test-bed for studying quantum infor-
mation science, and has several known paths to scalable
quantum computing[20, 21]. Without the resource saving
technique that we present here linear optic implementa-
tions of these gates is absolutely infeasible with current
technology. We note that our resource saving scheme
is fundamentally different from and potentially comple-
mentary to schemes for reducing the overhead associated
with generating a universal resource[22, 23, 24]; here we
are concerned with reducing the amount of that resource
required to implement algorithms.

Fig. 1c shows a conceptual circuit of our implemen-
tation of the ts and cu. Key steps are the expansion
of the Hilbert space of the target qubit (T ), effected by
the first polarising beamsplitter (PBS1), and contraction
back into the original space, effected by the components
in the dashed box. Before PBS1 we have a two-level sys-
tem in the target rail with logical states H=0 and V=1
(a polarisation qubit). PBS1 then moves information en-
coded in the logical H state into a separate spatial mode.
After PBS1 we have access to a four-level system; two
levels in the top rail (t) and two in the bottom rail (b),
with logical basis states |H, t〉, |V, t〉, |H,b〉 and |V,b〉,
respectively. While we only need to use one of the ad-
ditional levels in the bottom rail, we use both in our
experiment simply to balance optical path-lengths. The
contraction back into the original two-level polarisation
qubit is performed non-deterministically, i.e. given deter-
ministic two-qubit gates measurement of a single photon
at D1 heralds a successful run of the gate. This allows for
a demonstration without the last cnot gate of Fig. 1b,
thereby making an implementation feasible with recent
developments in linear optics quantum gates[25].

In the case where r is the identity, the circuit in Fig. 1c
implements a ts gate between carriers C2, C1 and T , ap-
plying a sign shift to the |C2, C1, T 〉=|1,0,1〉 term. It
is of no consequence which state receives the sign shift;
all cases are equivalent to a Toffoli under the action of
additional one-qubit gates. For polarisation encoding,
such gates are trivial to implement with standard bire-
fringent waveplates. In the case where r is zθ the circuit
implements a controlled-zθ (czθ) between C1 and T . zθ

FIG. 2: Experimentally reconstructed truth-table for our Tof-
foli gate. Axis labels are written in the order |C2, C1, T 〉.
Ideally a flip of the logical state of the target qubit (T ) oc-
curs only when both control qubits (C2 and C1) are in the
logical |0〉 state. The overlap of ideal and measured truth
tables is I=0.81±0.03. The ideal case is shown as a wire
grid. Error bars are shown representing one standard devi-
ation, calculated from Poissonian photon counting statistics.
The Inquisition (I) is defined as the average logical state fi-
delity of a truth table Ī=tr(mexpmideal)/d, where mexp and
mideal are the measured and ideal truth tables, and d is the
table dimension. We define the logical flipping contrast as
C=1/2{1 + (pideal − pflip)/(pideal + pflip)} where pideal is the
probability of obtaining the ideal output state and pflip is the
probability of obtaining the output state where the ideal tar-
get qubit output state has been flipped.

imparts an arbitrary phase between the logical states, i.e.
the operation zθ|0〉→|0〉, zθ|1〉→eiθ|1〉. It is straightfor-
ward to show that such a gate is locally equivalent to a
cu, under the action of additional one-qubit gates (see
supplementary material).

Figs. 1d-e show the layout of our optical source and
logic circuit in the laboratory, respectively. Our photons
are generated via spontaneous parametric down conver-
sion (SPDC), spatially filtered via single-mode optical
fiber and spectrally filtered using interference filters, as
detailed in the figure caption. Two-qubit linear optic
gates are realised by combining one-qubit gates (wave-
plates) and controlled-z (cz=czπ) gates based on non-
classical interference at partially-polarising beamsplit-
ters; the gates are nondeterministic and employ a mea-
surement induced non-linearity[26, 27, 28]. Rather than
chaining the gates to implement the required sequence
for our implementation of the Toffoli (Fig. 1c) we em-
ployed a recently developed three-qubit quantum logic
gate[25]. Ideal operation of the two-qubit gates requires
non-classical interference between indistinguishable pho-
tons at the PPBS’s (Fig. 1e). Dependent photons gen-
erated from the first pass of the PDC source interfere
non-classically at PPBS1. One photon then goes on to
interfere with a third, independent photon from the sec-
ond pass, at PPBS2. We measure relative non-classical
two-photon interference visibilities between vertically po-
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FIG. 3: a) Measured output states of qubits C1 and T for Tof-
foli gate inputs; i) |0, (0+1),0〉/

√
2; and ii) |1, (0+1),0〉/

√
2.

We observe fidelities with the ideal states, linear entropies
and tangles[30] of i) {0.90±0.04, 0.21±0.08, 0.68±0.10} and
ii) {0.75±0.06, 0.47±10, 0.04±0.06}, respectively. b) As for
a) but where the roles of C1 and C2 have been swapped.
We now observe i) {0.81±0.02, 0.39±0.05, 0.53±0.07} and
ii) {0.80±0.03, 0.40±0.05, 0.01±0.01}. The decrease in tan-
gle in the i) cases reflects the difference between depen-
dent and independent photon interference, as discussed in
the text. c) ideal density matrices. Note in all cases
only real parts are shown, imaginary parts are negligible.
The fidelity between two matrices (either two states or two
processes) is f(ρ, σ)≡{tr

p√
ρσ
√
ρ}2; Linear entropy is sl≡

d(1−tr[ρ2])/(d−1), where d is the state dimension.

larised photons of Vr=100±1% and Vr=92±4% (where
Vr=Vmeas/Videal and Videal=80%), for the dependent and
independent interferences respectively. The difference in
these visibilities reflects the difficulty of achieving per-
fectly indistinguishable photons generated from indepen-
dent sources[29]. For our experimental implementation
we include the additional one-qubit gates required to con-
vert the ts in Fig. 1c to the Toffoli. In both implementa-
tions our imperfectly manufactured beamsplitters impart
systematic unitary operations on the optical modes. For
simplicity we corrected for these effects numerically. Al-
ternatively such unitaries could be corrected with stan-
dard waveplates.

For our implementation of a Toffoli we use photons
from both passes of the PDC crystal and set r to
the identity (Fig. 1e). A four-fold coincident measure-
ment at detectors D1-4 signals a successful run of the
gate. In linear optics implementations of two-qubit quan-
tum gates, state dependent loss is used to rebalance
amplitudes[26, 27, 28]. When incorporating loss ele-
ments L1-3 the gate operates with a success probability
of 1/72. Alternatively, to combat low count rates, correct
balance can be achieved by removing additional loss ele-
ments and pre-biasing the input polarisation states dur-
ing gate characterisation[26, 27, 28]. Under these con-

ditions we measure a four-fold coincidence rate of ap-
proximately 10 mHz when running at full pump laser
power. While this is not sufficient to perform a full pro-
cess tomography[31] of the gate over a practical time pe-
riod, we are able to to demonstrate all the key aspects of
its behavior.

To demonstrate the classical action of our Toffoli we
first reconstruct a logical truth-table (Fig. 2). In the
ideal case of our implementation the target (T ) under-
goes a logical flip if, and only if, both control qubits are
in the logical 0 state. The inquisition, I, is the over-
lap between the ideal and measured truth tables[30]: for
our three-qubit gate we measure I=0.81±0.03, compared
to I=0.85±0.01 achieved for optical implementations of
two-qubit gates[28]. Significant deviations from the ideal
correspond to unwanted flips of the target qubit which
can be understood with reference to the non-classical in-
terferences required for correct operation in each case. In
order to gauge our gates ability to apply the correct oper-
ation to a subset of logical input states we employ the flip-
ping contrast, C. (See Fig. 2). For inputs |C2, C1〉=|0,0〉,
no non-classical interference is required for correct oper-
ation and we measure C=0.99±0.01, averaged over both
target logical input states. Inputs |C2, C1〉=|0,1〉 re-
quire perfect non-classical interference between depen-
dent photons C1 and T , for ideal operation. As dis-
cussed previously we achieve a near perfect interference
visibility between vertical photons in this case. However,
the full process suffers from the presence of higher-order
PDC terms which are not observed in the visibility mea-
surement due to higher-order interference processes[32].
This is reflected in an average of C=0.95±0.02. Inputs
|C2, C1〉=|1,0〉 require perfect non-classical interference
between independent photons C2 and T , for ideal op-
eration. This process is limited not only by higher-
order terms but by inherent distinguishability of these
photons[29], reflected in an average of C=0.80±0.02. In-
puts |C2, C1〉=|1,1〉 require perfect non-classical interfer-
ence between both dependent and independent photons,
and are therefore the most challenging cases. Here we
observe an average of C=0.73±0.05.

To demonstrate the quantum action of our Toffoli
we test its ability to coherently control an entangling
process. With an input state of |0, (0+1),0〉/

√
2 our

Toffoli will produce the entangled state |0,Ψ+〉,
where |Ψ+〉 is the maximally entangled Bell
state[13] (|0,0〉+|1,1〉)/

√
2. With an input state

of |C2, C1, T 〉=|1, (0+1),0〉/
√

2, it will produce the
separable output state |1, (0+1),0〉/

√
2. In the former

(latter) case the entangling operation between C1 and T
is coherently turned on (off) by C2. We then swap the
roles of the control qubits and repeat the test. These
processes require coherent interaction between all three
qubits. We perform over-complete full state tomography
to reconstruct the density matrix of two-qubit output
states, requiring 36 separate measurements[26]. Our
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tomography employs convex optimisation and Monte-
Carlo simulation for error analysis[25]. Measurements
sets are taken iteratively, whereby multiple sets—each
taking around 1 hr to complete—are recorded. This
reduces the effect of optical source power fluctuations.

Fig. 3 shows experimentally reconstructed density ma-
trices representing the state of a control and target qubit,
at the output of our Toffoli gate. We achieve a high
fidelity[30] with the ideal states in all cases, as detailed
in the figure caption. The entangling process required
to achieve Fig. 3a)i relies on interference between depen-
dent photons. The process required to achieve Fig. 3b)i,
relies on both dependent and independent interference.
This leads to the reduced fidelity and increased linear
entropy[30] observed in the latter case. These processes
demonstrate the coherent action of our Toffoli gate.

Higher order PDC terms are caused when more than
one pair of photons is created simultaneously in a single
PDC pass (Fig. 1d). It is straightforward to show that
the ratio of double to single photon-pair emission is pro-
portional to the pump power. Thus reducing the power
by a factor of 4 should in turn reduce these higher-order
contributions from each pass by a factor of 4. Under
these conditions we observe a four-fold rate at the out-
put of the Toffoli gate of only ∼0.1 mHz and repeat mea-
surement of the average flipping contrast for the most
challenging logical inputs |C2, C1〉=|1,1〉. We observe a
clear improvement from C=0.73±0.05 to C=0.83±0.04.

For our implementation of the cu circuit we inject only
dependent qubits C1 and T into the circuit, from the for-
ward pass through the PDC crystal (Figs 1d-e). When
incorporating loss element L1 (Fig. 1e) the gate operates
with a success probability of 1/18. For our demonstra-
tion this was optimised by removing L1 and pre-biasing
only the C1 input state[26, 27, 28]. A two-fold coinci-
dent measurement at detectors D1-2 signals a successful
run of the gate. When running at 1/4 power we observe
a two-fold rate at the output of our circuit of around
100 Hz. This is more than sufficient to perform a full
process tomography[31] of the cu on a timescale of the
order of 2 hrs, whilst retaining the advantages of a lower
power.

As a demonstration, we report the implementation
of four distinct cu gates that apply zθ rotations of
π/4 (ct), π/2 (cj), 3π/4 (cl) and π (cz) to the tar-
get (T ) conditional on the control (C1), respectively.
Three of these are of fundamental importance to quan-
tum computing[13]. We fully characterise these gates via
quantum process tomography[31]: Fig. 4 shows the ex-
perimentally reconstructed process matrices. We achieve
the highest reported two-qubit logic gate process fideli-
ties, in any architecture, as detailed in the figure cap-
tion. The origins of the small deviations from ideal op-
eration are thought to lie in residual higher order PDC
emissions, imperfect mode matching and manufactured
optics[29, 32]. The overriding source of error in our

FIG. 4: Experimentally reconstructed process matrices[31]
for four demonstrations of our controlled-unitary gate (cu),
for u=Zθ and: a) θ=π/4 (ct); b) θ=π/2, (cj); c) θ=3π/4,
(cl); and d) θ=π, (cz). (i) Real and (ii) imaginary parts
are shown. We observe high process fidelities[31] with the
ideal {0.982±0.003, 0.977±0.004, 0.940±0.006, 0.956±0.003}
and low average output-state linear entropies {0.036±0.004,
0.047±0.004, 0.091±0.005, 0.086±0.006}, respectively. Ma-
trices are presented in the standard Pauli basis[31].

experiments lies in our imperfect photon source. Cur-
rent developments in source technology promise signifi-
cant improvements in the near future. The combination
of this with recently developed photon-number resolving
detectors offers a path to a deterministic and scalable
implementation of our gates.

We have demonstrated a new technique that harnesses
the power of readily available higher dimensional quan-
tum systems to drastically simplify the construction of
key quantum circuits. As we have shown, the technique
is particularly relevant to the current state of experimen-
tal quantum computing and can be integrated with ex-
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isting technology to realise new quantum circuits. The
demonstration of these circuits represents a crucial test
of the practicality of quantum computing, raises many
important questions that have yet to be solved and im-
mediately offers valuable new tools with which to study
quantum interactions.
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Supplementary material.
Our technique can be extended to multiple-control gates,
e.g. nt and cnu. Figure 5 gives an implementation of
3t and c2u. Fig. 6 shows a more general application of
our technique; adding n control qubits to an arbitrary k
qubit unitary.
Correspondence.
Correspondence and requests for materials should be ad-
dressed to BPL (lanyon@physics.uq.edu.au).
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FIG. 5: Implementation of the next level of encoding of our
technique required to realise a a 3-control-qubit Toffoli Sign
gate (3ts) and b 2-control-qubit unitary c2zθ. The Xa gate
flips information between the logical 0 and 2 state of the tar-
get. The Xb gate flips infomation between the logical 1 and
3 state of the target. Thus we require access to a four-level
information carrier in the target; two levels in the original red
rail and one in each of the dashed-blue rails. The dashed box
shows the 1-qubit gates required to interconvert the ts3 and
c2u to the Toffoli and controlled-unitary equivalents, respec-
tively. V ZθV

† is the spectral decomposition of U, up to a
trivial global phase factor. All other gates operate as usual
(on the qubit subspace: levels 0 and 1) and their operations
are shown, including some used in Fig. 1 of the main text. In
a the control operation occurs if |C3, C2, C1〉=|1,1,0〉. In b
the control operation occurs if |C2, C1〉=|1,0〉. a) is based on
Fig. 2 of Ref. 3 in the main text.
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FIG. 6: Circuit for implementation of a 3-control-qubit uni-
tary acting on k qubits, c3(uk). Given the ability to perform
a single instance of a c1(uk) n additional control qubits can
be added at a cost of an extra 2n two-qubit gates and an ad-
ditional n dimensions in C1. The Xj perform as described in
the caption of Fig. 1.
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