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Abstract

Due to the lack of in-built tools to navigate the web,
people have to use external solutions to find informa-
tion. The most popular of these are search engines
and web directories. Search engines allow users to
locate specific information about a particular topic,
whereas web directories facilitate exploration over a
wider topic. In the recent past, statistical machine
learning methods have been successfully exploited in
search engines. Web directories remained in their
primitive state, which resulted in their decline. Ex-
ploration however is a task which answers a differ-
ent information need of the user and should not be
neglected. Web directories should provide a user ex-
perience of the same quality as search engines. Their
development by machine learning methods however is
hindered by the noisy nature of the web, which makes
text classifiers unreliable when applied to web data.
In this paper we propose Stochastic Prior Distribu-
tion Adjustment (SPDA) - a variation of the Multi-
nomial Naive Bayes (MNB) classifier which makes it
more suitable to classify real-world data. By stochas-
tically adjusting class prior distributions we achieve
a better overall success rate, but more importantly
we also significantly improve error distribution across
classes, making the classifier equally reliable for all
classes and therefore more usable.

Keywords: web directory; categorization; classifica-
tion; MNB

1 Introduction and Motivation

Search engines are currently the main way for users
to find information on the web, therefore the main
source referring visitors to web sites. There are two
sets of problems related to the dominant search engine
model: problems for users and problems for the web
itself. From the users’ point of view, the main issue
stems from the keyword search paradigm, which relies
on the following assumptions:

e Users know what they are looking for.
While this is often true, it is not the majority
of cases (Yoshida et al. 2007). Many people are
looking for something they have a vague idea
about. This type of search for background infor-
mation generates more search queries than those
for specific information. Since people don’t know
beforehand what exactly they want, they cannot
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define it by using a list of search terms so they is-
sue navigational queries ((Broder 2002, Lee et al.
2004)), essentially trying to use the search engine
as a web directory.

e Users know how to find it. This assump-
tion also doesn’t always hold. Even if users know
what they want, they may not necessarily be able
to formulate it in terms of keywords. It is a
paradoxical situation - in order to find a docu-
ment, you have to know some words it contains;
in order to know them, you must have already
read the document (or similar ones), i.e. you
must have already found it by some other means.
This reveals the underlying assumption that the
user should have prior knowledge which cannot
have come from the search engine. The situation
was best formulated by the science fiction writer
Robert Sheckley in Ask a foolish question: “in
order to ask a question you must already know
most of the answer”. Additionally, there are the
synonymy and polysemy issues (Deerwester et al.
1990), namely - that different people refer to the
same concepts in different ways, and that the
same word may mean different things to different
people (or, even more confusingly, to the same
person in different contexts).

Another side of the problem arises from the second
aspect mentioned above - that search engines have be-
come the main source of traffic to web sites. This has
had an effect “not unlike the Heisenberg Uncertainty
Principle [...] The act of Google trying to understand
the web caused the web itself to change.” (Zawodny
2003). This change has created an economy where a
significant part of web content is now published for
the benefit of search engines and not human users;
content is published for the purposes of Search En-
gine Optimization, which essentially means trying to
exploit search engine algorithms by providing content
“they like”, to the detriment of human users. Search
engine spam has thus become a major source of digi-
tal garbage (Fetterly et al. 2003, Gydngyi & Garcia-
Molina 2005, Gy6ngyi et al. 2006); as a consequence,
a large part of development efforts are now targeted
at adversarial information retrieval (Fetterly 2007).

The proliferation of this class of sites can be di-
rectly attributed to weaknesses of the search engine
model, and an alternative model should be developed
to diminish its impact.

An alternative model should also exist which does
not depend on users’ prior knowledge and ability to
formulate their queries with specific words. Such is
the web directory model which allows discovery of
documents, as opposed to locating them by a search
engine.

The main drawback of the existing web directory
model is its reliance on manual labour for both in-
formation gathering and classification. The fact that



web directories have not been combined with web spi-
ders has also created an issue specific to them - a prob-
lem with outdated information (sites that were listed
once, then not re-checked and updated). This form of
web decay has significant impact on directories such
as Yahoo! (Bar-Yossef et al. 2004) (also confirmed by
our experiments).

There are a number of machine learning methods
used for text classification, which is the basis needed
for automatically building a web directory. An exam-
ple is the Multinomial Naive Bayesian (MNB) classi-
fier, a simple probabilistic model which classifies data
instances into multiple classes using Bayesian statis-
tics and relying on the independent feature model
(Frank & Bouckaert 2006). However, this method
works well only for simple cases, while for unbal-
anced classes it is not accurate. Another method of
text classification is Support Vector Machines (SVM);
Liu et al. (2005) made a large-scale study using SVM
over data from the Yahoo! directory and found per-
formance “far from satisfactory”, due to noisy and
sparse data.

Statistical methods in general usually suffer from
unbalanced classes and give preference to classes with
more instances. This is particularly detrimental for
web directories, since they are very unbalanced as
content. Furthermore, an unbalanced end result is
disproportionally perceived as useless by users, e.g.
- if the classifier makes an error in 5% of instances,
but they are all in a particular category and as a re-
sult this category remains empty, users would declare
the algorithm totally unsuccessful and not just 5%
unsuccessful.

In this study, we aim to build a viable web di-
rectory by improving existing classification methods,
which suffer from unbalanced classes. We build on top
of the MNB classifier and propose an addition to it
by adding a stochastic adjustment of class prior dis-
tributions, which enables the modified algorithm to
learn from its mistakes. While the classic algorithm
and its many variants are static (i.e. - they will re-
turn the same values at every pass over the document
collection), our method shows an improvement with
successive passes over data. Furthermore, while the
classic algorithm suffers from unbalanced classes and
shows preference for the dominant class and very high
error rates in classes with less instances, our method
achieves an even distribution of the error rate, making
it equally reliable for any class.

The remainder of the paper is organised as follows:
in the next section we review the relevant prior work.
In section 3 we outline our methodology. Section 4
describes the experiments we conducted. In section 5
we show and comment experimental results. Finally
in section 6 we conclude the paper and outline the
course for future work.

2 Relevant Work

There has been extensive research on the use of clas-
sification methods for web documents: (Lang 1995,
Chakrabarti, Dom, Agrawal & Raghavan 1998, Xue
et al. 2008); some systems have later been employed
in real-world web directories (Attardi et al. 1999), but
none persisted or are in use by major directories at
present.

2.1 Data Processing

Text classification is usually based on the bag of words
model (Baeza-Yates & Ribeiro-Neto 1999) where a
document is considered a collection of non-dependent
words (or n-grams) and is analyzed based on statis-
tics such as their occurrence in documents of different

classes. Zipf’s law (according to which a large number
of words appear in a text only a few times, while a
few words occur orders of magnitude more often (Zipf
1949)) is ignored, which for a number of reasons does
not render the algorithms ineffective.

Before starting a learning process, any algorithm
needs to first obtain the data. Document text is usu-
ally parsed by a tokenizer, which splits it into words
and normalizes them according to some rules (for ex-
ample forcing lower case only, so that Word becomes
the same as word). Some algorithms use these tokens
directly, while others construct n-grams - a series of n
tokens. This preserves some information about word
order in texts, but requires much more storage and
computation. Another alternative is to build Markov
models; in them word order is not just preserved, but
is in fact more important than the actual words used.
Unfortunately, this approach provides better success
rate at the cost of exponential increase in processing
time (every document classified has to be matched
to every existing Markov model in the training set),
making it impractical to use for a large-scale classifier.

After tokenizing, text is sometimes passed through
linguistic processing; for example words may be
stemmed - words with a common root are combined
into one, so that Word becomes the same as word,
wording and worded.

Word counts may be scaled or normalized in some
manner, for example, by their Inverse Document Fre-
quency: IDF(w) =1n dflw where N is the number of

documents in the collection, and df,, is the number
of documents that contain the term w. This weight
is then multiplied by the frequency of the term (TF)
in the document to achieve its TF-IDF value.

A major issue with text classification is the high
dimensionality of data. In a simple model, such as
Naive Bayes, every word is a feature itself. The typ-
ical representation of a document as a vector where
each dimension is a word in the vocabulary means
that the number of dimensions is equal to the num-
ber of words in the vocabulary. Reducing this num-
ber would increase the tractability of all related tasks.
Therefore some other models apply feature selection
or feature construction to reduce the number of fea-
tures - dimensionality reduction, which is a form of
lossy compression where precision is traded for com-
putation costs. It is guaranteed to lose accuracy
(Lang 1995), but in most cases compensates this by
a great reduction in computation time.

Dimensionality reduction by feature construction
can be achieved in a number of ways, such as unsu-
pervised clustering like k-means performed over the
dictionary of the document collection, Latent Seman-
tic Indexing (LSI) (Deerwester et al. 1990), Semantic
Hashing (Salakhutdinov & Hinton 2007) or a random
projection of the high-dimension word vector onto a
much lower-dimensional space (Kaski 1998).

2.2 Approaches to Classification

The MNB classifier is a simple probabilistic model
which classifies data instances into multiple classes
using Bayesian statistics and relies on the indepen-
dent feature model - i.e., it assumes word occurrences
are independent of each other. This violates Zipf’s
law (actually, texts on the web were found to follow a
double Pareto distribution (Chierichetti et al. 2009))
and independence is never the case, but the model
works surprisingly well even though it is very inaccu-
rate in estimating correct probabilities. As Domingos
& Pazzani (1997) point out, the algorithm needs to
only find out the class with highest probability and
not what this probability actually is and how exactly
it compares to those of the other classes. The winning



class (the one with the mazimum likelihood) is found
as:

p(C|D)
aremax p(C =¢) =ln ———— =
gc p( ) (ﬂC’|D)

i|C)
ﬁc +Zl p(w

p(w;|=C)

where C' is the class the instance belongs to, c is
each class, p(C|D) is the prior probability of a docu-
ment for a class and p(w;|C) is the prior probability
of word 7 for that class, ¢ including all words in the
document.

This works for simple cases, but unbalanced classes
are a serious problem: the classifier tends to favour in-
correctly the larger classes since they have a high prior
probability. The naive assumption is also a problem
where classes are not only unbalanced as numbers (i.e.
- one class has many more instances than another) but
unbalanced as content. If documents in one class are
typically longer than documents in the other classes,
then word occurrence rates in it would be higher and
this class would be favoured incorrectly as well. As a
solution, Frank & Bouckaert (2006) propose to nor-
malize word probabilities:

(1)
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where n,,+, are class-specific word counts (occur-
rences of the word in documents of class ¢), replacing
w; in Eq.1. They find that o can be equal to 1, so
in our experiments we followed that advice (see Algo-
rithm 1).

(2)

Algorithm 1: MNB with word count normal-
ization
Calculate prior distributions over whole
collection
Calculate normalization based on word
occurrences in each class
ClassifyQueue
foreach document do
foreach class do
Calculate log-likelihoods of words in
document
Apply normalization
Add global log-likelihood of class
end
Find class with highest probability

Announce winner class
end

Rennie et al. (2003) propose some steps to over-
come systemic errors in the MNB model. They intro-
duce Complement Naive Bayes (CNB) to overcome
skewed training due to skewed classes (training the
algorithm to distinguish a class on examples not in
that class, as opposed to the normal practice of using
instances in that class), and weight normalization to
compensate for cases where the term independence
assumption of the model doesn’t hold.

Rocchio’s Relevance Feedback (Rocchio 1971) can
also be used for classification by creating a represen-
tative document vector based on all documents in a
class; each instance is classified into the class with
which it has the smallest cosine distance.

Support Vector Machines (SVM) in effect build as
many classifiers as there are classes, each one separat-
ing the class from all others. Each instance is eval-
uated by every classifier, then the decision is made

by the one with highest confidence. Liu et al. (2005)
used SVM over the Yahoo! directory and found the
results “far from satisfactory”, due to the same prob-
lems that we faced - noise and sparse data.

All hierarchical classifiers have a common short-
coming - if they make an error on a document at
one of the higher levels, this error is then propagated
down the hierarchy. Xue et al. (2008) address this by
dynamically training a specialized classifier for each
document in the collection, using a subset of existing
categories as training data. This allowed their classi-
fier to maintain an acceptable accuracy down to Level
5 of the classification tree. They used MNB since its
accuracy is comparable to that of SVM, but has lower
complexity.

Most methods treat classification as a “one off”
task: they take a document collection, process it and
finish. For a web directory this cannot be a solution,
since it updates its document collection constantly
(adds, edits and removes documents from it), as well
as evolves the classification structure. Furthermore,
classification of documents changes with time - some-
times instances are moved from one class to another
by editors not because they were wrongly classified
initially, but because the perception of what they be-
long to may have changed (i.e. - “Hilton” used to be a
hotel chain and was associated with “Business” but is
now associated with “Paris” and goes to “Entertain-
ment” or “Junk” classes). This question of ontology
evolution has been studied in terms of creating dif-
ferent ontologies for different periods and then com-
paring them (Enkhsaikhan et al. 2007); however, this
does not facilitate a gradually changing system such
as a web directory. An online (incremental) indexing
method has been proposed: (Gorrell & Webb 2005,
Gorrell 2006), the results of which converge to those
of LST but process only one instance at a time, i.e. - it
accounts for streaming addition of documents to the
collection, but doesn’t offer a solution to documents
being removed from the corpus, or evolving classes.
Katakis et al. (2005) propose an algorithm which is in-
cremental in both respects - it couples an incremental
feature ranking method with an incremental learning
algorithm that can consider different subsets of the
feature vector during prediction; for evolving classes
though it would need to be retrained from scratch.

2.3 Approaches to Training

Some classifiers use different heuristic criteria to min-
imize training by selecting only a small subset of the
data to train on. It is worthwhile to see what ap-
proaches spam filters use for learning, since they also
use a Bayesian filter (though not multinomial). They
empl)oy several different training strategies (Zdziarski
2005):

e TEFT (train-everything) is the classic approach
of all text classifiers, including Bayesian, and is
also the most intuitive - learn from all the data.
However, it is computationally expensive and, as
our experiments show, does not always provide
the best results. According to Zdziarski, the ex-
perience of spam filters using this approach is
that it suffers from unbalanced classes (where
spam is much more than non-spam) and only
works well if the ratio is not worse than 70:30.
This is not the case in our experiment (see data
below).

e TOE (train-on-error) - the algorithm runs the
classifier part first, then compares the result to a
(manual) label for the instance and learns from
it only if it has made an error (the so-called if it
isn’t broken, don’t fix it philosophy). Such filters



are more “static” than TEFT filters, i.e. - they
take longer to learn. On the other hand, they
work better for large datasets and for highly un-
balanced classes, which matches our case.

e TUM (train-until-mature) filters try to be the
middle ground between TEFT and TOE - ini-
tially they learn on everything, then they stop
learning and only retrain when they make a mis-
take. As with the others, they need labeled data
in order to recognize a mistake, plus some heuris-
tics to decide when a token is mature so as to stop
learning it.

e TUNE (train-until-no-errors) algorithms learn
until they make no mistakes, or very few mis-
takes. The downside is that when they start
making new mistakes, they have to be retrained
over the whole document corpus.

2.4 Alternatives

An interesting alternative to analyzing the documents
themselves is the work of Chakrabarti, Dom & Indyk
(1998) who propose a method to extend a human-
classified directory by applying its manual labeling
to neighbouring unlabeled sites, where they define
“neighbours” in terms of outgoing links and use these
links as features. The naive version of their algorithm
propagates classification to all unlabeled data. This
was found to work well in some restricted domains,
but its performance on data from the Yahoo! web
directory was extremely poor which they attributed
to the generally noisy nature of the web. By itera-
tive application of the algorithm and some engineer-
ing of features, they managed to outperform classi-
fiers based on text classification only. Gy&éngyi et al.
(2006-2007) developed the idea further, but found the
method extremely computationally expensive which
forced them to use a host-to-host connection graph in-
stead of page-to-page, introducing significant errors.
They also found that while the method works well in
some restricted domains, in others it doesn’t work at
all.

Some other alternative methods worth mentioning
are social bookmarking (Yanbe et al. 2007) and col-
laborative filters. Social bookmarking relies on peo-
ple labeling all documents, while collaborative filters
are trained by many people then used by an individ-
ual user, such as news.google.com (Das et al. 2007).
Another interesting development is WEBSOM (La-
gus et al. 2004), based on a Kohonen neural network
called SOM (Self-Organizing Map) (Kohonen 1995).
It is not classification but a projection of data (such
as a number of documents) onto a map. Similar doc-
uments end up geographically near each other on the
map, facilitating browsing by analogy. The method is
computationally expensive though, and the resulting
map questionable in terms of usability: to achieve
good resolution for browsing, the number of map
units has to be proportional to the number of doc-
uments. This leads to maps with millions of points
which are not easy to navigate, defeating the purpose.

3 Methodology

We aim to create the basis for a large hierarchical
classifier which can accommodate a web directory
comparable to the Open Directory Project (DMOZ
- www.dmoz.org), where we use the DMOZ entries
as labeled instances for training and will later com-
plement them with unlabeled data downloaded by a
web spider. The method should take into account the

addition and deletion of documents which in a live di-
rectory combined with a web spider would be contin-
uous, as well as occasional relabeling of instances by
a human. For our tests though, we work with static
data.

DMOZ has a directory tree with over 763,000
nodes, so to duplicate it we need a hierarchical classi-
fier with as many classes. For our prototype, we built
only the first level, which has 15 categories. The de-
velopment of the top level of the hierarchy should
equip us with the necessary techniques for all the
lower levels, since by definition it is the worst case
as it contains all the lower levels in itself. We decided
to use a Multinomial Naive Bayes (MNB) classifier,
because it can work well incrementally, e.g. - small
changes to the document collection or the reclassifi-
cation of a small number of documents would not re-
quire full re-training. We tested the “classic” MNB,
as well as several variations.

3.1 Dataset, Processing and Systemic Prob-
lems

For training/test data we used a complete data dump
from DMOZ, which contained 4.16 mln web site
records and 4.60 mln manual labels (some sites were
classified into more than one class). We downloaded
a random sample of 120 788 documents (excluding er-
rors) from a total of 2.24 mln in the English language
categories only (to minimize the dictionary).

We did not use the DMOZ descriptions for clas-
sification, but the actual text from the downloaded
sites. All documents were passed through a filter
which stripped HTML tags, then discarded very short
and very long phrases (e.g. - shorter than 3 words
and longer than 20 words) on the basis that a) one
or two words are obviously not part of a sentence
so are not part of any sensible text (this removes all
site navigation and other clutter), while more than
20 words without punctuation indicate a machine-
generated list of keywords and not a human-written
text.

Words were not stemmed or pre-processed in any
other manner. Arnaud (2004) attributes the poor re-
sults of a project trying to create a browsable web
index based on Self Organizing Maps to the use of a
bad text pre-processor. This may be a case of just se-
lecting the wrong pre-processor; or perhaps it is a fun-
damental problem: pre-processing creates some bias
in the data which then reflects on the ordering algo-
rithm. Furthermore, linguistic processing has to know
the structure of the language, which in our case would
mean a different pre-processor for every different lan-
guage sub-tree of the directory (currently numbering
81). We decided to skip it, incurring higher compu-
tational costs. We only filtered out too short and too
long words (less than 3 and more than 20 characters
long), and normalized word counts by TF-IDF.

Since the data is extremely high-dimensional, the
usual approach would be to apply dimensionality
reduction. However, we decided against this and
worked with the raw data. The reasoning was that
any initially successful projection of the documents
into a lower-dimension representation would deterio-
rate as we alter the collection, since success is being
measured by information entropy over the collection;
as the collection changes, that would change too. In
other words, if we achieve a set of constructed fea-
tures which best split the data, this “best split” is
only guaranteed to be best for the initial data. If
we then remove, for the sake of argument, all doc-
uments containing the terms which constitute one of
these features, we would get a feature with a probabil-
ity of zero. Evolving the document collection would
mean for us that a) we need to update the dictionary



constantly, b) we need to perform dimensionality re-
duction again and again, ¢) as a result, documents
will have to be re-mapped to the new low-dimension
vectors constantly, and d) the classifier will need to
be retrained to the new features with every change.
While this is not impossible to do, it adds another
level of complexity to the system and doesn’t seem
to save too much in the way of computation, so the
precision/cost trade-off doesn’t seem justified. More-
over, dimensionality reduction would project the data
into (typically) 64 or 16 dimensions, and since we only
have 15 classes we might as well project the data into
them without this intermediary. We also have to keep
in mind that at lower levels of the classifier we would
need separate dimensionality reduction as the docu-
ment collections there would be different.

We treat the hierarchical classifier as a hierarchi-
cally ordered series of normal classifiers where the
output of one classifier is the input for those at the
lower level. Each classifier splits the data instances
into a number of classes, which the lower-level clas-
sifiers process further using their own training data.
If the higher-level classifier moves an instance from
one class to another at a later point in time, this in-
stance gets removed from the document collection of
the respective lower-level classifier and put into an-
other one. Since each lower-level classifier works with
only a part of the data, it calculates all static mea-
sures (such as TF-IDF values for words) locally - i.e.,
taking into account only its own part of the docu-
ment collection. This means there can be no global
stop-words, because they are stop words in some con-
text only. The usual example for such a word is the
article “the”, which is so common in the English lan-
guage that it cannot be used to distinguish between
different types of texts. But, it shows that the text
is in English in the first place - so it is very useful to
distinguish between English and Bulgarian texts, for
example (i.e. - it is a valuable feature at the top level
of the classifier).

We also decided to ignore hapazes (Zdziarski 2005)
- tokens with very low confidence, which we defined
as words that occur in less than 10 documents.

Document numbers above may seem sufficient for
learning but, as Liu et al. (2005) noted, data is in
fact very sparse - 76% of the categories of Yahoo!
Directory when they studied it contained less than
5 documents. Similarly, DMOZ has an average of
6.02 labels per category. This is due to a very frag-
mented categorization structure where many nodes
are either too specific and have almost no content
that matches them, or are placeholders (Liu et all
call them conceptual nodes) serving only to organize
lower-level branches, with no content of their own.
An omission by design (of DMOZ, Yahoo! and all
similar directories) is that sites are supposed to be
indexed only in one node of the directory tree - e.g.,
if a site is classified in the Business: Investing: Eux-
changes subcategory, it is not listed in the higher lev-
els, i.e. Business and Business: Investing, nor in any
lower levels. This makes the above situation even
worse, since even high-level nodes such as Business
are practically empty. In our implementation we did
the same as Liu et al. (2005) - we “folded” high level
categories by including in them the content of their
sub-categories.

As regards classification duplication, the number
of labels per URL in DMOZ is 1.02, as opposed to 2.23
in Yahoo!, so the level of classification noise is much
lower. We have ignored this (although it harms the
classifier), but in a future implementation it should
be accepted as additional data and not noise, which
would mean using a fuzzy classifier.

Dimensionality of data is another problem. In
theory, the document collection should only contain

words from a limited dictionary (provided we only
deal with documents in one language). In prac-
tice though, even when we apply ourselves to the
English-language part of the directory only, there
are many occurrences of names of people or places,
foreign language words inserted into English texts,
foreign language sites wrongly categorized in an
English-language node, typos, deliberate attempts
at filter poisoning (or Bayesian poisoning (Graham-
Cumming 2006, Zdziarski 2005)) like a large collec-
tion of “words” like “btsnwgdguf”, bringing the over-
all dictionary to over half a million words for our
(rather small) sample of documents. Our full dic-
tionary had 593,718 words, 388,329 of which with a
DF of one (i.e. - they were seen in only one docu-
ment). For comparison, the 20 newsgroups document
collection usually used for benchmarking has a dic-
tionary of slightly more than 61,000 words. Ignoring
words that occur in less than 10 documents brought
the dictionary used for training to a more manageable
62,492 words (about 2% less in the case of train-on-
error variations).

The most significant problem though is that
classes are highly unbalanced in a number of ways.

Firstly, they are unbalanced as number of in-
stances they contain: the largest top-level English-
language category (“Regional”) contains 1.10 mln in-
stances, while the smallest (“News”) has less than 9
thousand. Thus, the dominant category has 42.4% of
all instances, with the remaining instances spread in
14 categories.

Secondly, classes are unbalanced as average length
of the documents they contain - for example, docu-
ments in the “Business” category of our sample had
an average of 96.54 unique terms each (after filtering),
while the “Adult” category (rather surprisingly) had
more - 121.76, and “News” gnot so surprisingly) had
235.05.

Furthermore, as mentioned above, the MNB
model’s assumed term independence doesn’t always
hold - some terms have a strong correlation, like
“San” and “Francisco” in texts on American cities
(Rennie et al. 2003), creating some bias in the al-
gorithm. If this bias applied to terms evenly dis-
tributed across classes, it would just lower the suc-
cess rate in general. What happens in reality though
is that different classes violate the independence as-
sumption to different degrees (the third type of un-
balancing); word count normalization doesn’t com-
pensate for this, since it accounts for length of docu-
ments only and not for the actual terms they contain.

Classes are unbalanced also by the fact that the
“Regional” category contains practically a bit of ev-
erything - local business, local entertainment, local
news etc. so its keywords to a large extent coincide
with those from all other classes, unlike for example
the “Adult” or “Business” class which have more dis-
tinctive dictionaries. A high word occurrence rate for
common terms, coupled with the high prior probabil-
ity of the class leads to a situation where the “classic”
MNB predicts the dominant class for almost every in-
stance and has a success rate of &~ 1 for that class and
0 for some others.

The combination of all these factors results in sig-
nificant variation in classification success from class
to class. Each of them is usually “tackled” by a sepa-
rate normalization, but the interaction between them
is not well studied. We decided to work from the
opposite end and compensate not for each factor sep-
arately, but for their cumulative effect as measured
by the class-specific error rate.

3.2 Algorithm Variations

The changes we introduced include:



o Weight decay of learned word weights: words
with a word count of 1 are removed from our
training data after each pass, and counts for the
remaining words are divided by 2. In this way
we can remove weights for words that have not
been used for some time (e.g. - when the doc-
uments that contain them were removed from
a node or from the collection altogether). This
measure is introduced to account for a gradually
changing document collection being re-classified
constantly, such as a live web directory.

e We calculate prior distribution differently and
use stochastically adjusted values for class-
specific error distribution smoothing.

The second item needs explanation in more detail,
since it is the core of the novelty we propose.

Prior distribution in principle should be the distri-
bution of documents into the respective classes, where
“documents” is taken to mean all documents in the
collection. Spam filters though, as discussed above,
employ a train-on-error policy where they train only
on those documents they cannot classify correctly. In
effect, the classifier only sees a part of the collection
and bases its statistics on it only, so the prior distri-
bution it uses is not the distribution over the whole
collection but over the errors. Since classes are very
unbalanced and this approach unbalances them even
further, they try to compensate that by a heuristic
giving a false positive error more weight than a false
negative error. This heuristic is parameter-based and
there is no methodology to calculate this parameter
- it is based on experiments or personal preferences
(where a spam filter can be tuned by a person). This
parameter is a pre-set value and does not change in
the life of the filter, irrespective of how it affects its
efficiency or what data it processes.

Furthermore, Zdziarski’s assertion that these fil-
ters are “static” means not only that they learn
slowly, but also that they unlearn slowly - for ex-
ample, they will recover very slowly after a Bayesian
poisoning attack. In our case such attacks are not a
realistic consideration, but re-classifying documents
by human editors, which is a daily occurrence, has
the same effect on the classifier (it has learned some
classification of a number of terms, then has to un-
learn it). The junk filter in the Thunderbird 3 mail
client (part of the Mozilla suite) has a partial solu-
tion to the problem in the form of weight decay (the
same as we use). However, it is triggered by a rather
arbitrary event - the dictionary reaching a particular
size, which is a) an arbitrarily-set parameter, and b)
not guaranteed to happen at all (e.g. - if the doc-
ument collection is from a restricted domain with a
small dictionary).

Initially we tried this approach by running the
classifier in several passes over the collection with
a train-on-error policy, triggering weight decay and
re-calculating prior distributions at the end of each
pass. This lead to significant fluctuations in perfor-
mance - success rate dropped sharply after the first
update, owing to the fact that the classifier had done
very well predicting instances from the most popu-
lous class, hence it had not trained on it too often
and the prior distribution and word counts for this
class suddenly became too low when we initialized it
for the next pass. On the next update it became too
dominant again, since during this pass the algorithm
had made too many errors on it. The end result was
a “seesaw” between these two states.

We then decided to use a constantly updated
rolling count of errors, which exhibited the best re-
sults among all the algorithms we tried.

There are three sets of data used to classify an in-
stance: word count distribution by class (document

evidence), prior distribution of classes and word count
normalization by class. The first we did not try to
manipulate: we used a word count of all errors (for
all time), decaying after each pass over the whole col-
lection. Changing that would require an enormous
complexity of the database, since we would have to
record not only word counts, but when each individ-
ual incrementation of the counter happened so that
we could undo it later.

The other two measures we redefined as based on
the last 10 000 trainings of the classifier, e.g. - we
calculate class prior distribution over the last 10 000
errors, and normalize word counts based on the word
counts of the last 10 000 documents on which the
classifier made an error (see Algorithm 2).

Algorithm 2: MNB with distributions over last
N errors

Calculate normalization based on word
occurrences in each class
ClassifyQueue
foreach document do
Calculate prior distributions over last N
classification errors (from error log)
foreach class do
Calculate log-likelihoods of words in
document
Apply normalization
Add current log-likelihood of class
end
Find class with highest probability
Announce winner class
Compare with manual label
if winner class and manual label are
different then
| Log error
end
end

In effect, we use statistics from a non-random,
stochastically selected sample of the data in order to
calculate the static measures needed by the classifier,
making them dynamic measures.

4 Experimental Study

In order to test the advantages of our approach
we conducted extensive experimental evaluation and
compared our method with the classic MNB, as well
as a train-on-error classifier as used by spam filters,
and one with word count normalization as in (Frank
& Bouckaert 2006). We tried the classifiers on the
filtered text from sites we downloaded and compared
results to the manual labels from DMOZ. We did a
number of test runs, each with several passes over the
data (results reported here are from a typical run).

All algorithms used the same filtered data, with
word counts normalized by TF-IDF:

_ i, N

TF-IDF,, = T In 77—

where n; ; is the number of occurrences of the term
t; in document d;, the denominator is the sum of the
number of occurrences of all terms in document d;, N
is the number of documents in the collection and df,,
is the number of documents that contain the term w.

4.1 Query Set

We designed the experiments with view to compare
our stochastic approach to other variations of the
MNB classifier in terms of:

e Overall accuracy (success rate of the classifier)



e Class-specific accuracy (separate success rate for
each class)

e Computation cost for classification
e Computation cost for training

e Storage requirements for training data

A benchmarking mechanism was implemented to
record classification results for each algorithm, clas-
sification and training times (in microseconds) and
dictionary size of each algorithm’s training set. To
avoid bias from a fixed ordering of algorithms (file
cache, database cache etc.) they were called in ran-
dom order when classifying each instance. Prepara-
tory operations (reading the document, fetching IDF
values etc.) were common for all algorithms and were
not taken into account.

4.2 Noise in the Data

The first issue we faced was the significant level of
noise of several types in the data, each of which has
different impact and has to be dealt with differently:

e Dead links - more than 8% of listed sites returned
a 404 HTTP response code(Document not found
error) on download, or were unavailable (connec-
tion timeout). These we removed automatically.

e Web decay - sites that have been removed but
generate soft 40/ errors and now serve other con-
tent, not what was categorized by DMOZ. They
do not issue an error response code and are the
most difficult to remove, as they require a hu-
man’s decision for each instance. They harm the
classifier by making it learn wrong classifications.

e Intentional noise - legitimately-looking sites that
embed noise within their own code (comment
spam, hidden text due to using search engine op-
timization techniques etc.). Same as above, only
more difficult to spot and remove.

e Entry pages - sites that have only a logo and an
“Enter” link on their homepage which was in-
dexed by DMOZ, but has no usable text to clas-
sify. They add noise to the classifier’s training
phase and reduce its success rate at the classifi-
cation phase significantly.

e (lassification duplication - although contrary to
DMOZ policy, many sites have been indexed in
more than one category.

e Wrong classification - some sites have been clas-
sified into a category not suitable for them. This
one is highly subjective and the initial intuition
was to just ignore it, but it turned out to present
the most serious problem of all since it is the rea-
son for the dominance of the “Regional” category
(which category, in our opinion, should not exist
at all - it should be a separate hierarchy).

4.3 Variations Tested

We tested the following variations of the classifier:

e MNB Multinomial Naive Bayesian classification
by the classic formula.

Classifier: MNB as in Equation 1.

Training: save data for all words for all docu-
ments.

¢ MINB-TOE Multinomial Naive Bayesian clas-
sification by the classic formula, with train on
error policy.
Classifier: MNB as in Equation 1, using prior
distribution over the whole collection.

Training: save data only for those documents
which the classifier did not classify correctly.

e MINB-WN Multinomial Naive Bayesian classi-
fication by the classic formula, with normalized
word counts.

Classifier: As Equation 1, but word counts are
additionally normalized as per Equation 2 - see
Algorithm 1.

Training: save data for all words for all docu-
ments.

¢ MINB-SPDA Multinomial Naive Bayesian clas-
sification with train on error policy, using a prior
distribution over the last N errors as in Algo-
rithm 2. We shall call this “MNB with Stochastic
Prior Distribution Adjustment”.

Classifier: As Equation 1, but word counts are
additionally normalized as per Equation 2. Prior
distribution is calculated over the last N doc-
uments on which the classifier made an error
(N = 10000 for our experiment). Word counts
are normalized over the whole collection.

Training: save data only for those documents
which the classifier did not classify correctly.

e MNB-SPDWNAC Multinomial Naive
Bayesian classification with train on error
policy, using a stochastic prior distribution and
with word count normalization as per Equation
2, both calculated over the last N errors as
in Algorithm 2. We shall call this “MNB
with Stochastic Prior Distribution and Word
Normalization Adjustment - Corrected”.

Classifier: As Equation 1, but word counts are
additionally normalized as per Equation 2. Both
prior distribution and word normalization are
calculated over the last N documents on which
the classifier made an error (N = 10000 for our
experiment) in 80% of cases. Corrected stands
for an addition we made which was necessitated
by some problems explained below; the correc-
tion was that for the other 20% of classified in-
stances we applied usual word normalization and
not the stochastic variant.

Training: save data only for those documents
which the classifier did not classify correctly.

For all algorithms, we applied weight decay at the
end of each pass.

5 Results and Analysis

In this section we provide results obtained from our
experiments and some analysis of our findings.

5.1 Success Rates

Apart from our two variations using a dynamic sam-
ple of the last 10,000 unsuccessfully classified docu-
ments, all algorithms are static - i.e., they use the
whole document collection and produce the same re-
sults at each pass (variation between passes is within
0.01% due to randomized order of testing). Our ini-
tial intuition was that our variations would continu-
ously improve, since the document sample they use is
stochastically built and should work towards minimiz-
ing errors. This does not happen: after 3 or 4 passes



they converge to a success rate which does not change
significantly thereafter. Variation between passes is
within 2.5% for MBN-SPDA - it consistently beats
MNB-WN, but with a varying margin (the one re-
ported here is an average-to-low value).

On further reflection, we saw the obvious - the
stochastic adjustment does not work towards mini-
mizing the error itself, but only minimizes its vari-
ance across classes. Overall success rates can be seen
in Table 1.

You will note that we have not quoted MNB-
SPDWNA results apart from its overall performance.
It turned out that MNB-SPDWNA has an important
drawback: the value for normalized class word counts
is in the denominator part of Equation 2. If, for any
reason, the algorithm makes no errors or very few er-
rors in one class, the values for it become too low.
Since we are dividing by them, we increase its score
and the algorithm starts predicting this class for all
instances.

The consequences are illustrated in Fig. 1, which
shows the result of a bad initialization in a test run.
We did not randomize the training sequence well
enough and one of the classes was not represented
in the first 100,000 trained instances. The algorithm
made more than 10,000 errors in that time, which
resulted in an adjusted prior distribution where this
class was not present. Its word normalization values
then became extremely large. Interestingly, for the
next 30,000 instances the algorithm actually exhib-
ited a better success rate than before, then it became
drastically unsuccessful. The initial improvement was
due to weight decay being applied, which also made
the respective word counts much lower and lessened
the effect of the wrong normalization. This also hap-
pened at the end of the next pass when weight decay
was applied again, but to a lesser extent since weights
were large already. It then converged to a somewhat
higher (but still much worse than normal) success
rate and remained there after successive passes, i.e.
- it did not recover from the error. Unlike it, the
MNB-WN variant suffered a short and sharp drop in
performance which it quickly overcame with increas-
ing word counts as more documents were classified.
Later applications of weight decay, as expected, did
not affect it.

We got similar outcomes on a number of other
runs even with correct initialization, meaning that the
MNB-SPDWNA (not corrected) algorithm in its pure
form is too unreliable. There are two stable states to
which it can converge: the optimal state with an even
error distribution, which is a form of dynamic equilib-
rium that needs to be maintained constantly; and the
worst case, where the last N errors do not include an
error in one of the classes; in this case the algorithm
predicts one class for all instances, thereby making
no further errors in this class and entering a positive
feedback loop from which it cannot recover.

Apparently, MNB-SPDWNA needs some form of
correction. We tried to do stochastic word normal-
ization only for 80% of classified instances and full
normalization for the rest, in order to give the al-
gorithm an opportunity to occasionally make errors
in all classes and introduce some negative feedback.
Unfortunately, this only partly mitigates the positive
feedback effect and does not make the algorithm us-
able.

MNB
47.91%

SPDA
70.40%

SPDWNA
42.84%

TOE
67.86%

NwW
69.44%

Table 1: Success rates

It can be seen that the “classic” MNB algorithm

without any corrections also performs badly. It is in-
teresting to note though how it fails: it’s extremely
good at guessing the dominant category and ex-
tremely bad at some of the others (with literally zero
success rate for the “News” and “Reference” cate-
gories, and close to zero for “Business” and “Shop-
ping”) - see error distributions in Table 3. The only
one performing worse was the earlier experiment we
conducted with a train-on-error algorithm using a
prior over errors updated once per iteration.
Train-on-error policy by itself improved the sit-
uation enormously - a jump from 47.91% to 67.86%.
Word normalization as per (Frank & Bouckaert 2006)
worked better - 69.44%, but the best results were ex-
hibited by MNB-SPDA, which had a 70.40% success
rate. This may not sound impressive if compared to
results reported elsewhere, but we consider it a suc-
cess given the enormously noisy data we worked with.

Category ATl Stochastic | Boost

Arts 9.51% 11.46% | +20.50%
Business 9.06% 9.52% | +5.08%
Computers | 4.97% 5.94% | +19.52%
Games 2.20% 2.00% -9.09%
Health 2.3™% 2.74% | +15.61%
Home 1.25% 1.18% | -5.60%
News 0.25% 0.24% -0.04%
Recreation | 3.97% 414% | +4.28%
Reference 2.19% 2.23% | +1.83%
Regional 42.07% 35.59% | -15.40%
Science 4.61% 4.97% | +7.81%
Shopping 3.53% 4.14% | +17.28%
Society 8.60% 10.98% | +27.67%
Sports 3.85% 3.92% | +1.82%
Adult 1.58% 0.95% | -39.87%

Table 2: Stochastic adjustment to distribution

Prior distribution over the whole collection, and
the values to which MNB-SPDA converged after 8 it-
erations, can be seen in Table 2. The last column pro-
vides an explanation of the improved results of the al-
gorithm. What we see in it is an artificial “boosting”
of categories with diluted content (e.g. “Society” and
“Arts” which are difficult to define) where the classi-
fier had problems, while clear-cut categories such as
“Adult” and “Games” are corrected downwards since
the algorithm can guess them anyway based on word
distributions alone, no matter what the prior is. The
“Regional” category was also adjusted downards, for
the opposite reason - its high prior probability makes
it easier to guess. The end result of the adjustment
is a significantly higher success rate in the problem-
atic categories at the expense of a slight worsening
of results elsewhere. This provides a much smoother
spread of the error across categories: while the stan-
dard algorithms are very good in the dominant cate-
gory and very poor in some of the others, MNB-SPDA
has a much smaller variation in its success rates (see
Table 3).

For the purposes of building a web directory, we
think it is much more valuable to have equal treat-
ment of all categories (i.e. - equal error levels) than
higher overall accuracy. Luckily though, MNB-SPDA
provides both.

If we look at the results in terms of computation
costs, it also saves significantly (more than four times)
on training times. A comparison of total training
times (normalized) can be seen in Table 4.

There is also a small saving in the training set:
while the TOE algorithms used 61,255 words, MNB-
SPDA used 59,832 to train its classifier. Both of these
savings - in time and in storage requirements - are due
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Figure 1: Consequences of bad initialization

Category | MNB | TOE NW [ SPDA
Arts 23.00% | 66.27% | 69.25% | 65.03%
Business 00.59% | 49.88% | 39.92% | 68.02%
Computers | 13.12% | 54.10% | 68.06% | 65.47%
Games 10.88% | 49.83% | 76.40% | 71.36%
Health 6.12% | 41.10% | 61.66% | 68.10%
Home 14.61% | 40.90% | 56.97% | 73.51%
News 0.00% 0.99% | 48.34% | 72.19%
Recreation 0.98% | 39.96% | 38.31% | 68.63%
Reference 0.00% | 22.78% | 47.00% | 71.70%
Regional 99.87% | 89.91% | 87.29% | 74.67%
Science 15.94% | 55.59% | 60.12% | 66.80%
Shopping 0.07% | 32.60% | 54.71% | 68.13%
Society 14.87% | 62.30% | 46.05% | 60.82%
Sports 2.65% | 50.25% | 66.95% | 72.25%
Adult 17.20% | 54.00% | 86.88% | 83.22%

Deviation | 0.2394 | 0.1945 | 0.1493 | 0.0500 |

Table 3: Class-specific success rates

MNB
4.13

TOE
1.13

NW
4.17

SPDA
1.00

Table 4: Algorithm training times

to the fact that the algorithm trains only on a subset
of the documents. With a less noisy dataset, where
the algorithm would make fewer errors, these savings
would be much higher.

MNB
1.00

TOE
1.01

NW
1.01

SPDA
1.46

Table 5: Algorithm classification times

MNB-SPDA is heavier in classification cost
though; classification times can be compared in Table
5. This is due to the fact that the algorithm per-
forms an adjustment to its prior distributions after
each training, which adds some complexity. It has
to maintain a stack with the last 10,000 errors and
summarize it before classifying each instance - an op-
eration other algorithms do not need. In this area,
computation can be optimized in the future.

6 Conclusion and Future Plans

In this work we presented the basis for a working
mechanism that will make the automatic building of
web directories practical. One of the variations we
introduced: stochastically adjusting prior probabili-
ties, allows the algorithm to learn from its errors and

achieve not only better overall success, but better er-
ror distribution across classes as well. This makes it
equally reliable for all classes, unlike the other avail-
able methods.

The greatest challenge we faced though is not algo-
rithm efficiency but noisy data. As often noted, the
web is noisy and a significant part of the noise can
be filtered out only by people. Training a successful
classifier seems to need more human labeling than is
freely available at this time. Our method can be used
for initial training of the classifier, but then collab-
orative filtering based on user feedback may need to
be employed for further tuning.

This study makes the following contribution to the
field:

e We treat data as dynamic and achieve better
classification results on this basis.

e Our method saves significantly on training time.

e Our method makes some savings in terms of stor-
age requirements for training data.

e The classifier based on our method has smaller
variation of its success rate across classes.

In our future work we intend to further enhance
the ideas presented in this paper by incorporating
the following: we plan to implement boosted learning
which will apply the knowledge learned from labeled
data to the unlabeled data obtained by a web spider;
we will make our classifier fuzzy, allowing an instance
to belong to many classes; we will try to optimize
management of the error stack on which our method
is based in order to make it as efficient in terms of
classification times as the other algorithms; we will
conduct further experiments on a larger dataset.
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