
A HIERARCHICAL ARCHITECTURE TO MODEL COMPLEX SOFTWARE

INTENSIVE SYSTEMS IN BEHAVIOR TREES

L.Wen, R.G. Dromey,
Software Quality Institute, Griffith University,
Nathan, Brisbane, Qld., 4111, AUSTRALIA.

l.wen@griffigh.edu.au, g.dromey@griffith.edu.au

Extended Abstract

1 The Problem: The need for a systematic approach to
building complex software intensive systems

With the quick development of computer hardware, many
complex systems are becoming software intensive. For
example an aircraft, which used to be a pure hardware
artifact, includes more and more software components for
communication as well as flight control, so it becomes a
software intensive system. How to build a high quality
software intensive system has always been a big challenge,
especially, with the fact that software intensive systems
are tended to merge together to form higher level super
systems, which are inevitable much more complex; e.g. a
new airline management system may integrate the air
ticket sales system and the airline plan system to provide a
better management tool for an airline company.

The reasons of difficulties to develop complex software
systems have been addressed thoroughly in software
engineering. Generally, there are three fundamental
reasons. The first reason is because of the intrinsic nature
of complexity in those systems. The second reason is the
unavoidable changes of the software requirements. The
third reason is about the defects of software requirements,
which are frequently inconsistent, incomplete and
ambiguous for large and complex systems; because for a
large system, the requirements are assembled from
different stakeholders who may be of different domains
and may have different views of the system.

2 Approach proposed by this paper. A hierarchical
architecture modeled by behavior trees

In this paper, we use behavior trees as a formal language
to model a hierarchical architecture for software intensive
systems. This architecture could be one of the most
suitable architectures for large and complex software
intensive systems because of its simplicity and scalability.

2.1 Behavior trees

Behavior trees, firstly proposed in 2000, are a tree-
structured formal graphical language to model the
behavior of software intensive systems. In the past ten
years, behavior trees have been explored in a broad range
of software engineering areas including: model checking,
software change and evolution, software safety and
security etc and received positive results. In this abstract,
due to the limitation of space, we use only a small fraction
of a behavior tree to illustrate the main ideas.

DOOR
[Open]

LIGHT
[On]

The figure above, which is a small behavior tree, shows
that there are two components “DOOR” and “LIGHT”
in a system; when the “DOOR” realizes the state of
“Open”, it will cause the “LIGHT” to realize the state
of “On”.

2.2 Simple systems and complex systems.

In the hierarchical architecture, we define two different
types of systems: simple systems and complex systems.
A simple system is defined as a system that contains no
other lower level systems as its components; in other
words, it is a lowest level system.

Contrary to a simple system, a complex system is a
system with lower level systems as its components. For
example, supposing that this is a “Light” as one of the
simple systems, if there is a system “Oven” that
contains a “Light” as its component, the “Oven” is a
complex system. Similarly, the “Oven” can be used as a
component in a “Kitchen” system and the “Kitchen” in
a “Building” system etc.

2.3 Environment, system and component

In the proposed 3-tier architecture, each entity can be
treated as a system, a component or even an
environment depending on the observing viewpoints.
For example, we consider a “Kitchen” system shown in
Figure 1, which contains an “Oven” and a “Fridge” as
its components, and “Oven” contains a “Light” and a
“Button” as its components.

Figure 1 Three different viewpoints

If a person is observing at viewpoint a, “Kitchen” will
be the system, “Oven” and “Fridge” are components,
and “Light” and “Button” are invisible. If the observing
point is at b, “Kitchen” will be the environment,
“Oven” is the system, “Light” and “Button” are

components and “Fridge” is invisible. If the viewpoint is
at c, “Light” will be the system, there is no components as
“Light” is a simple system, “Oven” is the environment
and anything else is invisible.

2.4 Internal and external boundary

When a system is observed from inside, the system’s
behavior can be modeled by a behavior tree. From this
behavior tree, the internal boundary of the system is
formally specified.

When we observe the system from its environment, which
is a super system, the behavior of the super system can
also be specified as a behavior tree. Similarly, from the
new behavior tree, the boundary of the previous system,
which now is treated as a component, is also formally
specified.

The two boundaries of a system must match each other, so
the system can execute its designed functions in its
environment. This principle is called the mutual boundary
property.

2.5 Tree-formed structure

In the proposed architecture, every system is connected to
only its environment and its components. There is no
direct connection between the components. Therefore the
whole system is built in a strict tree-formed architecture.
The integration of a system to its environment is based on
the mutual boundary property.

3. Advantages of the proposed approach

The proposed architecture has the following advantages:

Decompose the complexity: It decomposes the
complexity of a large system into many systems of
different levels. The complexity of each single system can
be reduced to a manageable scale because all the
connections to the system are local.

Less number of couplings: Reducing the number of
couplings between components is a normal method to
simplify a complex system. In the proposed architecture,
because of its tree-structure, the number of couplings has
been reduced to minimum.

Easy to change: Whenever a component is changed, the
impact is easy to trace and the ripple effects can be easily
blocked because of the tree-structure, which has no circles.

Easy to reuse: For each system, all its components are
independent to each other, so it is easy to reuse any
components in other systems.

Easy to integrate: To integrate a system into a parent
system, we only need to exam the child system’s
boundary without concerning its internal compositions.
Also, no matter how many systems are integrated and how

many levels are formed, the overall tree-structured style
will be kept.

Easy to test: In the hierarchical architecture, each
system is self-sustaining if the environment can
simulate the behavior of its external boundary.
Therefore, starting from the low level systems,
completed unit testing can be performed in the early
stage of development and high level system testing can
be simplified when all the included lower level systems
have been tested or simulated.

4. Supporting tools and case studies

Based on this proposed hierarchical architecture, a
software tool called BECIE (Behavior Engineering
Component Integrated Environment) has been
developed. We have used this tool to successfully
model and simulate a number of software intensive
systems such as Microwave Oven system, Car Park
system. Especially, we successfully use BECIE to
model and simulate a Universal Turing Machine.
Because any computerable system can be simulated by
a Universal Turing Machine, our results indicate the
proposed architecture plus behavior tree modeling
language are sufficient to model any software intensive
systems.

Figure 2 A universal Turing Machine simulated by
BECIE

5. Conclusion

This paper proposes a hierarchical architecture to model
large and complex software intensive systems. The
main idea is that in the whole system, every entity is a
system by itself and it connects only to its environment
and its components. Each entity is specified by a
behavior tree and the integration between two entities is
based on the mutual boundary property. Because of its
simplicity and scalability, the architecture is ideal for
modeling large and complex systems. Finally, a
software tool is reported to successfully model and
simulate a number of software intensive systems
including a Universal Turing Machine built in this
hierarchical architecture.

